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Abstract: In this work, the state estimation problem of electric power systems is represented through
a mathematical programming approach. Initially, a non-linear mathematical model based on the
classical method of weighted least squares is proposed to solve the state estimation problem for
comparative purposes. Due to the inherent limitations that this classical model presents when dealing
with errors in the set of measurements, a new mathematical model is proposed that can be used
within an iterative procedure to reduce the impact of measurement errors on the estimated results.
Several tests on a didactic 5-bus power system and IEEE benchmark power test systems showed the
effectiveness of the proposed approach which achieved better results than the proposed classical state
estimation model. The non-linear programming models proposed in this paper are implemented in
the mathematical modeling language AMPL. Additionally, to validate the results of the proposed
methodologies, the power system operation points are compared with the results obtained using
the Matpower simulation package. The results allowed concluding that the proposed mathematical
models can be successfully applied to perform state estimation studies in power systems.

Keywords: state estimation; weighted least squares; non-linear programming models; AMPL

1. Introduction

Determining the operating point of an Electric Power System (EPS) requires the
knowledge of its state variables, which are the magnitudes and angles of the nodal voltages.
From this information, it is possible to calculate the active and reactive power flows through
the transmission lines, the net power injections in all buses, as well as the power losses of
the EPS, among other information. From the determination of the operation point of an
EPS, further studies and procedures can be carried out, such as control and security actions,
contingency analysis, expansion planning, system loading studies, voltage regulation
analysis and reliability assessment, among others [1,2]. One of the available tools to
determine the steady state operating point of an EPS is the state estimator. State estimation
plays and important role in modern power systems, allowing the system operator to make
informed decisions that directly impacts the security and reliability of the network. The
state estimation can be defined as a procedure that converts redundant meter readings,
as well as other available information, into an estimate of the state of the EPS [3]. This
information is of utmost importance for both system operators and planners. Despite the
extensive research work on this topic, there are still areas of research that remain almost
unexplored and are susceptible to provide new insights.
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Generally, state estimators are used in real time applications to calculate the state
variables, using the information coming from metering devices installed within the EPS.
Such information includes voltages and power injections in some buses and power flows in
some transmission lines. Additionally, unlike other studies used to determine the operating
point of an EPS, in state estimation, it is possible to calculate the operating point from
several measurements greater than the minimum required; also, it is possible to carry out a
procedure of error handling that allows evaluating whether there are inconsistencies in the
input data [2,4,5].

Several studies have been reported in the specialized literature regarding the state
estimation problem. In [6], the authors propose a Semidefinite Programming (SDP) for-
mulation to approach the state estimation problem. In this case, a convex semidefinite
relaxation is carried out which renders the state estimation efficiently solvable. In [7], the
dynamic state estimation (DSE) problem is approached from a statistical decision theory
point of view; therefore, the initial state of the system is regarded as deterministic and
unknown. DSE is also studied in [8]. In this case, the authors discuss the advantages of DSE
as compared to the static state case, as well as implementation differences between the two
of them. In [9], the authors propose a data-driven robust state estimation method through
off-line learning and on-line matching to solve the estate estimation problem in EPS. On
the other hand, robust state estimators have been proposed as an important alternative to
reduce the effects of measurement errors. In [10,11] a comparison between different robust
state estimators is performed.

Traditionally, state estimation has been solved through the Weighted Least Squares
(WLS) method. This method is characterized using a nodal formulation, in which
the operation point of the EPS is obtained iteratively by solving a set of non-linear
equations [12,13]. Although the iterative procedure of the WLS method has been widely
used in state estimation studies, there are alternative ways for solving this problem [14,15].

