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Abstract: We describe the multi-valley/multi-subband Monte Carlo (MV–MSMC) approach to
model nanoscale MOSFETs featuring III–V semiconductors as channel material. This approach
describes carrier quantization normal to the channel direction, solving the Schrödinger equation
while off-equilibrium transport is captured by the multi-valley/multi-subband Boltzmann transport
equation. In this paper, we outline a methodology to include quantum effects along the transport
direction (namely, source-to-drain tunneling) and provide model verification by comparison with
Non-Equilibrium Green’s Function results for nanoscale MOSFETs with InAs and InGaAs channels.
It is then shown how to use the MV–MSMC to calibrate a Technology Computer Aided Design
(TCAD) simulation deck based on the drift–diffusion model that allows much faster simulations and
opens the doors to variability studies in III–V channel MOSFETs.

Keywords: III–V semiconductors; modeling and simulation; Monte Carlo

1. Introduction

Despite being investigated and employed for a long time as semiconducting materials
for radio-frequency/microwave applications and for opto-electronics devices, only recently
III–V compounds and alloys have attracted interest as possible replacements for silicon as
channel material for nanoscale MOSFETs [1–5].

Device modeling and simulation plays a key role in technology development and
optimization. This task becomes particularly complicated in nanoscale MOSFETs with
III-V materials in the channel. In fact, selecting the right compound (or alloy), devising
a layered structure to help carrier confinement and reduce short-channel effects (SCE),
selecting the right gate stack, and considering the presence of interface and border traps in
the dielectrics require specific models that significantly deviate from the TCAD models
developed for silicon devices.

Full-quantum simulators based on Non-Equilibrium Green’s Function (NEGF) formal-
ism [6–8] are suited to fully capture the quantization effects normal to transport (carrier
confinement at the semiconductor/dielectric interfaces as well as confinement in quantum
wells) and along the transport direction (i.e., source-to-drain tunneling, SDT, and band-
to-band tunneling, BTBT). These are mandatory model ingredients in order to optimize
the device in terms of short-channel effects and low off-current. The use of tight binding
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(TB) or density functional theory (DFT) Hamiltonians allows for a full-band description
of the dispersion relationship of most of the III–V compounds and alloys, while the k·p
approach [9] provides an accurate description of the warped nature of the valence band
and of the non-parabolic nature of the Γ valley of the conduction band. Simpler effective
mass (EMA) approaches can accurately describe the non-parabolic/multi-valley features
of the band structure once calibrated against the advanced models mentioned above [10].
On the other hand, the computational burden of full-quantum simulations is significant
and precludes the inclusion of a complete set of scattering mechanisms. Furthermore, the
approach is usually applicable only to devices with short channel length and very thin
quantum wells. It is thus hard to calibrate the model on experimental data that are usually
available for devices with fairly long channel. The full quantum NEGF approaches are thus
at the top of the model hierarchy outlined in Figure 1, since they provide the most accurate
description of quantum effects.
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On the opposite side of the model hierarchy of Figure 1, we find the commercial TCAD
tools based on the drift–diffusion approach (e.g., [11]). They can handle very complex device
geometries going from planar to 3D architectures with non-planar access regions and non-
negligible contact resistance. Accurate models for traps in the gate stack can be activated [12].
The drift–diffusion model, however, does not naturally account for carrier quantization and
quasi-ballistic transport. In recent years, models have been proposed to include quantization
effects [13] as well as high-field transport in short-channel MOSFETs [14]. These models
open the door to accurate device design and optimization spanning a large set of parameters
not possible with NEGF simulators, as well as variability studies [15]. However, the various
model ingredients require calibration against more accurate (although time consuming)
simulation approaches.

