
electronics

Article

Runtime Adaptive IoMT Node on Multi-Core
Processor Platform

Matteo Antonio Scrugli *, Paolo Meloni, Carlo Sau and Luigi Raffo

����������
�������

Citation: Scrugli, M.A.; Meloni, P.;

Sau, C.; Raffo, L. Runtime Adaptive

IoMT Node on a Multi-Core

Processor Platform. Electronics 2021,

10, 2572. https://doi.org/10.3390/

electronics10212572

Academic Editor: Manuel E. Acacio

Received: 3 August 2021

Accepted: 14 October 2021

Published: 21 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Depratment of Electrical and Electronic Engineering, University of Cagliari, 09124 Cagliari, Italy;
paolo.meloni@unica.it (P.M.); carlo.sau@unica.it (C.S.); raffo@unica.it (L.R.)
* Correspondence: matteo.scrugli@unica.it

Abstract: The Internet of Medical Things (IoMT) paradigm is becoming mainstream in multiple
clinical trials and healthcare procedures. Thanks to innovative technologies, latest-generation com-
munication networks, and state-of-the-art portable devices, IoTM opens up new scenarios for data
collection and continuous patient monitoring. Two very important aspects should be considered to
make the most of this paradigm. For the first aspect, moving the processing task from the cloud to the
edge leads to several advantages, such as responsiveness, portability, scalability, and reliability of the
sensor node. For the second aspect, in order to increase the accuracy of the system, state-of-the-art
cognitive algorithms based on artificial intelligence and deep learning must be integrated. Sensory
nodes often need to be battery powered and need to remain active for a long time without a different
power source. Therefore, one of the challenges to be addressed during the design and development of
IoMT devices concerns energy optimization. Our work proposes an implementation of cognitive data
analysis based on deep learning techniques on resource-constrained computing platform. To handle
power efficiency, we introduced a component called Adaptive runtime Manager (ADAM). This
component takes care of reconfiguring the hardware and software of the device dynamically during
the execution, in order to better adapt it to the workload and the required operating mode. To test the
high computational load on a multi-core system, the Orlando prototype board by STMicroelectronics,
cognitive analysis of Electrocardiogram (ECG) traces have been adopted, considering single-channel
and six-channel simultaneous cases. Experimental results show that by managing the sensory node
configuration at runtime, energy savings of at least 15% can be achieved.

Keywords: adaptive system; health information management; Internet of Things; low-power electronics;
multi-core processing; neural networks; remote sensing; runtime; wearable sensors

1. Introduction

The next generation of biomedical devices is making great strides in the scientific
community. Thanks to the use of integrated System-of-Systems (SoSs), it is possible
to efficiently connect wearable sensor nodes, medical devices, and applications with
healthcare information systems, which can be very useful in several scenarios. In the
hospital environment, it is possible to increase the effectiveness of monitoring and therefore
the treatment of patients. If applied in a domestic environment, in addition to greatly
improving communication between the patient and the healthcare provider, it is possible
to significantly reduce public medical costs. It is estimated that this market value could
reach $136 billion by the end of 2021 [1].

The Internet of Things (IoT) paradigm, or in this case the Internet of Medical Things
(IoMT), leads to additional benefits for the constant monitoring of vital parameters, data
transmission and collection, and server-side or edge-side analysis. Currently, in the lit-
erature, some critical points are being widely questioned, and alternative solutions are
being proposed to improve aspects concerning: responsiveness, scalability, privacy, and
security. In Reference [2], different aspects of state-of-the-art devices are discussed, and
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the crucial points regarding the improvements still needed on IoMT devices in the field of
ambient assisted living are highlighted. For the scalability aspect, in Reference [3], the au-
thors propose a multi-agent system and services that allow the creation of dynamic, easily
extended, and scalable solutions and do not require technical knowledge on the underlying
technologies. In Reference [2], it is shown how proprietary IoT device solutions can be
weak from a privacy and security standpoint. It is then demonstrated how a collaborative
IoT network can lead to greater resistance to malicious attacks or how the use of end-to-end
encryption methods prevents man-in-the-middle attacks. In our previous work [4] we
show how, by moving cognitive and non-cognitive processing on-edge, there are not only
improvements in responsiveness but also in power consumption. Reference [2] also dis-
cusses how the fusion of on-edge cognitive processing and the potentialities related to IoT
networks brings numerous benefits in terms of robustness in contrasting environmental
changes, responsiveness, human intervention reduction, and lower energy consumption.