Some of the previous works claim that the classical WLS method may present certain
difficulties when there are errors in the measurements. Bearing this in mind, this work
proposes a novel strategy that allows using a non-linear programming model of the WLS
method to reduce the impact of bad measurements on the estimated results; therefore,
contributing to fill the research gap concerning the effectiveness of the solution to the
state estimation problem through the WLS method. This solution approach allows the
addition of new variables and operational constraints in the formulation, which cannot be
considered in the classical WLS method. Additionally, representing the state estimation as
a mathematical optimization problem has the advantage of its easy implementation and
solution through mathematical optimization software widely used in studies and research
in EPS. Furthermore, this approach to solve the state estimation problem can be used
for solving other optimization problems of greater mathematical complexity, such as the
optimal location of phasor measurement units (PMUs) and observability analyses [16–18].
Accordingly, it is important to represent the state estimation problem through mathematical
optimization models. Although this possibility has not been widely explored as shown
in [12], recent studies show that various mathematical programming methods have been
proposed to solve the state estimation problem with promising results [10,19].

Based on the aforementioned facts, two strategies are proposed in this work to deter-
mine the solution of the state estimation problem in EPS:

• The first strategy consists of a mathematical programming approach labeled as clas-
sical non-linear programming model (classical NLPM). Such model emulates the
formulation and iterative process of the WLS state estimator.

• The second strategy is a new mathematical model based on some modifications of
the classical NLPM. This mathematical model is used within a new state estimation
procedure that allows reducing the negative impact on the estimated results of con-
ventional state estimation studies due to errors presented in the set of measurements.
This strategy is labeled as New NLPM.
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To summarize, the main features and contributions of this paper are as follows: (i) it
presents a novel approach to carry out the state estimation process in electric power systems
based on non-linear programming modeling; (ii) the proposed approach is able to reduce
the impact caused by the presence of multiple errors in the set of measurements, without
using additional statistical error treatment procedures; (iii) the proposed methodology
outperforms the results obtained with the classical WLS estimator.

The models proposed in this work were implemented in AMPL mathematical pro-
gramming language. The first validation of results is explained in detail using a didactic
5-bus power system. Results obtained with IEEE 14, 30, 57 and 118 bus test systems are also
presented and discussed. The operating point is calculated both with and without adding
errors in the set of measurements. The results estimated by the mathematical models are
validated through the comparison of the operating points calculated by Matpower [20].
The results obtained show that the proposed mathematical models can be successfully
applied to carry out state estimation studies in EPS.

2. State Estimation in EPS

State estimation in EPS is a unique solution problem that consists of obtaining the values
of complex nodal voltages, represented by their magnitude and angle (V, θ). These values are
obtained from the data of different metering devices within the EPS. The solution of the state
estimation problem is commonly obtained through the WLS method [1,21,22]. This method
aims to determine the minimum weighted root error represented by Equation (1).

J(x̂) = [z− h(x)]tW[z− h(x)] =
nm

∑
i=1

Wiir2
i (1)

In ideal conditions, the solution to the problem consists of finding the values of x̂ such
that J(x̂) = 0. However, in real-life applications, it is not possible to satisfy this condition due
to several factors that include the limited precision and calibration problems of the meters; as
well as noise presented in the SCADA data acquisition system, among others [1,2].

In general terms, to determine the x̂ values that satisfy Equation (1), it is necessary to
execute the iterative procedure presented in Figure 1.

= 0 

(0) = (0), (0)  

Data input

( ) = ( )  

Compute

Compute ( ) 

( ) <  ? 

Are there errors in the
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Figure 1. WLS state estimation algorithm.
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As can be seen in Figure 1, after estimating the values of x̂, a statistical error treatment
procedure is performed. This is done with the aim of debugging eventual errors that could
be presented in the measurements, allowing the results obtained by the state estimator to
be more reliable. Despite the importance of error handling in state estimation, this issue is
beyond the scope of the present research and can be consulted in [4,23].

3. Representation of the State Estimation Problem as a Mathematical
Programming Model

In this section, it is shown that the state estimation problem can be represented as
an equivalent mathematical programming model. The main advantage of this approach
lies on the fact that with some modifications the impact caused by errors in the set of
measurements can be significantly reduced. To represent the state estimation problem as a
mathematical programming model, it is necessary to define the set of decision variables,
the objective function and the mathematical constraints of the model. In this work, two
different models for state estimation are proposed and described below.

