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Abstract: This work focuses on the optimization of a last-mile delivery system with multiple trans-
portation modes. In this scenario, parcels need to be delivered to each customer point. The major
feature of the problem is the combination of a fleet of road vehicles (vans) with a drone. Each van
visits a subset of demand nodes to be determined according to the route of the van. The drone serves
the customers not served by vans. At the same time, considering the safety, policy and terrain as well
as the need to replace the battery, the drone needs to be transported by truck to the identified station
along with the parcel. From each such station, the drone serves a subset of customers according to
a direct assignment pattern, i.e., every time the drone is launched, it serves one demand node and
returns to the station to collect another parcel. Similarly, the truck is used to transport the drone and
cargo between stations. This is somewhat different from the research of other scholars. In terms of
the joint distribution of the drone and road vehicle, most scholars will choose the combination of two
transportation tools, while we use three. The drone and vans are responsible for distribution services,
and the trucks are responsible for transporting the goods and drone to the station. The goal is to
optimize the total delivery cost which includes the transportation costs for the vans and the delivery
cost for the drone. A fixed cost is also considered for each drone parking site corresponding to the cost
of positioning the drone and using the drone station. A discrete optimization model is presented for
the problem in addition to a two-phase heuristic algorithm. The results of a series of computational
tests performed to assess the applicability of the model and the efficiency of the heuristic are reported.
The results obtained show that nearly 10% of the cost can be saved by combining the traditional
delivery mode with the use of a drone and drone stations.

Keywords: logistics; last-mile distribution; multiple traveling salesmen problem; unmanned aerial
vehicle; heuristic algorithm

1. Introduction

The study of operations research models and methods for problems involving un-
manned aerial vehicles (UAVs) has become quite popular in the second decade of the 2000 s.
In addition to applications in last-mile delivery operations as we are considering in this
paper, we also find applications related to military operations (e.g., surveillance), environ-
mental protection (e.g., fire prevention), agriculture (monitoring of large areas considering
factors such as slope and elevation), emergency logistics (pre-screening of damaged areas
and roads), etc.

In logistics distribution, the use of drones has become pervasive. The benefits of using
UAVs for parcel delivery are nowadays clear: (i) drones are faster and incur lower unit
costs; (ii) drones do not require manual operation; (iii) UAVs are not subject to terrain
and traffic conditions; (iv) there are many environmental benefits associated with the use
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of UAVs (as can be seen, e.g., in Figliozzi 2017 and Goodchild and Toy 2018) [1,2]. It is
important to note, however, that there are also some shortcomings related to this delivery
mode: (i) the carrying capacity of drones is limited—the load capacity of ordinary rotor
drones usually does not exceed 50 kg; and (ii) for safety reasons, drones can usually only
carry one piece of cargo at a time, and the short driving radius of drones requires frequent
trips between customer points and warehouses/distribution centers.

On the other hand, traditional delivery modes (e.g., by road) can satisfy several
customers using a single route. Moreover, the capacity of a vehicle is of course greater
than that of drones. Overall, this mode can benefit from economies of scale although
the distribution cost may be higher. A strong disadvantage is that road transportation is
susceptible to traffic conditions and terrain obstacles.

The above considerations make it clear that by combining the two above transportation
modes, we can simultaneously take advantage and circumvent the disadvantages of both.
Furthermore, we recently observed technological developments motivating the study of
problems such as the one we are considering: the industry has conceived vehicles that can
carry a drone and act as drone dock-stations to thus position a drone in a more convenient
location for supplying a set of delivery orders. This is the case with the new ”vans and
drones” concept launched by Mercedes-Benz in which the roof of a van is used as a landing
platform for drones (https://www.mercedes-benz.com/en/vehicles/transporter/vans-
drones-in-zurich/, accessed on 1 March 2020).

In this paper, we investigated a multi-mode multiple traveling salesman problem moti-
vated by applications in the context of last-mile distribution. We consider the situation in
which a classical transportation mode (e.g., a fleet of road vehicles (vans)) is combined with
an alternative that has recently emerged as very competitive under certain circumstances,
i.e., in this case, the use of an unmanned aerial vehicle (UAV), known more popularly as
a drone.

In many cases, the distance between the demand nodes and the depot prevents the use
of drones. When a drone is used for distribution, the demand point is often in the suburbs
far away from urban areas. For example, during distribution in some mountainous villages,
drones may face undertaking operations such as flying around a mountain, so it would be
safer for the drone to take off from a local station and return to the station after distribution.
Thus, another possibility is to position a drone in previously authorized sites—hereafter
called drone stations—from where its use once again becomes a possibility. This course of
action can be accomplished using a special vehicle (truck) that carries the drone as well as
the parcels that it will deliver. At the same time, trucks can also travel between stations
with the drone and parcels. Therefore, it is more reasonable to set up a drone station and
deploy drones from the station rather than a moving truck. The drone can also charge at
the station.

Direct assignment is assumed for the demand nodes served by the drone, i.e., the
drone visits one demand node each time it returns to the station to collect the parcel in
the truck for another demand node (before eventually returning for recharging). When all
demand nodes assigned to a drone station are served, the truck may position the drone in
another drone station or stay in the station.

In this work, we neglect the capacity of the vehicles and we assume that a unique parcel
is to be delivered to each demand node. Hence, the problem we are investigating consists
of combining a multiple traveling salesman problem (for the fleet of road-delivery vehicles)
with a location-allocation problem (for the drone pre-positioning and delivery). The need
for previously identifying potential drone stations is motivated by safety regulations in
many countries (e.g., the Federal Aviation Administration (FAA) in the USA) that prevent
drones from being launched from moving vehicles.