Most of the efforts aiming in this direction focus on the adoption of an edge-computing
approach, and also in our case, we focus the purpose of our work in this direction. Moving
task processing directly to the node, even partially, rather than transmitting all of the raw
data sampled by the sensor to the cloud, can lead to several benefits. For example, process-
ing the data also means having the ability to obtain more compact information to transmit,
or even, the node may decide to cease communication. Less data transmission by the node
leads to energy savings and lower bandwidth requirements for communication between
the node and the cloud. Again, near-sensor processing allows for immediate feedback,
leading to improvements in both latency and low server reachability. Finally, decreasing the
amount of information transmitted by the node reduces the risk that sensitive information
can be intercepted by malicious agents. However, constraints on battery lifetime and power
consumption for IoMT nodes are still very demanding, and a local execution of fairly
complex data analysis tasks requires careful tuning of platform and application.

In this work, we present a wearable IoMT device capable of supporting the on-edge
processing task, making progress regarding the dynamic hardware/software reconfigura-
tion that better adapts the node to the variation of workload or operating mode and aims at
optimizing its energy efficiency. At the base of our work, we present the component called
Adaptive runtime Manager (ADAM), which dynamically manages the hardware/software
reconfiguration of the device, in this case, on a multi-core device. ADAM can be invoked
by an external reconfiguration message, or it can trigger itself internally: for example, it
can be invoked if a certain event is detected within the sampled signal. As we see better
later, ADAM creates and manages a network of processes for each operating mode, and
the different processes communicate through FIFOs. The reconfiguration of the process
network consists of enabling or disabling certain processes and then rerouting the FIFOs
correctly. ADAM can also manage hardware parameters (such as system frequency, supply
voltage, and power gating) to respond optimally to workload variations, lowering power
consumption, and respecting real-time constraints. The prototype named Orlando and
produced by STMicroelectronics was considered in our study.

The remainder of this paper is as follows: Section 2 describes the landscape of related
works in the literature; Section 3 presents the proposed template for the node, the reference
target platform, and the selected application model; Section 4 talks about the proposed
solution for making the system adaptive; and Section 5 discusses our experimental results.
Finally, Section 6 outlines our conclusions.

2. Related Works

In the literature, it is possible to find numerous works proposing an IoMT sensor
network system in both hospital and home settings [5–7]. Most of these studies exploit a
cloud-based analysis: data are usually encapsulated in standard formats and sent to remote
servers for data mining. Most of these studies involve the use of cloud-based systems
that collect and analyze the raw data received from the sensor, which is often wearable
and portable. Many of these IoMT devices, whether commercial or not, provide days or
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weeks of autonomy [8,9]. However, few systems propose to move the processing task
directly to the node, which is used only for the transmission of the raw signals sampled by
the sensor [10–13]. The use of artificial intelligence is gaining momentum in many areas,
often used because of the simplicity of implementation and the high accuracy potentially
offered by these techniques. Their effectiveness has already been widely discussed on
high-performance computing platforms. Some examples are [14], which uses a 3.5 GHz
Intel Core i7-7800X CPU, RAM 32 GB, and a GPU NVIDIA Titan X (Pascal, 12 GB), [15];
where a NVIDIA GeForce GTX 1080 Ti (11 GB) is used; or [16], based on a i7-4790 CPU at
3.60 GHz. However, the migration of state-of-the-art cognitive techniques to low-power
and resource-constrained devices still remains an open question.