In the middle of the transport model hierarchy of Figure 1, we have the semi-classical
models based on the multi-subband framework. In this approach, quantization normal
to the transport direction is handled by solving the Schrödinger equation in each device
slice and then solving the Boltzmann Transport Equation (BTE) along the channel direction
using the derivative of the subband energy as the driving force [16,17]. The problem can be
tackled either with the Monte Carlo method [18,19] or with deterministic approaches [20,21].
In the former case, we obtain what is known as Multi-valley/Multi-subband Monte Carlo
(MV–MSMC) [17]. The label “Multi-valley” indicates that subbands can originate from
quantization from different minima (valleys) of the conduction band. It is understood that
all these models should be solved self-consistently with the Poisson equation.
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In this paper, we review the MV–MSMC approach originally developed for silicon-
channel MOSFETs and show the main model upgrades needed to describe phenomena
relevant in MOSFETs with III–V compounds and alloys in the channel from the stand-
point of the intrinsic material’s transport properties. Compared to other papers by our
group [22–25], here we show how to empirically include source-to-drain tunneling in the
MV–MSMC and calibrate the model parameters vs. NEGF simulations. In addition, we use
the MV–MSMC to calibrate the quantization and transport modeling parameters of a TCAD
simulator to allow variability studies in III–V channel MOSFETs. Although unpassivated
interface and border traps may have a significant impact on the electrical performance
of III–V MOSFETs [24], they are not considered here, to highlight the maximum upper
performance limits achievable thanks to the intrinsic transport properties of the material.

2. Materials and Methods

The Multi-Subband Monte Carlo method has been extensively described else-
where [16–18]. Although the approach can be used also for hole transport [26], here we
review the model for electron transport, considering only n-type MOSFETs. Since the
conduction band of many semiconductors features many minima relevant for electron
transport, each of these minima generates its own set of subbands in the presence of
confining fields as in MOS structures. For this reason, we will refer to the model as
“multi-valley/multi-subband Monte Carlo” (MV-MSMC). Although the methodology
may be used for devices of the nanowire type [27], here we consider planar structures
featuring an essentially 2D electron gas (i.e., carriers are free to move in the transport
plane and quantized in the direction normal to the transport plane). We also assume that
the device is uniform in the width direction, so that the electrostatic problem is 2D.

A simplified flowchart of the MV–MSMC code is shown in Figure 2. Starting from a 2D
potential profile (i.e., that varies along the channel direction x and along the quantization
direction z), the 1D Schrödinger equation (SE) is solved along z in the different sections
along the channels for each set of valleys. Penetration of the wave function into the gate
dielectric can be accounted for. The derivative of the subband energy (for the given valley
and subband index) is then used as the driving force in the set of BTEs (one for each
subband) along the channel direction x. The BTE also requires computing the scattering
rates for the electrons in the inversion layer [17]: they depend on the subband energy and
corresponding wave functions. Inter-subband scattering couples the BTEs for the different
valleys/subbands. The solution of the BTE provides the occupation of the subbands in the
sections along the channel. The squared modulus of the wave function associated with the
subbands describes how the charge is distributed along z. It is thus possible to derive the
2D charge concentration profile. This is input into the 2D Poisson equation to derive a new
guess for the potential profile and iterate the whole procedure until convergence is reached.
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The MV–MSMC code used in this work was originally conceived for silicon devices [16,18].
Here, we list the main add-ons included to simulate MOSFETs with III–V channel.

First of all, the Γ-valley of most III–V materials is strongly non-parabolic (see, for
example, Figure 3 for InAs). While in silicon the non-parabolicity of the valleys can be
added as a simple correction of the in-plane energy dispersion that does not depend on
the subband energy [17], in III–V materials one should apply parabolic corrections to the
subband value and use an in-plane energy dispersion that depends on the subband energy
itself [10,28].
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In addition, the density of states of the Γ valley is very small, so that the Pauli’s
exclusion principle has to be enforced in order to recover Fermi statistics at equilibrium.
This means rejecting scattering events based on the occupation of the final state [17]. This is
needed also in Si devices, but in III–V MOSFETs this has an additional effect on the device
electrostatics, so that the effective channel length differs from its geometrical value [30].