The decisions to make in our problem comprise (i) the drone stations to visit by the
drone-carrying vehicle; (ii) the assignment of demand nodes to drone stations; and (iii) the
routes for serving the demand nodes that will be served by vans. The goal is to minimize
the total transportation cost and a fixed cost of using the drone stations.

https://www.mercedes-benz.com/en/vehicles/transporter/vans-drones-in-zurich/
https://www.mercedes-benz.com/en/vehicles/transporter/vans-drones-in-zurich/
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In Figure 1, we illustrate the problem. In this area, D represents the distribution center,
and the star polygons such as α and β represent the used drone stations. The dots such
as a and b represent demand nodes. After receiving the order, the vans depart from the
distribution center to serve a given customer point. For example, the route of one of the
vans is D− d− e− f − g− h− i−D. At the same time, the truck transporting a drone also
departs from the distribution center and first arrives at station α. After arriving at station
α, the truck stays at station α and the drone is deployed from the truck. The drone will
return to the truck at station α after serving demand node a, and then deliver to service
points b and c. After the drone has completed all its tasks (serving demand nodes a, b and
c) and returned to the truck, the truck transports the drone to station β for the next stage of
service, and finally returns to the depot.

Figure 1. Illustrative example for the mTSP-LAP solution.

In Figure 1, we can also observe that the problem cannot be separated according to the
transportation modes since the one decision that needs to be taken concerns the mode to
use for satisfying each demand node. It is also worth noting that typically a drone does not
perform along a route. Instead, the drone picks up the package from the truck parked at the
station and serves the customer point. Summing up, the problem we are investigating is a
multi-mode multiple traveling salesman problem intertwined with a location-allocation
problem, which we abbreviate to mTSP-LAP.

In this paper, we refer to this distribution method to establish a mathematical model
about mTSP-LAP and designed a heuristic algorithm to solve it. Finally, we generated
an area and some customer points, verified the effectiveness of our proposed model and
algorithm through numerical experiments and performed a sensitivity analysis. The main
contributions of this paper include: (1) a new logistics distribution model in which using
a drone is proposed and a numerical analysis shows that this distribution model is more
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efficient in cost; (2) for this distribution model, we propose an integer programming
model called mTSP-LAP (multiple traveling salesman problem intertwined with a location-
allocation problem); (3) for the mTSP-LAP model, we designed a two-stage heuristic
algorithm to solve it.

The remainder of this paper is organized as follows. In Section 2, we review the
literature related to our work. In Section 3, we discuss an integer optimization model for the
problem. The following section—Section 4—is devoted a heuristic algorithm for the problem.
The results of the computational tests performed using the mathematical model and the
heuristic algorithm are reported in section 5. The paper ends with an overview of the work
achieved herein.

2. Relation with the Existing Literature

In this part, we summarize the traveling salesman problem (TSP) and the application
of drone in the logistics field. As a classic traditional problem, TSP has been a hot topic in
the field of logistics in the last ten years. In terms of research on drones, the use of drones
in distribution has been some paid attention to a certain extent, and the vehicle routing
problem of joint distribution between the drone and van is the focus of our research.

2.1. TSP and MTSP

The traveling salesman problem (TSP) is one of the most studied combinatorial opti-
mization problems [3,4]. Nevertheless, the problem is still attracting the attention of the
scientific community which is pursuit of the development of progressively more compet-
itive algorithms to solve it. Nagata and Kobayashi (2013) enhanced the use of genetic
algorithms using a so-called edge assembly crossover (EAX) [5]. A local search procedure
in EAX is used to determine good combinations of building blocks of parent solutions
for generating even better offspring solutions from very high-quality parent solutions.
More recently, Ozden et al. (2017) described and compared serial, parallel and distributed
solver implementations for large batches of traveling salesman problems using the Lin–
Kernighan heuristic (LKH) and the Concorde solver [6,7]. Finally, we quote the work
of Staněk et al. (2019) who investigated two variants of the Euclidean TSP based on so-
called turning angles [8]. The authors proposed several heuristics based on the geometric
properties of the optimal solution as well as on LP relaxations.

New variants and extensions of the TSP also keep being considered, motivated by real-
world problems. Some recent ones include that of Coutinho et al. (2016), who addressed
the so-called close-enough TSP [9]. In this problem, rather than visiting a node (customer),
the salesman must visit a specific region containing such a node. This problem was further
analyzed by Wang et al. (2019) who proposed new a competitive heuristic for it [10].
Carlsson et al. (2018) considered a distributionally robust Euclidean TSP that consists of
finding the worst-case spatial distribution of demand against all distributions [11]. The
Wasserstein distance was also considered [12]. Montero et al. (2017) investigated a TSP
with time windows [13]. Malaguti et al. (2018) investigated a pickup and delivery TSP in
the context of maritime transportation [14]. In this problem, each customer has a demand
characterized by a weight. The pickups and deliveries are performed by a single ship of
given weight capacity. The ship is able to visit a port only if the amount of cargo it carries
is compatible with the draft limit of the port. Errico et al. (2017) presented the symmetric
TSP with generalized latency [15]. The underlying idea is to consider an objective function
that in addition to the usual cost also accounts for the travel times of passengers in a transit
system. Gupta et al. (2017) investigated a so-called adaptive TSP: considering a metric
space, the set of nodes that required visiting is not known in advance; one only knows that
upon arriving at a node [16].

In the current paper, we consider a multiple TSP (mTSP) which is the extension of the
TSP in which we have multiple salesman based upon one or several depots [17]. In such
a context and considering some recent works, we quote the paper by Zhou et al. (2018)
that presents two partheno-genetic algorithms (PGA) for the problem [18]. These were
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compared with a particle swarm optimization algorithm (PSO) and a so-called invasive
weed optimization algorithm. Soylu (2015) considered two objective functions separately
for the mTSP: the longest tour length (to minimize); and the total length of all tours [19]. A
general variable neighborhood search was proposed. Xu and Rodrigues (2017) extended
the well-known Christofides heuristic which is an improvement on the two current best
approximation algorithms [20,21]. Bektaş (2012) proposed Benders decomposition al-
gorithms based upon new formulations for a new extension of the problem: a range is
assumed for the number of demand nodes that each salesman should visit [22]. Kota
and Jarmai (2015) introduced an algorithm for the fixed destination multi-depot mTSP
with multiple tours [23]. Dhein et al. (2018) considered a variant of the mTSP in which the
distance between any two salesmen cannot be greater than a pre-specified value to ensure
that the salesman can assist each other in a timely manner if an emergency occurs [24].