There is a growing body of work that places artificial intelligence (AI) at the heart of
processing mechanisms, often charged with recognizing certain detectable events from
the acquired signal. In References [17,18], the authors exploit Artificial Neural Networks
(ANNs) to detect specific conditions from the collected data. In particular, in Reference [18]
the authors propose a system to detect the emotional state of the individual, i.e., happiness
or sadness. Power-saving techniques are applied, such as enabling on-edge processing
or reconfiguring the device at run-time based on workload or operating mode choice.
The anomaly detection on an Electrocardiogram (ECG) trace using convolutional neural
network techniques is considered as a use case. In our study, we extend what was already
discussed in [4] in order to apply dynamic hardware/software optimization mechanisms
on more complex state-of-the-art platforms with multiple cores.

On the one hand, the community is working on the design of low-power devices capa-
ble of supporting processing that exploits artificial intelligence techniques, and these types
of devices include accelerators, parallelization elements, and flexible power management.
In the market or in the literature, there are devices based on Systems-on-Chip (SoCs) or
Systems-on-Module (SoMs) [19–21], embedded GPUs [22], or FPGA-based accelerators [23].
Among the different solutions regarding hardware accelerators, Adaptive Compute Accel-
eration Platform (ACAP) produced by Xilinx [24] combines the potential of three types of
engines: Arm cores (scalar engines), the programmable logic (Adaptable Engines), and the
new vector processor cores (AI engines). This tightly coupled hybrid architecture allows
more dramatic customization and performance increase than any one implementation
alone. In Reference [25], the author presents a new type of architecture based on fixed-point
arithmetic. The substantial difference compared to traditional solutions is the choice of
the representation scale, which in this case occurs during compilation, while in the case of
floating-point arithmetic, it is performed during execution. Other distinctive features of
the proposed method are universal superscalar architecture and asymmetric structure of
working registers.

On the other hand, there is a remarkable work of software development that tries to
optimize firmware, middleware, or libraries that optimize the mathematical tools used to
implement solutions that exploit AI, and some of them specifically created to run on specific
platforms. Among these, we find: CUDNN [26] for GPUs ARM-NN for microcontrollers
based on ARM Cortex processors [27] and CMSIS (Cortex Microcontroller Software Inter-
face Standard). Other important techniques, which we do not deal with in our work, are
pruning and quantization, widely discussed in the literature and which lead to significant
improvements in terms of energy efficiency. In Reference [28], the authors discuss very
thoroughly both the pruning and quantization compression techniques by testing them
individually or simultaneously with different frameworks that support them. They analyze
their strengths and weaknesses and provide practical guidance for compressing networks.
Google Brain has proposed a new data format called Brain Float 16 (BF16), and it has gained
wide adoption in AI accelerators from Google, Intel, Arm, and many others. The purpose
is to minimize the prediction accuracy degradation due to a lowering of the data precision,
with a consequent increase in throughput. The main difference comes from truncating the
Floating Point 32 (FP32) mantissa field from 23 bits to 7 bits [29]. In Reference [30], the
authors propose a hardware implementation method of MRBF-TS systems.
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Starting from [4], we have made a step forward in the adaptivity approach, to con-
sider all levels of complexity exposed by the current landscape, including parallelism in
hardware and software, custom programming models, and multiple architecture knobs
to be managed. Other works have previously focused on the adaptive management of
complex processing platforms. Reference [31] presents a runtime approach to reconfigure
core-to-task mapping and the degree of parallelism of the application when the available
resources or the application workload changes, targeting shared-memory platforms. This
work, however, focuses on fault tolerance and not on dynamically changing workload.
Moreover, it is not tested on a dynamically manageable processing chip. Reference [32]
presents an approach for workload self-organization on multi-cores. However, differently
from our approach, computing tasks are seen as indivisible, and only their mapping to
the different cores is changed. In Reference [33], tasks can be duplicated on multiple cores
in order to have more freedom in pipeline organization; however, this is not tested on
data-dependent workload and on cognitive computing.