The offset between the Γ valley and the satellite valleys is small, so that the latter
have a significant occupation, and this demands for a multi-valley approach. This is
of fundamental importance when considering high-field transport [31,32] as well as in
quantum wells, where the higher quantization mass of satellite valleys makes the respective
subbands very close in energy to the subbands originating from the Γ valley (e.g., in (111)-
GaAs [33]).

The small energy barrier between the III–V channel and the high-k dielectric in the
gate stack makes the wave function penetration into the gate stack relevant. This has an
effect on the electrostatics, as we will see later in Section 3.2. Furthermore, the model for
surface roughness scattering should account for that, and the linear model [34] should
be replaced by non-linear expressions [35]. Overall, the calculation of the scattering rates
in III–V MOSFETs has a significant computational burden due to the multi-valley nature
of the material, the need for non-linear surface roughness, and the need to include polar
phonons where the computation of the matrix element requires multiple integrals in the
quantization direction [17].

Due to the small energy gap of most III–V compounds and alloys proposed as channel
materials for nanoscale MOSFET (i.e., In-rich InGaAs, GaSb, InSb) tunneling (direct and
band-to-band) has a stronger impact on the device characteristics than in silicon devices, in
particular, in the sub-threshold region of operation. These effects are not naturally included
in the MV–MSMC, where quantum effects are restricted to carrier quantization normal to
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the transport direction. However, many workarounds have been proposed. In [36], direct
source-to-drain-tunneling (SDT) has been included by accounting for tunneling (via WKB
formalism) of electrons that hit the classical turning point. Our group instead has proposed
to convolve the subband energy profiles with a Gaussian function mimicking the finite size
of the wave packet [37], similar to what proposed in [38] for semiclassical Monte Carlo.
In this way, the charge associated with the tunneling carriers is implicitly included in the
device electrostatics. The approach has been verified against full-quantum simulations
for silicon devices [37]. In this paper (Section 3.1), we will show that the approach can
be used also in III–V MOSFETs where tunneling phenomena across the source barrier are
more severe. Concerning band-to-band tunneling (BTBT), it can be added as a generation
mechanism. The reader is referred to [39]. In this work, we neither consider tunnel FETs nor
apply drain-to-source voltages high enough to induce BTBT in MOSFETs. Consequently,
BTBT is ignored.

The interface between III–V semiconductors and high-k gate dielectrics features a
large concentration of traps with energy inside the conduction band of the semiconductor.
This may result in significant Fermi-level pinning [40]; in other words, above a given
point, increasing the gate voltage does not efficiently increase the inversion charge but only
the population of the interface states that do not contribute to transport. These interface
states can be included in the MV–MSMC, as described in [41], but are not activated in the
simulations reported below.

As in nanoscale silicon MOSFETs, in III–V channel MOSFETs the source and drain
series resistances have values comparable to those of the channel resistance and should
be part of the device model. How to compute the contact resistance itself is not the aim
of this work. An example of a model based on WKB tunneling and thermionic emission
is reported in [25]. Once the value of the source (RS) and drain (RD) series resistances is
known, they can be introduced in the MV–MSMC loop by modifying the source and drain
Fermi levels as EFS = RSIDS and EFD = VDS − RDIDS.

3. Results

It is clear from the description in the previous section that the MV–MSMC used in this
work is a very powerful and complete tool for the modeling and optimization of nanoscale
MOSFETs, including the main physical mechanisms that control the device performance.
However, there are two main limitations; in this section, we will analyze and propose ways
to overcome them.

First of all, although quantum effects in the direction normal to transport are naturally
accounted for by the solution of the SE, tunneling along the transport direction, that
may play a significant role in determining the off-current [42], needs to be included. In
Section 3.1, we apply to III–V MOSFETs the methodology proposed in [37] and calibrate
the model parameters against NEGF simulations.