3.1. Classical NLPM

Based on the formulation of the WLS method presented in Section 2 and the iterative
procedure illustrated in Figure 1, it was found that a classical NLPM can be implemented
to solve the state estimation problem as given by Equations (2) and (3).

min J(x̂) = ∑
(m,i,j)∈ΩM

Wmijr2
mij (2)

s.t.

rmij = zmij − h(x̂)mij ∀m,i,j ∈ ΩM (3)

Equation (2) represents the function of the WLS method and the constraint given
by (3) corresponds to the residual of the measurements calculated as the difference between
the measured value zmij and the calculated value of h(x̂)mij. Please note that to compute
h(x̂)mij, the type of measurement (m) and its location (ij) must be considered, as shown in
Equations (4) and (5).

• Active and reactive power injection measurements:

h(x̂)mij = Pi =∑
k∈ΩB

ViVk(Gikcosθik + Biksinθik), ∀m,i,j ∈ ΩM : m = 1 (4)

h(x̂)mij = Qi =∑
k∈ΩB

ViVk(Giksinθik − Bikcosθik), ∀m,i,j ∈ ΩM : m = 2 (5)

In this case, the elements of the YBUS matrix in (4) and (5) are calculated using
Equations (6) to (9). Please note that both conventional and phase-shifting trans-
formers are taken into account.

Gii = ∑
(i,m)∈ΩL

t2
imgim (6)

Bii = bsh
i + ∑

(i,m)∈ΩL

(
bsh

im + t2
imgim

)
(7)

Gik = −tik(gikcosϕik + biksinϕik) (8)

Bik = tik(giksinϕik − bikcosϕik) (9)
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• Active power flow measurements:

h(x̂)mij =Pij = gij(tijVi)
2−tijViVj(gijcos(θij+ϕij)+ bijsin(θij+ϕij),

∀m,i,j ∈ ΩM : m = 3 (10)

h(x̂)mij =Pji = gijV2
j −tijViVj(gijcos(θij+ϕij)− bijsin(θij+ϕij),

∀m,i,j ∈ ΩM : m = 3 (11)

• Reactive power flow measurements:

h(x̂)mij=Qij =−V2
i (t

2
ijbij+bsh

ij )+tijViVj(bijcos(θij+ϕij)−
gijsin(θij + ϕij)), ∀m,i,j ∈ ΩM : m = 4 (12)

h(x̂)mij=Qji =−V2
j (bij+bsh

ij )+tijViVj(bijcos(θij+ϕij)+

gijsin(θij + ϕij)), ∀m,i,j ∈ ΩM : m = 4 (13)

• Voltage measurements:

h(x̂)mij=Vi, ∀m,i,j ∈ ΩM : m = 5 (14)

By solving the mathematical model given by (2)–(14), it is possible to obtain the values
of Vi and θi in all buses of the EPS; as well as the value of J(x̂) and the residuals rmij
of each measurement. In general terms, the classic NLPM proposed in this section has
the main disadvantage of not considering the error treatment procedure, which implies
that the estimated results may be directly affected by the presence of errors in the set
of measurements.

3.2. New NLPM

The effectiveness of the WLS method is affected when there are measurement errors.
To overcome this issue, some modifications must be implemented in the classical NLPM.
According to (3), h(x̂)mij cannot be equal to the parameter zmij when there are errors in
ΩM. Clearly this condition prevents obtaining values of rmij ≈ 0. Therefore, for solving
this problem, the mathematical model given by Equations (15)–(17) is proposed:

min J(x̂) = ∑
(m,i,j)∈ΩM

Wmijr2
mij + ∑

(m,i,j)∈ΩM
∆z2

mij (15)

s.t.