We can also find literature focusing on the multi-mode mTSP. Gambella et al. (2018)
considered two transportation modes and investigated a 2TSP [25]. The authors assumed a
slow carrier with a long operational range and a faster vehicle (e.g., UAV) with a limited
operational range. The carrier follows a route and delivers parcels to some customers. For
some other customers, the UAV is launched to perform the delivery. An exact algorithm
was proposed for the problem. This same problem was also investigated by Erdoğan
and Yldrm (2021), who explored new properties of the problem, proposing a mixed-
integer second-order conic optimization formulation together with an iterated local search
algorithm [26].

2.2. Delivery by Drone

The rapid development and pervasive use of UAVs together with the continuous
growth of e-commerce significantly increased the relevance of this transportation mode in
logistics and distribution systems [27,28]. Murray and Chu (2015) performed one of the
first works investigating the use of drone-carrying vehicles in transportation systems [29].
The problem is called the flying sidekick traveling salesman problem (FSTSP). A set of
demand nodes is considered that are to be served either directly by the truck or by the UAV
operated in coordination with the carrier. Carlsson and Song (2018) considered a UAV–truck
system assuming that the UAV provides a service to customers while making return trips
to the truck that keeps moving [30]. Agatz et al. (2018) proposed an exact algorithm for
this same problem, calling it a TSP with drone (TSP-D) [31]. Yurek and Ozmutlu (2018)
presented an iterative algorithm that is based on a decomposition approach to minimize
delivery completion time for the same TSP-D [32]. Ha et al. (2018) considered a new
variant of the TSP-D in which the objective is to minimize operational costs that include the
total transportation cost as well as the cost associated with the wasted time during which
a vehicle has to wait for another [33]. Pina-Pardo et al. (2021) introduced the so-called
TSP with release dates and drone resupply [34]. This is a problem consisting of finding a
minimum time route for a single truck that can receive newly available orders en route via a
drone sent from the depot. These authors assumed that the orders’ release dates are known
at the time of delivery planning.

Kitjacharoenchai et al. (2019) considered a multiple truck–drone system based upon a
single depot [35]. In this case, the drones fly from delivery trucks, making the assigned
deliveries and returning to any available truck nearby. The objective is to minimize the
arrival time of all trucks and drones to the depot after completing the deliveries. Ham
(2018) extended this problem by considering multiple depots, time windows as well as
pickup and delivery operations [36]. One important feature that has also been considered
in the literature concerns the autonomy of UAVs. Kim et al. (2018) considered an mTSP
in which drones were the only type of vehicle (salesman) [37]. The authors introduced a
robust optimization model for the problem that consists of defining multiple drone path
deliveries considering uncertainty in the duration of the battery. Each drone is assigned to
a specific depot and operates only from/to there.
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In the literature focusing on the mTSP, we observe that in the large majority of cases,
a single transportation mode is considered. When this is not the case, we find a carrier–
vehicle TSP in which deliveries can be made by the truck or by the drone it carries. In
other words, to the best of the authors’ knowledge, the setting we are investigating has
not been investigated in the literature: the combination of a truck–drone vehicle and a
classic fleet of vehicles. We also stress the fact that some countries still forbid the use of
drones from moving vehicles which makes the use of drones for long-range distribution
feasible only if the drone is previously positioned closer to the demand nodes. These
aspects give relevance to our work—we go beyond the existing literature contributing
to the combination of a truck–drone system and other “standard” delivery options. Our
study considers adding stations for drones, first transporting some packages and drones
to the stations by trucks and then using drones for distribution, thereby reducing the
distance of drone distribution and increasing the probability of using drones. In addition,
we developed a two-stage heuristic algorithm to arrive at a more reasonable distribution
plan in a reasonably short time.

3. Mathematical Model

We recall the decisions we consider in our mTSP-LAP: (i) the delivery mode used to
serve each demand node (by road as part of a route or by air directly by the drone); (ii)
the routes for road delivery; (iii) the stations used to park the truck as well as release and
recover the drone; and (iv) the demand nodes to be served from each drone station. We
need to consider how the demand points are served, whether they are served by drone or
vans, and also determine the departure and return station of the drone. These drone and
vans paths also affect each other. We consider the following additional assumptions:

• All vehicles are uncapacitated—each vehicle can carry all the parcels destined to the
demand nodes in the route defined for the vehicle. If the capacities of the drone
and vans were considered, one can add a coefficient to the cost or add constraints
on vehicle cost. This will not have a substantial impact on this mode, so this paper
ignores the impact of vehicle load.

• Every customer can be supplied by the drone. If some demand points can only be
served by drone or van, it reduces decision making regarding the service mode and
simplifies the problem.

• We assume that the drone stations already exist and thus we just need to decide those
that will be used for parking the truck as well as for launching and retrieving the
drone. This will be more applicable in the case of discrete point location, and it is
more in line with the original intention of focusing on path planning in this paper.

• Although the drone needs to be charged when its remaining autonomy prevents
further deliveries, we ignore this aspect—namely the charging time; we exclusively
focused on the transportation costs as well as the costs of using drone stations. Because
our cost mainly considers the travel time, if we consider the charging time, we only
need to add a fixed cost, so we choose to ignore this cost in the model.

• We ignore road congestion for road transportation and thus we assume fixed driving
times for all road vehicles.

• We do not consider any obstacles when using the drone. These two hypotheses are
because the problems of road congestion and airspace obstacles generally belong to
the research scope of artificial intelligence science and do not belong to the field of
operations research. Therefore, we do not consider these problems.