Tables 1 and 2 resume main approaches in the literature about CNN workload par-
titioning and mapping and about dynamic voltage and frequency scaling in CNN-based
designs. To the best of our knowledge, our work is complementary to both these kinds of
strategies, being the first attempt to bring together dynamic remapping of CNN operators
and consequent dynamic management of the hardware setup.

There are different ways of distributing the workload (convolutional layers) on mul-
tiple cores. One of the possible strategies is called the “kernel-level”, and it involves the
distribution of the kernels of a layer-nth, and therefore the output features calculation
of the layer-nth, in a balanced way across all cores. Many state-of-the-art libraries adopt
this solution, for example ARM-CL [34], tengine [35], or NCNN [36]. In Reference [37],
the authors indicate two approaches for workload partitioning in CNNs: layer-level and
kernel-level strategy. The “layer-level” strategy involves assigning each layer to a group
of cores; the number of cores per group being variable; and since not all cores are used
for the layer-ith, pipelining techniques being used in order to maximize the throughput.
The authors present Pipe-it, a framework capable of estimating the computational load
of all layers and, using a layer-level strategy, very efficiently distributes the workload
on the available cores in heterogeneous multi-core platforms. The layer-level strategy is
equivalent to the method that we use in this work; however, in Reference [37], it is not
applied at runtime but only during design time design space exploration. In Reference [38],
the authors exploit the layer-level strategy obtaining good results as already demonstrated
with the Pipe-it framework; in addition, they show the importance of taking into account
the cache resources per core. The distribution of the workload that takes this fact into
account minimizes the inter-core feature-map data movement overhead, finally demon-
strating how, in the use case they considered, there is a 73% performance improvement.
Also in [38], strategies are chosen only at design time. The reference platform that we used,
Orlando board, lends itself well to the optimizations proposed in [38], due to the presence
of intra-core memories that can reduce the features transfer, but the complexity of a generic
neural network may require a quantity of memory for features that often exceeds what is
usually made available by data caches.

Another aspect dealt with in our work and already widely discussed in the literature
concerns Dynamic Voltage and Frequency Scaling (DVFS). It has been discussed in the
literature about how to use the DVFS in order to better manage the temperatures of the
processing units. In Reference [39], they tackle the problem of overheating in different ways:
by judiciously selecting tasks with different thermal characteristics as well as alternating the
processor’s active/sleep mode or by exploiting the DVFS potential offered by the platform.
In References [40,41], the authors show how they dynamically choose the system output
quality under temperature constraints; in the use cases they considered, the system output
quality is highly dependent on the application of DVFS. In Reference [42], on the other
hand, the authors deepen the aspect linked to the reliability, and the use of DVFS takes into
account the minimization of the thermal cycles that stress the chip. In Reference [43] and in



Electronics 2021, 10, 2572 5 of 23

Reference [44], the authors exploit DVFS techniques with the sole purpose of maximizing
energy efficiency. In particular, the first ones refer to general-purpose CPU systems, while
the second work focuses on the CPUs of commercial smartphones and how much the
system frequency plays a fundamental role in them in terms of energy minimization.

Similarly to References [43,44], in our work, DVFS techniques are used to maximize
energy efficiency; furthermore, techniques to respond to CNN-based workload variations
by the use of task-mapping techniques at runtime on a multi-core platform are discussed.
There are other works that combine CNN applications with DVFS techniques on ASICs,
CPU, or GPU-based devices. In Reference [45], the authors show how, through the DVFS
techniques and the choice of the precision of the Deep Neural Network (DNN), it is
possible to reach a certain level of inference accuracy and power consumption under latency
constraints. In Reference [46], the authors develop a principled approach and a data-driven
analytical model to optimize the granularity of threads during CNN software synthesis.
In Reference [47], the authors propose a CNN-based low-power facial recognition system,
and the DVFS mechanism is the basis of their method to increase energy efficiency. In
Reference [48], authors use a performance-power analytical model fitted on a parametrized
implementation of a Deep Learning (DL) accelerator in a 28-nm FDSOI technology to
explore a large design space and to obtain the Pareto points that maximize the effectiveness
of DVFS in the sub-space of throughput and energy efficiency.