rmij = zmij − h(x̂)mij + ∆zmij ∀m,i,j ∈ ΩM (16)

−p
∣∣zmij

∣∣ ≤ ∆zmij ≤ p
∣∣zmij

∣∣ ∀m,i,j ∈ ΩM (17)

where the variable ∆zmij in (16) represents the maximum deviation allowed for each zmij;
also, the parameter p in Equation (17) corresponds to the percentage of zmij that determines
the range of allowed values for ∆zmij (where p = 0 represents an ideal meter). Please note
that the inclusion of the variable ∆zmij in the model would allow considering the following
situations when reaching convergence:

• Neglect the presence of errors in ΩM: For a specific measurement zmij ≈ h(x̂)mij,
∆zmij ≈ 0 and rmij ≈ 0, and the objective function J(x̂) ≈ 0.

• Consider the presence of errors in ΩM: For a specific measurement zmij 6= h(x̂)mij,
∆zmij 6= 0 and rmij 6= 0, and the objective function J(x̂) > 0.

In the same way as the classic NLPM, it is evident that the previous mathematical
model does not solve the problem by itself when there are errors in ΩM. Thus, an it-
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erative procedure is proposed in this work where the measurements are updated using
Equation (18).

z(k+1)
mij = z(k)mij + ∆z(k)mij, ∀m,i,j ∈ ΩM (18)

The iterative procedure that allows modifying the values of zmij is presented in
Figure 2, so that it is possible to obtain values of J(x̂) ≈ 0. The proposed algorithm
allows reducing the impact of errors in measurements without using additional statistical
error treatment procedures.

= 0 

( ) = ( ), ( )  

Data input

Solve

New NLPM

( )  ? 

, , , , ,  

Compute
( +1)

=
( )

+
( )

 

No Yes

Update

= + 1 

Initialize

Figure 2. Proposed state estimation algorithm (New NLPM).

4. Numerical Results

In this section, the simulations carried out for evaluating the performance of the
proposed mathematical models are presented. First, a didactic 5-bus test system is used as
a reference to explain the validation of results in detail. Two scenarios are analyzed; one
without errors in the set of measurements and another with multiple errors in the database.
Subsequently, the same procedure is applied on the IEEE 14, 30, 57 and 118 bus test systems.
A comparison is carried out with the classical and new NLPM. It is worth mentioning
that the implementation of other state estimation methodologies for comparison purposes
is out of the scope of this paper. The proposed mathematical models were implemented
in the student version of the mathematical modeling language AMPL [24] and solved by
Knitro solver [25]. Simulations were performed on a personal computer with an Intel(R)
Core (TM) i7 processor and 8 GB of RAM.

4.1. Preliminary Considerations

Preliminary power flow studies are required to calculate the operating point of the test
systems and select the set of measurements used in the state estimation studies. Then, the
results obtained by Matpower are used as a validation parameter of the results obtained by
the proposed models. On the other hand, taking into account the concept of redundancy
level (RL) and its importance in studies of state estimation [26], a RL ≈ 2 is considered in
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this work. In this way, a set of measurements is strategically selected from the power flow
results to avoid observability problems.

Finally, it is assumed that voltage, power flow and power injection measurements
have a Gaussian distribution and a standard deviation of 0.004, 0.008 and 0.01, respectively,
according to the state estimation studies presented in [19,22].

4.2. Results with a 5-Bus Didactic Power System

The validation procedure of the proposed mathematical models is explained in detail
below using the EPS available in [27] as reference.

4.2.1. No Bad Data in the Measurement Set

The operating point obtained with Matpower and through the proposed mathematical
models is presented in Tables 1 and 2.

Table 1. Comparison between real and estimated operation point.