Secondly, the MV–MSMC approach is based on a separation between transport direc-
tion (where the set of BTEs is solved) and quantization direction (where the SE is solved)
that limits its applicability to simple device architectures. Access regions of complex shape,
e.g., raised source/drain, need to be included as lumped series resistance (see above), losing
the ability to describe momentum redirection and accurately model all aspects of source
starvation phenomena [43]. Furthermore, the computational burden of the MV–MSMC
prevents its use for extensive sensitivity/variability studies. Following our previous work
in [14,15], we show in Section 3.2 how to calibrate the channel transport models in a
commercial drift–diffusion TCAD based on the MV–MSMC simulation results. This step
then allows us to exploit the available TCAD models to analyze more complex device
architectures, consider tunneling from/to border traps, and perform AC/noise as well as
variability analysis.
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3.1. Inclusion of Quantum Effects along the Channel Direction in the MV–MSMC

This section reports the calibration of the empirical model for quantum effects along
the channel direction implemented in the MV–MSMC [37] against NEGF simulations of
a set of nanoscale MOSFETs with InAs and In0.53Ga0.47As channels and a double-gate
architecture. This structure can represent either a planar double-gate structure or the 2D
cross section of a tall FinFET with a thick oxide on the top and negligible fringing fields at
the bottom, such that only the lateral gates control the channel. The geometrical parameters
for these devices were chosen starting from the semiconductor roadmap (ITRS) indications
for Ge/III–V semiconductors [44], carefully adjusted to preserve electrostatic integrity in
terms of subthreshold slope (SS) and drain-induced barrier lowering (DIBL). The devices,
sketched in Figure 4, have gate lengths of 8.3, 10.4, and 15 nm. For those devices, the gate
dielectric is scaled accordingly to 3.3, 3.3, and 3.84 nm. Having a relative permittivity of 22,
the corresponding EOT is 0.595, 0.595, and 0.68 nm, respectively. The channel doping is
1017 cm−3, and the source and drain doping is 5 × 1019 cm−3.
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The NEGF solver is described in [45]. It includes only the Γ valley of the conduction
band, differently from the MV–MSMC that models also satellite valleys. We however
verified that the occupation of satellite valleys is negligible in the simulations reported
here. Since scattering is not included in the NEGF simulator, scattering was turned off in
the MV–MSMC as well, for a fair comparison.

The model employed in the MV–MSMC convolves the subband energy profiles with
a Gaussian function with variance σ [37]. The same function is also used to smooth the
charge profile before entering it into the Poisson’s equation, in order to mimic the effect of
the finite size of the electron wave packet. The goal of the following figures is to show that
a unique value of σ provides a reasonably good match between MV–MSMC and NEGF. To
this end, the gate work functions of the devices in the two models were adjusted to match
the off-current at high VDS. In this comparison we turned off the wavefunction penetration
in the MV–MSMC for consistency with the NEGF solver.

The simulated IDS-VGS for the In0.53Ga0.47As devices with length of 15 nm, 10.4 nm,
and 8.3 nm are shown in Figures 5–7, respectively. The MV–MSMC without quantum
correction (i.e., with σ = 0) shows a much steeper current increase with gate voltage,
since source-to-drain tunneling is not accounted for. The use of σ = 4.25 nm for the
three devices provides a good match between MV–MSMC and NEGF at high VDS. The
agreement is a little less satisfactory at low VDS. The good agreement at high VDS can be
better appreciated by looking at Figure 8 that shows the trans-conductance (left) and the
subthreshold slope (right) for the 8.3 nm device. It should be said that the value of σ is
definitely large, considering that the corresponding value for silicon devices is 1.1 nm [37].
This observation suggests that Gaussian smoothening and the σ parameter should be seen
as an effective way to mimic what happens in NEGF simulations, and it is hard to relate it
to possible definitions of the size of the electron wave packet.
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Luckily, the same value works fine for InAs as well, as demonstrated by the match
between MV–MSMC and NEGF for the 10.4 nm device in Figure 9. In this latter case, the
off-current was not matched to highlight that the NEGF shows a contribution of band-to-
band tunneling (due to the smaller bandgap of InAs compared to In0.53Ga0.47As) that is
not included in the MV–MSMC. The values of the on-current from NEGF and MV–MSMC
are summarized in Table 1.
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Table 1. On-current (drain current and VGS = VDS = VDD) computed from NEGF and MV–MSMC for
the devices in Figure 4. Results extracted from Figures 5–9.