Table 1. Qualitative comparison with CNN workload partitioning and mapping studies.

Work/Framework
CNN Workload Partitioning and Mapping

Runtime
Kernel-Level Layer-Level

ARM-CL [34] X
tengine [35] X
NCNN [36] X
Pipe-it [37] X X

[38] X X
Our work X X X

Table 2. Qualitative comparison with dynamic voltage and frequency scaling, especially in CNN-
based designs studies.

Work
DVFS Constraints

DVFS on CNN Dynamic Partitioning
and MappingTemperature Energy

[39] X
[40] X
[41] X
[42] X
[43] X
[44] X
[45] X X
[46] X X
[47] X X
[48] X X

Our work X X X

Summarizing, as main novel contribution in this work we propose:

• We presented a hardware/software/firmware architecture template involving a re-
motely controlled wearable IoMT device that performs cognitive data processing.

• Its validation on a state-of-the-art data analysis based on a CNN as an example
computational load.

• Evaluation of the effectiveness of dynamic optimization techniques on multi-core
devices using anomaly classification from an ECG signal as a use case.



Electronics 2021, 10, 2572 6 of 23

3. Reference Architecture

We refer to an overall network of the IoMT system composed of three levels, as
depicted in Figure 1. At the lowest level, we find the sensor nodes that communicate via
Bluetooth Low Energy (BLE) technology with the upper level. Inside each node is the
ADAM component, which is sensitive to reconfiguration messages or changes in workload
and is responsible for the reconfiguration of the device. The middle level includes multiple
gateways, which play the role of intermediary between the sensors network and the cloud.
The top level is cloud based, data are collected securely, and the healthcare provider has
the ability to view or analyze the data. Through a web interface, it is possible to manage
data but also remotely control the device, thus determining which operating mode should
be enabled. Our work considers and describes only the sensory node component.

Network of 
remotely-controlled

sensory nodes

IoT 
gateway

Cloud 
infrastructure

Figure 1. General overview of the proposed system.

3.1. Sensor Nodes

The structure of the sensory node is shown in Figure 2, and it too can be divided into
layers which is described in this section.

Hardware platform

System
frequency

Clock
gating

Vdd

Middleware & OS support

Task 0 … Task n

ADAM

Application model

Figure 2. IoMT node architecture overview.
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The lowest level consists of the hardware platform, usually, and it is based on micro-
controllers or low-power devices. They take care of sampling different signals from the
external environment and at the same time have the ability to analyze the data, and they
also implement the communication system with the gateway. The node we considered in
our work is a multi-core device called Orlando [20] and produced by STMicroelectronics,
which raises the challenge compared to our previous work.

At the middle level, there is the middleware/operating system layer. The operating
system allows for the easy management of scheduling and software threads. At the same
level of the operating system, there are the middleware/firmware components that of-
fer a set of primitives to better manage the hardware of the platform (e.g., power mode,
performance counting, and operating frequency) and the APIs that allow continuous man-
agement and control of the status of the peripheral (energy and power status, remaining
battery life).

At the top level, there is the software application; at this level, all tasks are executed
according to the application model, and a precise characterization of the execution based on
the process network makes it easier to dynamically manage the system configuration. At
the same level of the application model, we added the component called ADAM, which is
triggered by reconfiguration messages from the healthcare worker or from internal events
such as battery level or workload variation. ADAM works with the application model to be
able to configure the process network and communicates with the middleware/operating
system layer to exploit the reconfiguration tools, such as activation/deactivation of tasks
and restructuring of the inter-task connectivity, or the management of hardware parameters
such as supply voltage or frequency scaling. The effectiveness of these components has
already been demonstrated previously in the single-core case [4].