Bus
Matpower Load Classical NLPM New NLPMFlow Analysis

Vi(p.u.) θi(deg) Vi(p.u.) θi(deg) Vi(p.u.) θi(deg)

1 1.0600 0.0000 1.0600 0.0000 1.0600 0.0000
2 1.0474 −2.8063 1.0474 −2.8063 1.0474 −2.8063
3 1.0242 −4.9969 1.0242 −4.9969 1.0242 −4.9969
4 1.0236 −5.3291 1.0236 −5.3291 1.0236 −5.3291
5 1.0179 −6.1502 1.0179 −6.1502 1.0179 −6.1502

Table 2. Power loss values without bad data measurements.

Matpower Load Classical NLPM New NLPMFlow Analysis

PL (MW) 4.5868 4.5867 4.5867
QL (MVAr) 13.7605 13.7600 13.7600

The previous results show that the estimated errors can be neglected and, therefore, the
operating point has been correctly calculated through the proposed mathematical models.

4.2.2. Multiple Bad Data Measurements in the Measurement Set

To represent the presence of errors in the database, the set of measurements is mod-
ified by adding random errors between 0.1% and 5%, applying Equation (19) for each
measurement.

zmed(1− e) ≤ zmed ≤ zmed(1 + e) (19)

Under these conditions, the EPS operating point is calculated as shown in Tables 3 and 4.

Table 3. Estimated values of x̂ considering bad data measurements.

Bus
Matpower Load Classical NLPM New NLPMFlow Analysis

Vi(p.u.) θi(deg) Vi(p.u.) θi(deg) Vi(p.u.) θi(deg)

1 1.0600 0.0000 1.0633 0.0000 1.0605 0.0000
2 1.0474 −2.8063 1.0504 −2.8036 1.0481 −2.7945
3 1.0242 −4.9969 1.0272 −5.0240 1.0246 −5.0096
4 1.0236 −5.3291 1.0266 −5.3584 1.0240 −5.3426
5 1.0179 −6.1502 1.0206 −6.1902 1.0186 −6.1699
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Table 4. Power loss values considering bad data measurements.

Matpower Load Classical NLPM New NLPMFlow Analysis

PL (MW) 4.5868 4.6718 4.6188
QL (MVAr) 13.7605 14.0154 13.8564

The previous results show that the addition of errors in the set of measurements
has a direct impact on the estimated results. This impact can be measured individually,
computing the absolute error of bus voltages as shown in Figure 3, taking the power flow
results as a reference. The maximum calculated absolute errors correspond to 0.31% in the
case of voltage modules (or magnitudes) and 0.65% for their corresponding angles.

Bus number
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Figure 3. Voltage absolute error of the 5-bus power system.

On the other hand, the impact of the errors can be measured by calculating the total
absolute errors of the modules of voltages (εV), the phase angles (εθ), the active power
losses (εPL) and the reactive power losses (εQL), as shown in Figure 4.
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Figure 4. Comparison of the total absolute error.
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Figures 3 and 4 show that the results of the New NLPM are better than those ob-
tained through the classical NLPM, since the absolute errors of the power losses, voltage
magnitudes and angles were reduced to 0.69%, 0.34% and 0.12%, respectively.

4.3. IEEE Power Systems

The proposed mathematical models were validated using as reference the operating
points of the IEEE 14, 30, 57 and 118 bus test systems available in [28].

4.3.1. No Bad Data in the Measurement Set

The values of the power losses calculated with Matpower and the proposed mathe-
matical models are presented in Table 5.

Table 5. Power loss for IEEE systems without bad data measurements.

Test Power Matpower Load Classical New
System Losses Flow Analysis NLPM NLPM

IEEE-14 PL (MW) 13.3932 13.3929 13.3931
QL(MVAr) 54.5372 54.5358 54.5362

IEEE-30 PL (MW) 17.5518 17.5488 17.5491
QL (MVAr) 67.6996 67.6889 67.6900

IEEE-57 PL (MW) 27.8611 27.8640 27.8635
QL (MVAr) 121.6643 121.6698 121.6692

IEEE-118 PL (MW) 132.4813 132.4820 132.4821
QL (MVAr) 782.2786 782.2816 782.2830

According to the results of power losses presented in Table 5, the estimated errors
can be neglected since the maximum absolute error is 0.0171% for the classical NLPM and
0.0154% for the New NLPM.