ION [mA/µm]

LG [nm] NEGF MV-MSMC σx = 0 nm MV-MSMC σx = 4.25 nm

15 (InGaAs) 2.43 2.91 2.13
10.4 (InGaAs) 2.53 3.10 2.23

10.4 (InAs) 2.04 2.45 2.09
8.3 (InGaAs) 1.94 2.71 1.82
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It is important to remark that in order to match the MV–MSMC and NEGF results,
the former was run after turning off scattering. However, scattering is relevant even at
small gate lengths in high-mobility materials. Figure 10 shows that activating scattering
in the 10.4 nm device of Figure 4 reduces the on-current by roughly a factor of two. The
scattering parameters were set to reproduce mobility data for long-channel MOSFET, as
detailed in [42]. External and contact series resistances are not considered here, although
they may further reduce the on-current.
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3.2. Use of MV–MSMC Simulations to Calibrate a Commercial TCAD Modeling Tool

As already discussed in Section 2, the MV–MSMC approach features simulation times
per bias point that are not suited for sensibility/variability analysis. Nevertheless, to carry
out this kind of simulations while retaining the accuracy of the full MV–MSMC model, we
calibrated the transport and quantization models of a commercial TCAD simulator (based
on the drift–diffusion formalism [14]) to reproduce the MV–MSMC results.

We consider in the following the 10.4 nm device of Figure 4. To reproduce the MV–
MSMC calculations, we resort to the quantum-corrected drift–diffusion model (QDD),
that considers both the increased confinement of carriers in the channel and the quasi-
ballistic transport at a very short channel length. Geometric confinement is accounted for
by considering the bandgap widening effect due to splitting of conduction/valence bands
into discrete levels in the computation of carrier densities. A further quantum correction is
implemented by the Modified Local Density Approximation (MLDA) model to properly
account for carrier confinement near the semiconductor/insulator interfaces. The same
metal gate work function is used in QDD and MV–MSMC, and the curves are compared
“as they are” without performing VGS shifts to align the thresholds. At this stage, quantum
effects along the transport direction are absent from both the QDD and the MV–MSMC
calculations. We will return to this point later.

Since the QDD, differently from the MSMC, does not consider the electron wave
function penetration (WFP) in the gate oxide, an effective TW is employed in order to
reproduce the NINV-vs.-VGS curve (see Figure 11a). This approach is different from the one
used in [14,15,23], where TW was kept equal to the geometrical value, and the parameters
of the MV–MSMC were recalibrated disabling the WFP. Although the value TW = 4.9 nm
appears to fit better the NINV-vs.-VGS curve in Figure 11a, a value of 4.7 nm was chosen
because it improved the overall agreement between the QDD and MV–MSMC models
when considering the complete IV curves, as shown in Figure 12.
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The calibration of the mobility model of the QDD vs. MV–MSMC was performed
starting from a long-channel device (LG = 100 nm) biased at low VDS (25 mV) to avoid the
influence of short-channel effects, quasi-ballistic transport, and velocity saturation effects.
The parameters of the reference MV–MSMC simulation setup are summarized in Table 2.
As indicated therein, satellite valleys are included in these simulations. The results of the
comparison between QDD and MSMC are reported in Figure 11b. The increase of mobility
with inversion density (NINV) may look surprising, and it is actually due to the very thin
well: when NINV increases, due to the low density of states, the electron gas becomes more
and more degenerate; the Fermi wave vector (i.e., the radius of the set of k-states having
an energy close to the Fermi level) becomes larger and larger, so that surface roughness
scattering (the dominant mechanism in a thin quantum well) is less effective in deflecting
the velocity. In fact, the surface roughness matrix element is reduced as the exchanged
wave vector increases, and this for a large Fermi wave-vector, results in a small change
in the angle between the velocity vector and the channel direction [46]. Experimental
mobility data for such a thin film are not available, to the best of our knowledge. On
the other hand, the data in [47] show that at 8 nm thickness, the mobility roll-off at high
inversion density, usually observed in bulk devices, disappears. This is an indication
that the interplay between scattering and quantized carrier gas changes from bulk to
thin film devices. Notice that the parameters for surface roughness in the MV–MSMC
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were calibrated in [42] by comparison with experiments for bulk devices that showed the
usual roll-off at high inversion density. Interestingly, when applied to thin films, the same
parameter set gives the trend shown in Figure 11b.