We consider a connected network G = ({0}∪N,A) underlying the problem. In {0}∪N,
node 0 represents the depot and N represents the set of demand nodes. A denotes the set
of arcs in the network (direct road connections). For every pair i, j ∈ {0} ∪ N, we assume
that we can compute the cost for linking those nodes by road (e.g., based upon the shortest
path between i and j and the per-unit distance transportation cost).

The following parameters defining our problem are considered:
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m, number of vehicles for road delivery (vans);
d, number of drone stations;
p, maximum number of drone stations allowed;
f , fixed cost of using the drone station;
crij, traveling cost between nodes i and j (i, j ∈ {0} ∪ N);
cdk

i , transportation cost for satisfying node i by the drone from station
k (i ∈ N, k ∈ D).

The problem can be mathematically formulated using the following sets of deci-
sion variables:

yk =

1, if drone station k is used;

0, otherwise.
(k ∈ D)

sk
i =

1, if node i is served by the drone from station k;

0, otherwise.
(k ∈ D, i ∈ N)

zi =

1, if node i is served by road vehicle (van);

0, otherwise.
(i ∈ N)

xv
ij =

1, if a road vehicle (van) travels directly from node i to node j by van v;

0, otherwise.
(i, j ∈ {0} ∪ N)

We can finally present the following integer programing model for the mTSP-LAP:

min
n

∑
i=1

n

∑
j=1

(
m

∑
v=1

xv
ij) · crij +

n

∑
i=1

K

∑
k=1

sk
i · cdk

i +
K

∑
k=1

yk · f (1)

d

∑
k=1

yk ≤ p, ∀k ∈ D (2)

sk
i ≤ yk, ∀i ∈ N, k ∈ D (3)

d

∑
k=1

sk
i + zi = 1, ∀i ∈ N (4)

0 ≤
n

∑
i=1

m

∑
v=1

xv
ij = zj, ∀j ∈ N (5)

0 ≤
n

∑
j=1

m

∑
v=1

xv
ij = zi, ∀i ∈ N (6)

n

∑
j=1

m

∑
v=1

xv
0j = m (7)

n

∑
i=1

m

∑
v=1

xv
i0 = m (8)

ui − uj + n ∗
m

∑
v=1

xv
ij ≤ n− 1, 1 ≤ i 6= j ≤ n (9)

sk
i ∈ {0, 1}, ∀i ∈ N, ∀k ∈ D (10)

xv
ij, ∈ {0, 1}, ∀j ∈ N ∪ j = 0, ∀i ∈ N ∪ i = 0 (11)

yk ∈ {0, 1}, ∀k ∈ D (12)

zi ∈ {0, 1}, ∀i ∈ N (13)
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The objective function (1) represents the total cost that includes (i) the cost of using
drone stations; (ii) the transportation costs for the road delivery vehicles as well as for the
drone-carrying truck; and (iii) the drone delivery cost. Because the construction of the
station is a one-time cost, once the station is set up, its subsequent use, maintenance and
other costs can be ignored. Therefore, we consider designing a fixed cost for the station.
Constraint (2) represents the maximum number of drone stations allowed. Inequality (3)
states that if a drone serves a demand node from one station then the station should be
operating. Constraint (4) ensures that every demand node is served by exactly one and
only one transportation mode (either by van or by drone). Constraint (5)–(6) means that it
is only served by the van at both point i and point j, and there will be a path of van from i
to j. Constraints (7)–(8) indicate that a total of m vans depart from the distribution center
and return to the distribution center. Constraint (9) is an MTZ constraint, which ensures
that there will be no sub-tours in the path of the vans [17]. Constraints (3)–(6) ensure the
synchronization of the vans’ path planning with drone station selection and drone path
planning. When planning the path of the vans, it is necessary to prevent the demand point
being served by drone. When making drone distribution decisions, it is also necessary to
prevent the demand points being served by vans. Finally, (10)–(13) define the domain of
the decisions variables.

Remark 1. The above problem contains a TSP as a particular case and thus it is NP-hard.

Remark 2. We can relax the integrality constraints on the x-variables as well as the upper bound,
thus simply writing that

sk
i ≥ 0, i ∈ N, k ∈ D.

In fact, it is easy to see that since the y-variables are integer, there is always one optimal solution
such that the s-variables are also integer.

Remark 3. In the above model, we include the fixed cost of using the drone station. However, in
our algorithmic procedure to be proposed in the next section and when analyzing the results, we
start by ignoring this component and use it last as part of a post-optimization analysis.

Looking at the above model, we easily identify the ”location-allocation” component,
Constraints (2)–(3); the ”mTSP” component, Constraints (5)–(9); and the linking constraints,
Constraints (4)–(6). The hardness of the problem together with many data-driven applications
in which upon collecting the data a solution must be found in a very short time justifies the
development of a heuristic algorithm for the problem. In fact, in many real-world last-mile
delivery applications (e.g., food delivery), customers expect to be satisfied shortly after
calling to be served and thus we cannot afford waiting too long to obtain an optimal solution
to the problem. Nevertheless, in Section 5, we reported on some results obtained by solving
the above model with an off-the-shelf solver.

4. Heuristic Algorithm

In this section, we develop a two-phase heuristic algorithm for the mTSP-LAP. In
terms of the algorithm, in the first stage, we first generate a feasible solution which does
not include the path of the drone. We use m-means clustering (K-means) to assign all
customer points to the m vans for service. After that, for each van, we use the greedy
algorithm to preliminarily calculate the path. In the first phase, we construct a solution for
the mTSP (thus ignoring the drone). Note that the solution obtained after the first phase
is already a feasible solution to the whole problem since the drone is not used. Because
there is no path for the drone in this feasible solution, this is only an extreme case. In
the second stage, we will change the service mode of some customer points to drone
service according to the savings value. In this process, the algorithm will also calculate
which station the drone takes off from and returns to. In this step, the stations used by
the drone will be allocated. At the same time, the saving value is also used to iteratively
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update the path of the vans. In the second stage, the solution of the first phase is improved
by including the LAP component of the problem: drone delivery is considered, whose
benefit is assessed considering the estimated saving cost of changing the delivery mode
for some demand nodes from road to air. Under the framework of neighborhood search,
we innovatively designed the rules of transportation mode exchange, i.e., in the first stage,
some demand points originally served by vans were replaced by drones. A very important
point in exchange rules is to calculate whether there will be cost savings after changing the
transportation mode. For this reason, we can look at the first phase as construction phase
with the second phase as the improvement phase.