In this work, we extend ADAM to target multi-core advanced IoT platforms capable of
executing more complex applications, thus enhancing near-sensor processing possibilities.
This exposes additional challenges when it comes to the dynamic runtime management of
the platform:

• Modern multi-processor IoT nodes, especially the plethora of prototype solutions
currently designed by the community to support AI-related workloads and optimized
for low power, have limited OS support. To try our approach on Orlando, we had
to implement adaptivity on a bare-metal system, exploiting the platform-specific
set of APIs to manage the application model, the process network, and the related
operating modes.

• The availability of more cores requires, when switching operating mode, the adapta-
tion of the parallelism level exploitable within the application structure. The workload
imposed by a given mode must be optimally partitioned between the available pro-
cessing elements, using splitting/merging and pipeline methods.

In the following sections, a detailed description of each level of the node is provided.

3.1.1. Hardware Platform

The hardware architecture of the Orlando chip is represented in Figure 3.
The chip is very flexible. It integrates:

• An on-chip reconfigurable data-transfer fabric to improve data reuse and reduce
on-chip and off-chip memory traffic.

• An ARM-based host subsystem with peripherals.
• A range of high-speed IO interfaces for imaging and other types of sensors.
• A chip-to-chip multi-link to pair multiple devices together.
• A power-efficient array of Digital Signal Processors (DSPs) to support complete real-

world computer vision applications. Eight DSP clusters are present, each composed
by 2 DSPs, 4-way 16 kB instruction caches, 64 kB local RAMs, and a 64 kB shared
RAM.

• 4 × 1 MB SRAM banks.
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Figure 3. SoC top-level block diagram.

As far as our work is concerned, the attention is focused on DSP cores. As architecture
knobs available for dynamically changing the platform setup, we consider the activation
and deactivation of processing elements (DSP cores) and changes to system frequency
and supply voltage. Still being in the prototyping phase, the Orlando board has not
been subjected to normal post-production testing. Therefore, under the guidance of the
manufacturer, we made an empirical investigation to characterize the device. Several
experimental tests were made to characterize the relationship between the supply voltage
of the chip Vdd and the system frequency, and they were used to obtain the results that are
presented in Section 5. Therefore, a lookup table was obtained that can be consulted at
any time by the ADAptive runtime Manager, in order to correctly set the minimum power
supply voltage necessary for the required system frequency. Figure 4 shows the output of
the characterization process, and for illustration purposes, the curve that approximates the
trend of the supply voltage in relation to the system frequency is also shown.
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Figure 4. Vdd measurement and approximation for each system frequency.
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3.1.2. Middleware

With the selected hardware platform, it is not currently possible to exploit the support
of a real-time OS. We need to consider tasks in the same chain to be prospectively exe-
cuted by independent hardware cores communicating through a set/hierarchy of shared
memories. The overall management is implemented using platform-specific low-level
primitives provided by STMicroelectronics, named RPC APIs. We have used them to
manage communication and synchronization between the DSPs in the platform and to
manage the operating state of the processing elements, setting to sleep mode those that are
stalled on input (no input data from FIFO), or output channels (the output FIFO is full), or
that are not assigned with a task. We present the RPC APIs that we have used in Table 3,
concerning functions to turn on and off DSPs, and Table 4, concerning functions adopted
for synchronizing DSPs while accessing FIFOs in a mutually exclusive way.

Table 3. Core activation and deactivation functions.

Function Name Description

sleep()
It is invoked by the DSP that intends to go to sleep; once invoked, the DSP is placed
in a low-power state and remains in this state until it receives a wake-up signal.

wakeup(...) Once this function is invoked, a wake-up signal is sent to the specified core.