Table 2. Main model parameters of the MV–MSMC.

Band structure
Γ valley M = 0.043 (m0)

α = 1.5 eV−1

Satellite valleys From [48]

Scattering parameters

Phonons From [49]
Alloy scattering From [16]
Roughness: r.m.s. value 0.25 nm [42]
Roughness: correlation length 1.5 nm [42]
Interface charge 5 × 1012 cm−2

Besides the calibration of the low-field mobility model and the effective TW, the good
agreement between the MV–MSMC and the QDD (shown in Figure 12 for the device with a
10.4 nm gate length, but a similar agreement was found for the 15 nm device) required the in-
clusion of a ballistic mobility in the QDD with value µbal = K·LG with K = 30 cm2/(Vs·nm),
as well as high-field mobility with a saturation velocity vsat = 4 × 107 cm/s. The main
model parameters of the QDD are summarized in Table 3.

Table 3. Main model parameters of the QDD.

Physical Mechanism Model Parameters Value

Electron Density Fermi-Dirac Statistics Default from [11]

Band Structure Multi-valley, Non-parabolic Bands Default from [11]

Geometric Confinement Bandgap Widening Default from [11]

Quantum Confinement MLDA Default from [11]

Low-Field Mobility Constant µn 380 cm2/(Vs)

Ballistic Mobility µbal = K × LG K 30 cm2/(Vs nm)

High-field Saturation Canali Model
vsat 4 × 107 cm/s

β 2

Inclusion of quantum effects along the transport direction in the QDD is not straight-
forward and in our opinion still an open issue with the modeling options available at
present. A systematic analysis of possible ways to include size-induced quantization (ver-
tical direction) and source-to-drain tunneling (transport direction) has been carried out
in [50].

We analyze two options in Figure 13. We start by using the MLDA for quantization in
the vertical direction (to be consistent with the analysis in Figures 11a and 12). MLDA only
handles quantization in the vertical direction; therefore, non-local tunneling (NLT) from
source-to-drain tunneling is activated in the TCAD with a tunneling mass mtun = 0.05m0.
Plot (a) in Figure 13 reports the results for the 10.4 nm device. The IV curves from the
NEGF are added only to compare the subthreshold behavior, although a match was not
targeted, since forcing ballistic transport in the QDD model is not possible. We observe
that activating NLT in the QDD increases the inverse subthreshold slope (as expected) but
also significantly increases the current in a strong inversion regime. This is an artificial and
unphysical effect: the electrons that tunnel below the potential barrier at the source are
not self-consistently included in the device electrostatics, so that the height of the barrier
is related only to the carriers that surmount the barrier classically. As a result, tunneling
adds a current, but the associated charge is not consistent with the device electrostatics.
This is not the case of NEGF, where the evanescent part of the wavefunctions describing
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the tunneling electrons contributes to device electrostatics. This point was discussed in
detail [37] and led us to include quantum phenomena along the transport in the MV–MSMC
via subband smoothening, i.e., by lowering the barrier rather than making electrons tunnel
below it. Unfortunately, this option is not available in TCAD. The option that more closely
resembles it is the Density Gradient (DG) model, where the potential barrier is modified
based on the gradient of the electron concentration in order to account for quantum effects.
In TCAD, a density gradient cannot be activated only along the transport direction but
should be active in all simulated coordinates. As a result, we had to turn off MLDA and use
DG also for size-induced quantization in the vertical direction. A plot similar to Figure 11a
(not shown here) pointed out that a good match between the inversion density of MV–
MSMC and QDD with DG was possible by using an effective TW = 4.7 nm (as for MLDA)
and setting to 0.1 the empirical γ parameter of the DG model (i.e., the parameter that set
the strength of the potential correction [11]). Plot (b) in Figure 13 reports QDD simulations
employing the DG model. The curves refer to different values of the α parameter [11] that
sets the strength of the potential corrections imposed by the DG in the transport direction
compared to the one in the vertical direction (i.e., α = 10−4 means essentially zero DG
corrections along the transport direction). We observe that increasing α increases the drain
current in the sub-threshold region (leading to a larger inverse sub-threshold slope) but
has a minor effect in strong inversion, consistently with the fact that tunneling is mimicked
by barrier lowering, so that all electrons contribute to determining the electrostatics. While
far from being conclusive, this analysis outlines possible strategies to include SDT in QDD
to more accurately reproduce NEGF results.
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Figure 13. Comparison between TCAD and NEGF simulation results for the 10.4 nm device of
Figure 4. In plot (a), the MLDA (Modified Local Density Approximation) is used in TCAD to describe
quantization in the vertical direction and non-local-tunneling (NLT) for source-to-drain tunneling. In
plot (b), instead, the Density Gradient (DG) model is used with different values of the parameter α
described in the text.