4.1. Construction Phase

The m-means clustering algorithm is a very popular clustering procedure that we put
at the core of the first phase of our heuristic [38]. The algorithm is quite simple: given
n data points in an Euclidean space, we select m in some way to define a first tentative
set of centers. Each other point is then assigned to the closest center (with respect to the
Euclidean distance). Afterwards, we calculate the centroids of each cluster obtaining a
new set of m centers. Considering this new set, all the other points are reassigned to the
closest center. This process proceeds until the solution does not change from one iteration
to another.

This algorithm can be looked at as a local search procedure for finding feasible clusters
minimizing the sum of the squared distances between each point and the centroid of the
cluster it is allocated to. For deeper insights into the above optimization problem, the
reader is referred to Aloise et al. (2012) [39].

Despite some well-known disadvantages of the m-means procedure (see, e.g., Gribel
and Vidal 2019 [40]), we adopted this method since the purpose in this phase is to find a
feasible solution to our problem whilst ignoring the matter of the drone. Hence, we believe
that it does not compensate at this stage to invest too much in finding solutions that still
neglect an important component of the problem. We start the procedure by randomly
generating the m initial centers.

Once the demand nodes are clustered, a straightforward nearest-neighborhood com-
putation is performed considering the depot and the nodes in each cluster to define the
shortest length Hamiltonian tour for the nodes in that group [3].

4.2. Improvement Phase

Considering the solution constructed in the first phase, we denote by E a set of edges
that will be analyzed in this phase to induce improvements in the solution. Initially, this
set contains all the direct road links used by the solution. We denote by Cincumb the current
solution cost. We also define a set T containing all the demand nodes served by a road tour,
which is of course equal to N when we start this improvement phase.

Our procedure iteratively attempts to remove nodes from T when a demand node is
scheduled to be served by the drone. This is accomplished by selecting the edge

{j∗, `∗} = arg min
{j,`}∈E

{cj`}

and (separately) computing saved cost among the total delivery cost (road and air) from
servicing j∗ or `∗ with the drone (from the closest drone station to each node). We denote
by Cj∗ the total delivery cost if j∗ is served by air (the Hamiltonian tour for the depot and
cluster j∗ belongs to is also recomputed—using nearest-neighborhood computation as
before). Similarly, we compute C`∗ . Finally, we have the savings:

∆Cj∗ = Cincumb − Cj∗ ,

and:
∆C`∗ = Cincumb − C`∗ .
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Now, we distinguish three cases for deciding the course of action to take:

Case 1: ∆Cj∗ > ∆C`∗ and ∆Cj∗ > 0.
In this case, demand node j∗ is removed from T since it will be served by the drone
(from the closest drone station).
Case 2: ∆C`∗ > ∆Cj∗ and ∆C`∗ > 0.
In this case, demand node `∗ is removed from T since it will be served by the drone
(from the closest drone station).
Case 3: ∆Cj∗ < 0 and ∆C`∗ < 0.
In this case, nodes j∗ and `∗ remain in the initially established road route and the
corresponding edge {j∗, `∗} is removed from the set of edges (E) to be analyzed.

The improvement phase just described is formally detailed in Algorithm 1. In this
algorithm, Γ(.) denotes the cluster to which a node belongs to.

Algorithm 1 Improvement Phase.

1: T ← J;
2: Define E and compute Cincumb;
3: while T 6= ∅ and E 6= ∅ do
4: {j∗, `∗} = arg min

{j,`}∈E
{cj`}

5: Compute Cj∗ , C`∗ , ∆Cj∗ , ∆C`∗

6: if (∆Cj∗ > ∆C`∗ and ∆Cj∗ > 0) then
7: T ← T \ {j∗}.
8: Recompute the route for the nodes in cluster Γ(j∗) plus the depot.
9: else

10: if (∆C`∗ >= ∆Cj∗ and ∆C`∗ > 0) then
11: T ← T \ {`∗}.
12: Recompute the route for the nodes in cluster Γ(`∗) plus the depot.
13: else
14: if (∆Cj∗ < 0 and ∆C`∗ < 0) then
15: E← E \ {j∗, `∗} // edge {j∗, `∗} is not analysed again.
16: end if
17: end if
18: end if
19: end while

After Algorithm 1 is executed, we find in set N\T the nodes that will be served by the
drone (each one from the closest drone station).

5. Numerical Experiments

In this section, we report on a series of computational experiments performed to assess
the model and algorithm discussed for the mTSP-LAP. We start by describing the test bed
instances used and then we discuss the results.

All algorithms were run on Intel Core i5 macOS High Sierra 64-bit mode, with an
operating frequency of 2.7 GHz and a memory of 8 Gb.

5.1. Test Data

To generate the demand nodes, a 20,000× 20,000 square was considered with (−10,000,
−10,000) as the lower-left corner and (10,000,10,000) as the upper-right corner.