4.3.2. Multiple Bad Data Measurements in the Measurement Set

After adding errors to the set of measurements, the IEEE test systems operating point
is calculated. The power loss values are shown in Table 6.

Table 6. Power loss for IEEE systems considering multiple bad data measurements.

Test Power Matpower Load Classical New
System Losses Flow Analysis NLPM NLPM

IEEE-14 PL (MW) 13.3932 14.2413 13.6221
QL (MVAr) 54.5372 58.4248 55.7560

IEEE-30 PL (MW) 17.5518 16.3230 17.1545
QL (MVAr) 67.6996 63.6821 66.331

IEEE-57 PL (MW) 27.8611 27.0641 27.8068
QL (MVAr) 121.6643 118.6022 121.4292

IEEE-118 PL (MW) 132.4813 130.8553 130.8291
QL (MVAr) 782.2786 766.1776 769.0600

The total absolute errors of voltage magnitudes (εV), phase angles (εθ), active power
losses (εPL) and reactive power losses (εQL), are presented for each test system in Figure 5.

It can be observed in Figure 5 that adding errors in the set of measurements has a
more significant impact on the phase angles than on the other variables under observation.
Additionally note that there is a lower absolute error when using the New NLPM. The
maximum absolute errors of the voltages for each test system are presented in Figure 6.
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The results show that the New NLPM is more accurate in determining the operation
points of the IEEE systems used in the simulations.

5. Conclusions

This paper presented a novel approach to the state estimation problem in power
systems using non-linear programming modeling. Two models were developed and
analyzed: one based on the WLS method that is implemented for comparative purposes,
and a second one that introduces some modifications to the classic approach and can be
used within an iterative procedure to reduce the impact of measurement errors.

The tests carried out on a didactic 5-bus power system and on benchmark test systems
(IEEE 14, 30, 57, and 118 bus test systems) demonstrated the advantages of representing
the state estimation as a mathematical optimization problem and allowed to show the
effectiveness and applicability of the proposed approach. Based on the results obtained, it
was found that the proposed approach satisfactorily determines the operating point of any
electric power system.

It was shown that it is possible to develop new strategies to solve the error treatment
problem, such as the one proposed in this paper, which reduces the impact of errors in the
set of measurements without resorting to conventional error treatment procedures.

The new approach to the state estimation problem in EPS opens the door to new ap-
plications related to the state estimation problem. For example, error treatment procedures
may be incorporated, and studies could be carried out considering different types of errors
in the set of measurements.
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Nomenclature

The following abbreviations are used in this manuscript:
Sets:
ΩM Set of system’s measurements.
ΩB Set of system’s buses.
ΩL Set of system’s transmission lines.
Parameters:
gij Line conductance at node i and j.
bij Line susceptance at node i and j.
bsh

ij Line shunt susceptance at node i and j.
bsh

i Shunt susceptance at node i.
tij Transformer tap ratio at node i and j.
ϕij Phase-shifting transformer angle at node i and j.
Gii, Gij Conductance of the Ybus matrix.
Bii, Bij Susceptance of the Ybus matrix.
zmij Measurement m located at node i and j.
Wmij Weight of the measurement m at node i and j.
p Allowed mismatch percentage.
ε Tolerance of the iterative state estimator procedure.
e Random errors added in measurement set.
Variables:
x̂ State variables of the system.
J(x̂) Least squares function.
rmij Residual value of the measurement m located at node i and j.
hmij(x̂) Non-linear measurement functions.
∆zmij Measurement mismatch.
Vi, θi Voltage module and phase angle at node i.
Pij, Pji Active power flow of branch ij.
Qij, Qji Reactive power flow of branch ij.
PL, QL Total active and reactive power loss.
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