4. Discussion and Conclusions

We have presented a hierarchy of modeling approaches for nanoscale MOSFETs and
applied it to devices based on III–V compounds. It is evident that each approach has its
own pros and cons. It is thus not possible to identify the generally best approach. Instead,
the whole suite of methods should be employed to get accurate and trustworthy results.
The full-quantum tools (e.g., the NEGF simulator employed here) are very powerful in
providing information about the band structure in the presence of strong size- and bias-
induced quantization, as well as in predicting the influence on the device behavior of
quantum phenomena, such as the impact of source-to-drain tunneling on the off-current
and inverse sub-threshold slope in nanoscale MOSFETs. On the other hand, inclusion of
scattering (that is relevant also in decananometric MOSFETs, as seen in Figure 10) is very
demanding from a computational point of view, so that an accurate estimate of the device



Electronics 2021, 10, 2472 13 of 15

on-current requires approaches such as the MV–MSMC. The calibration of the MV–MSMC
requires a mix of comparisons against full-quantum models (to set the band structure of
the quantized electron gas as well as the empirical parameter describing tunneling along
the channel) and against low-field mobility data (to calibrate the scattering parameters).
Experimental velocity-field curves for thin III–V structures would be very useful as a further
calibration/verification of the scattering rates at high energy, but no data are presently
available in the literature, at least to our knowledge. Another ingredient that is missing in
the MV–MSMC is band-to-band tunneling, which may have an impact on the off-current.
Again, this mechanism is well described by full-quantum tools, so that one may use those
models to calibrate and validate more empirical approaches suitable to be integrated in
the MV–MSMC (e.g., approaches similar to the one implemented in the semi-classical MC
described in [39]).

The NEGF and the MV–MSMC simulators used here are research tools suited for
expert users. Extensive device design and optimization are typically carried out by using
commercial TCAD tools, which can also deal with the critical role of the statistical variability
of device parameters. The NEGF and the MV–MSMC simulators can be also very useful
for the calibration of TCAD models, although such calibration must be repeated when
considering new materials and different device architectures. Furthermore, calibration is
almost universally carried out in terms of DC current–voltage characteristics, which does
guarantee the trustworthiness when dealing with AC simulations or when performing
sensitivity analysis as needed for variability studies.

In this work, we restricted the analysis to 2D structures (i.e., planar double-gate
MOSFETs or tall FinFETs). TCAD can handle more complicated 3D devices such as tri-
gate FinFETs, gate-all-around MOSFETs, and stacked nanowires that are candidates for
aggressively scaled technology nodes. The TCAD calibration procedure provided here vs.
2D MV–MSMC can be applied to these structures as well, although verification against 3D
full-quantum approaches and solutions of the BTE for the 1D carrier gas [20,27,51] may
be needed.
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