Initially, 30 instances were generated that were divided into two sets. In the first set
(instances 1–15), 50 demand points were randomly positioned in the underlying square.
Four drone stations were assumed, which were positioned in the coordinates (5000,5000),
(−5000,5000), (5000,−5000), (−5000,−5000). The depot was positioned in the center of the
square. Figure 2 shows a schematic of this area. A fleet with five vans was assumed. The
second set of instances (instances 16–30) differ from the above ones by randomly generating
100 demand nodes.
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We assume that the drone delivery cost is negatively correlated with the time of
delivery. This is accomplished by considering that if the speed of the drone is v times that
of the road vehicles, then the delivery cost of the drone for a similar distance is 1/v times
that of the road vehicles. Due to the fact that the drone can fly in a straight line (which
is not the case for the road vehicles which must follow the roads), we assume that the
delivery distance of a road vehicle is 1.4 times that of the drone for the same straight-line
distance. This is because the distance between two points generally uses Euclidean distance
for drone, while road vehicles generally use Manhattan distance. We use an isosceles right
triangle to illustrate this problem. As shown in Figure 3, when moving from point A to
point C, the driving path of the vans is A− B− C and the path of the drone is A− C. This
means that the mileage of the road vehicle is 1.4 times that of the drone.

Figure 2. Schematic diagram of test area.

Figure 3. Different travel distance between the drone and road vehicles with the same starting point
and ending point.
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5.2. First Results

We first report on the results obtained by the proposed heuristic. At this stage, we
ignore the fixed costs for positioning the drone—we only consider the transportation costs
(by road and by air). Later, we expand our analysis to consider this aspect. Since the stating
step of our heuristic is randomized, we repeated 15 times the procedure for each instance,
saving the best solution and the corresponding information.

In Tables 1 and 2, we present the results for the 50-node and 100-node instances,
respectively. In these tables, the first column specifies the instance. The following six
columns indicate how the demand nodes were distributed among the road vehicles (Nv)
and the drone (Nd). The column headed with Cv indicates the total transportation cost
associated with the fleet of road vehicles and Cd is the total delivery cost for the drone. Ct is
just the sum of the previous costs, i.e., the total delivery cost. Ct1 is the total transportation
cost for the first-phase solution. Finally, the last column contains the CPU time required to
obtain the reported solution.

Table 1. Heuristic solutions for the 50-node instances.

Instance
Nv

Nd Cv Cd Ct Ct1 CPU (s)
Nv1 Nv2 Nv3 Nv4 Nv5

1 10 9 8 6 6 11 113,637 20,655 134292 163,650 1.31
2 12 9 9 4 10 6 153,414 13,086 166,501 182,622 1.23
3 9 9 4 15 5 8 139,848 15,283 155,132 180,062 1.42
4 13 7 6 7 9 8 127,088 11,190 138,278 166313 1.41
5 12 12 6 6 5 9 138,987 15,635 154,622 166,009 1.55
6 6 3 6 10 8 17 127,795 29,041 156,837 181,797 1.29
7 10 10 8 8 7 7 142,539 16,719 159,259 184,302 1.25
8 10 3 9 7 9 12 117,422 23,193 140,615 172,407 1.15
9 6 13 10 10 5 6 147,096 10,279 157,375 170,333 1.32

10 9 13 6 9 7 6 150,527 7,575 158,102 170,034 1.21
11 13 8 9 5 7 8 135,932 15,251 151,184 169,927 1.26
12 11 6 5 5 6 17 112,826 28,315 141,141 168,378 1.18
13 10 6 6 6 6 16 119,485 28,029 147,514 180,686 1.22
14 10 7 7 9 9 8 122,340 11,128 133,469 150,187 1.21
15 12 9 10 6 6 7 135,406 14,953 150,360 166,765 1.24

Table 2. Heuristic solutions for the 100-node instances.

Instance
Nv

Nd Cv Cd Ct Ct1 CPU (s)
Nv1 Nv2 Nv3 Nv4 Nv5

16 17 23 16 17 18 9 198,811 17,094 215,906 229,946 1.46
17 21 15 17 18 16 13 189,731 21,345 211,076 227,679 1.54
18 19 13 25 15 14 14 184,557 25,328 209,886 235,061 1.52
19 25 17 16 18 15 9 192,922 14,741 207,664 216,955 1.39
20 24 17 19 17 12 11 181,101 18,086 199,188 221,455 1.34
21 16 21 18 18 18 9 201,996 18,845 220,841 234,924 1.38
22 27 15 15 11 24 8 184,406 14,446 198,853 212,975 1.34
23 19 22 21 16 16 6 197,820 8,836 206,656 215,279 1.38
24 29 17 12 17 14 11 186,802 21,234 208,036 222,414 1.24
25 16 19 17 18 19 11 183,013 17,503 20,0516 216,542 1.31
26 19 21 16 17 13 14 205,168 22,882 228,051 238,546 1.30
27 25 11 24 14 15 11 189,285 16,857 206,143 215,230 1.36
28 19 23 19 14 14 11 189,143 23,237 212,381 246,054 1.39
29 17 23 16 17 18 9 198,811 17,094 215,906 229,946 1.41
30 21 15 17 18 16 13 189,731 21,345 211,076 227,679 1.37

By observing Tables 1–3, we conclude that the initial solution obtained without consid-
ering the drone is improved in the second phase, indicating a clear benefit from using this
alternative transportation mode. -CT Ct can be regarded as the system cost after adding
the drone, and -CT1 Ct1 is the cost before adding the drone. Through calculation, it can
be seen that when the number of demand points is 50, 100 and 200, the cost is reduced by
12.96%, 7.16% and 8.49% due to the addition of drone, respectively. This means that the
drone can bring incur cost savings of approximately 10%.
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Observing the above tables, we also realize that the proposed heuristic approach
quickly leads to a feasible solution within 2s (for the tested instances). This is relevant in
modern logistics systems when decisions need to be made quickly upon receiving a set of
customer orders.

For a small number of demand nodes, our problem can be solved up to proven
optimality using a general-purpose solver. This fact allows us to assess the quality of our
heuristic for at least a few small instances. We considered the MIP solver of IBM ILOG
CPLEX release 12.10. Unfortunately, the instances presented in Section 5.1 are too large
for the plain use of a general solver. For this reason, we used the same methodology as
before to generate a few smaller instances: we generated instances with 12, 15 and 20
demand nodes. Five instances were generated in each case. In all cases, two drone stations
were assumed.

Table 3. Heuristic solutions for the 200-node instances.

Instance
Nv

Nd Cv Cd Ct Ct1 CPU (s)
Nv1 Nv2 Nv3 Nv4 Nv5

31 35 34 45 33 35 18 254,266 19,018 273,284 290,939 1.485
32 33 39 39 45 24 20 259,140 19,354 278,495 305,646 1.597
33 30 46 29 37 34 24 257,069 24,542 281,611 306,607 1.572
34 36 34 32 35 41 22 252,711 25,386 278,098 310,107 1.382
35 38 37 27 41 41 16 281,079 16,447 297,527 321,781 1.119
36 44 39 31 37 34 15 274,188 16,896 291,085 313,768 1.046
37 33 40 20 29 43 26 236,098 30,817 266,915 297,613 1.147
38 33 38 43 31 37 18 269,573 21,984 291,557 310,474 1.082
39 36 30 30 48 38 18 277,145 17,011 294,156 303,216 0.952
40 27 45 29 38 37 24 248,671 22,406 271,077 298,525 1.018
41 30 42 36 28 46 18 247,344 22,877 270,222 286,188 0.967
42 34 39 29 40 34 24 250,964 27,014 277,978 307,722 1.173
43 36 26 43 37 44 14 238,983 16,440 255,424 291,446 1.073
44 35 43 30 29 41 22 255,351 21,349 276,701 311,830 0.992
45 26 39 41 35 40 19 257,140 17,030 274,171 310,330 0.947

In Table 4, we present the obtained results. Observing this table, we see that as the
number of nodes grows, the CPU time required by the solver significantly increases. In
terms of the quality of the solutions provided by the heuristic, we observe that an average
percentage gap of 7.89%, 9.00% and 8.85% was obtained for 12-, 15- and 20-node instances,
respectively. Although the above values are high, we note that the solution time of the
heuristic algorithm does not significantly increase with the increase in the scale of customer
points, and the accuracy does not decrease. This means that in reality, when there are
large-scale packages to be processed, calculation does not require a significant amount of
time, which increases the time for service and improves customer satisfaction.

In Table 5, we provide some information allowing a comparison between our work and
those most closely related in the literature. Because this paper is different from the research
of other scholars in terms of the use mode of drone, it is difficult to compare the accuracy of
each algorithm, so we can only compare the performance of the algorithm in time efficiency.
We recall that the TSP-D model proposed by Yurek et al. (2018) [32] includes a road vehicle
and a drone. The results presented in that work indicate that the heuristic proposed by
those authors tackles instances with up to 12 customer points within a reported CPU time of
760s. In the MTSP-D problem investigated by Kitjacharoenchai et al. (2019) [35], there are
multiple road vehicles and a drone. The authors reported that the heuristic they proposed
finds feasible solutions for instances with 5 vehicles, 1 UAV and 50 demand nodes within
105.1s. Finally, the capacitated vehicle routing problem studied by Gambella et al. (2018) [25]
involves one helicopter docked on a ship. This is a problem in which the function of the
helicopter is similar to that of the drone in our work, which explains why we also quote
that paper. The authors designed an exact algorithm that can solve instances with up to 11
demand nodes within 2.15s.
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Table 4. Result comparison of the CPLEX and heuristic algorithm.

CPLEX Heuristic
Gap (%)

# Nodes Instance Time (s) Obj. Value Time (s) Obj. Value

12

1 0.31 43,678 0.14 46,223 5.51%
2 0.43 57,828 0.57 63,184 8.48%
3 3.69 41,913 0.54 46,655 10.16%
4 0.58 40,998 0.59 41,591 1.43%
5 1.32 41,385 0.64 48,051 13.87%

Average 7.89%

15

6 5.19 69,049 0.69 77,102 10.44%
7 3.92 62,492 0.56 67,288 7.13%
8 6.56 54,857 0.59 60,906 9.93%
9 5.06 68,510 0.62 72,492 5.49%

10 4.79 63,735 0.61 72,446 12.02%
Average 9.00%

20

11 42.15 71931 0.62 82,284 12.58%
12 51.34 58,409 0.65 61,231 4.61%
13 63.60 72,075 0.59 77,574 7.09%
14 86.03 74,872 0.62 81,916 8.60%
15 75.34 66,668 0.56 75,224 11.37%

Average 8.85%

Table 5. Result comparison with the closest related studies in the literature.

Work Transportation Mode Algorithm |N| CPU Time (s)

Yurek et al. (2018) [32] 1 van | 1 drone Approximate 12 760
Kitjacharoenchai et al. (2019) [35] 5 vans | 1 drone Approximate 50 105
Gambella et al. (2018) [25] 1 ship | 1 helicopter Exact 11 2
Current paper 5 vans | 1 truck + drone Approximate 100 2

5.3. Additional Insights

In this section, we provide some additional insights into the results. First, we investi-
gated the impact of the number of drone stations and their cost. Afterwards, we discussed
the role of the drone speed.

5.3.1. Number of Drone Stations

To investigate the impact of the number of drone stations on the results, we designed
two additional trials. In the first one, we fixed the number of demand nodes (N) at 100,
and considered 8 and 4 stations(S). In the second trial, we fixed the number of demand
nodes at 50, and assumed 4 and 2 stations. The remaining parameters were obtained as
explained in Section 5.1.

The results can be observed in Table 6. When the number of drone stations increases,
the drone usage also increases. This is explained by the reduction in the travel distance
between the drone and the demand nodes when more stations are available. In turn, this
helps reduce the delivery cost.

Thus far, we ignored the fixed cost of using the drone stations. The results we obtained
thus far help us analyze this cost component. If the fixed cost of using a drone station is too
high then the savings obtained by using the drone can easily vanish. The results in Table 6
help us to foresee what are reasonable costs for the stations that compensate their use. For
instance, considering instance 8, we see that the estimated reduction obtained in the total
transportation cost by using the drone vanishes for a fixed station cost slightly above 4000.

5.3.2. The Impact of the Drone Speed

One assumption we made when generating the test bed data was that the drone
delivery cost is negatively related to the delivery time. For this reason, it is relevant to
investigate the impact on the results of the relation between the drone speed and the van
speed. For this purpose, three sets of controlled trials were designed. In the first set, the
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speed of the drone is set to 200% of the van’s speed (instances 1–5); in the second set trials,
the unit cost of the drone is set to 150% of the van’s unit cost (instances 6–10); finally,
for the third set, we assume that the speed of the drone and van are the same (instances
11–15). The number of demand nodes was fixed equal to 50 and four drone stations were
considered. The results are summarized in Table 7. In this table, the column headed with
Vd:Vv contains the ratio between the speed of the drone and that of the van.

Observing the results, we conclude that when the speed of the drone is 200% the speed
of the van, the use of the drone leads to a significant decrease in the total transportation
cost—whilst the number of demand nodes visited by the drone increases significantly. In
this case, we also observe that the negative correlation assumed between the delivery cost
and the delivery time leads to a total cost reduction of approximately 20%.

Table 6. Additional insights: the role of |S|.

Instance |N| |S| Nd Cv Cd Ct Ct1

1 18 179,930 24,618 204,548 234,137
2 16 181,540 18,767 200,308 230,217
3 100 8 16 158,448 25,871 184,319 204,171
4 20 161,082 24,490 185,573 227,783
5 16 183,349 19,282 202,631 222,207

6 9 178,341 19,156 197,497 230,574
7 10 208,044 14,450 222,495 231,871
8 100 4 16 174,369 24,145 198,514 214,577
9 13 184,023 21,512 205,535 230,024

10 13 198,390 22,337 220,727 244,474

11 11 142,226 21,929 164,156 190,179
12 7 138,284 12,024 150,309 177,649
13 50 4 9 144,913 15,579 160,492 181,440
14 8 139,571 13,315 152,886 162,157
15 9 150,660 18,316 168,976 191,979

16 2 155,314 2,309 157,624 160,250
17 4 134,223 8,391 142,615 152,921
18 50 2 9 135,037 20,709 155,747 171,207
19 5 142,300 11,157 153,457 166,087
20 6 130,233 16,194 146,427 159,687

Table 7. Impact of drone versus road vehicle speed.

Instance Vd : Vv Nd Cv Cd Ct Ct1

1 2 22 169,475 27,702 197,178 234,272
2 2 17 163,546 21,538 185,084 215,305
3 2 23 185,330 27,716 213,047 248,834
4 2 20 168,813 27,685 196,498 228,232
5 2 26 158,925 27,952 186,878 241,791
6 1.5 13 201,063 21,331 222,394 244,888
7 1.5 14 190,563 16,394 206,958 226,255
8 1.5 16 177,214 24,367 201,582 228,749
9 1.5 11 200,534 23,542 224,076 244,735

10 1.5 12 178,668 19,868 198,536 234,980
11 1 5 203,664 11,901 215,565 216,547
12 1 5 193,208 14,761 207,969 222,553
13 1 7 197,116 18,978 216,094 238,438
14 1 5 200,120 8,610 208,731 216,657
15 1 5 203,085 7,615 210,701 225,908

When the speed of the drone is 150% more than that of the van, the number of
demand nodes visited by the drone is approximately equal to ten, and the cost of the entire
distribution system is reduced by approximately 10%.

Finally, we can hardly see a significant reduction in the total delivery time when the
drone and the van have similar speeds. This is an indication that when the van is not much
affected by traffic congestion, it may compensate to use it more intensely, which is of course
encouraged by the economies of scale associated with road delivery.
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6. Conclusions

In this paper, a multiple traveling salesman problem was combined with a location-
allocation problem in the context of a multi-mode last-mile logistics distribution system.
The contributions of this paper include: (1) A traditional delivery mode making use of
a set of road vehicles (vans) was combined with the use of a drone. Considering some
factors, instead of directly deploying the drone from the road vehicle, we used trucks to
transport the drones and parcels to the preset station and then the drone was sent to the
customer service point. Trucks thus move between the stations with drones. (2) An integer
programming model was proposed for the problem. In the model, we fully consider the
synchronization of the drone and vans’ path planning. (3) A two-phase heuristic algorithm
was also developed for finding feasible solutions to the problem in a short time. In the
algorithm, according to the mechanism framework of cost saving, we can achieve the ideal
result by exchanging the way that demand points are served (by drone or vans).

Our results show that under some circumstances (e.g., a large number of demand
nodes, a higher speed of the drone compared to the road vehicle, and the relatively small
cost of using the drone stations), the total transportation cost can significantly decrease
by considering drone delivery. This will save approximately 10% of the cost. Our results
also show that using an approximate procedure such as the proposed heuristic may be
inevitable since the use of a general purpose solver is rather limited and hardly becomes a
possibility for 20 or more demand nodes.

This work opens up several research avenues. First, it would be interesting to investi-
gate an extension of the problem considering a fleet of drones (possibly with heterogeneous
capacity). In keeping with this extension, it would also be interesting to consider a TSP
for every drone-carrying vehicle so that a route is designed for every drone to visit a
set of drone stations. It is also worth investigating the vehicle routing extension of the
investigated problem by considering non-unit demands and capacitated road vehicles. The
inclusion of time as a dimension of the problem is also worth studying. In particular, this
would allow considering time-windows for the deliveries as well as the recharging time of
the drones at the drone stations.

Overall, our work suggests new planning opportunities stemming from the better use
of certain technologies, such as drone-carrying vehicles, for improving the performance of
last-mile delivery operations. Future research directions include adding more constraints to
the current model to make it more suitable for application scenarios under real conditions,
such as the time window when operating the drone under different conditions, the capacity
of the drone and battery capacity. In terms of algorithms, heuristic algorithms are designed
to be more accurate and effective to solve this problem.
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