When idle, a DSP executes a rpc_serve() function. In this way, the core waits from
an activation message from other cores, and it is set into a sleep state (through sleep()
function) until a request is received, activating it again (through wakeup() function). The
requests are stored in a queue, one per DSP, stored in the main shared memory (4 × 1 MB
SRAM banks) and served with a round-robin priority scheme.

Table 4. Synchronization functions, which are mainly used to read/write on the same FIFO in a
mutually exclusive way.

Function Name Description

mutex_init(...) Initialization of the mutual exclusion.
mutex_lock(...) Request mutual exclusion.
mutex_unlock(...) Release mutual exclusion.

In Table 5, we show the functions usable to send activation messages and to check the
execution of the assigned tasks on a remote DSP.

Table 5. Call functions, used by the ADAM system to manage the execution of tasks on the cores.

Function Name Description

rpc_call(...)
Execute a function passed as an input on a remote processor. From the
inputs, it is possible to choose whether rpc_call is blocking or non-blocking.

rpc_check(...) Check the execution status of a certain function call on a specific core (non-blocking).
rpc_wait(...) Wait for the conclusion of a function on a specific core (blocking).

3.1.3. Application Model

In the following section, we describe the structure of the application model used in our
application, and the model is based on a network of processes (compliant with the dataflow
process network model of computation [49]). In order to simplify the communication and
to avoid data loss in the case in which the system is not able to momentarily support the
entire workload, processes exchange information via FIFOs, using read and write blocking
primitives. One FIFO is initialized for each task that expects to receive input data. FIFOs
are stored into the shared 4 × 1 MB SRAM banks and are split into data and management
parts. The data part is spread within the SRAM: data chunks are stored dynamically by
cores running production tasks, while they are freed by cores running consumption tasks.
The management part contains a FIFO of pointers referencing the different dynamically



Electronics 2021, 10, 2572 10 of 23

allocated chunks of data (tokens), together with the counters for controlling the circular
buffer and the FIFO status. Following the topology of the operating mode under execution,
the outputs of the source tasks are coherently connected to the input FIFOs of the target
tasks, and the connection is performed simply by providing a common FIFO reference.
In this way, the connections among tasks can be easily modified by changing the FIFO
reference provided to the same tasks. The processes may be potentially executed in parallel,
in the case of available processing resources, in order to improve performance using a
software pipeline. In particular, for each sensed variable to be monitored, we build a chain
of tasks that operate on the sensed data (Figure 5).

Get data Process ... Process Threshold Send

Figure 5. A simple chain of tasks: circles represent the tasks while the arrows represent the FIFOs
that put them in communication.

Each sensor node is associated with a specific network of processes, which is dy-
namically modified according to the selected operating mode, enabling or disabling
certain tasks.

We have identified four types of tasks that make up all possible network configurations:

• Get data task: deals with the sampling of the signal acquired by the sensor.
• Process task: there may be multiple processing tasks that allow multiple processing

levels to be enabled. The choice of a different level of processing affects the required
transmission bandwidth, the detail of the information that can be obtained from the
node, and the energy consumption.

• Threshold task: allows filtering the information transmitted to the cloud, further
reducing the energy consumption related to the communication with the server. In
fact, once the signal has been processed, the system evaluates whether it is useful to
send the results or not.

• Send task: takes care of packaging and sending data to the cloud.

Considering the selected process network model, the activation/deactivation of tasks
or entire chains corresponding to sensors can be implemented by:

• enabling/stopping the periodic execution of the involved task;
• reconfiguring the FIFOs to reshape the process chain accordingly.

Therefore, it is possible to identify different configurations, defining operating modes char-
acterized by different levels of processing, information detail, and communication bandwidth.

3.1.4. Adaptive Runtime Manager

An independent continuously running task has been introduced, and it takes care of
the runtime reconfiguration of the platform, and the reconfiguration is performed by the
ADAM component. The latter can be invoked by external or internal events; in particular,
it monitors:

• receiving reconfiguration messages from the cloud.
• the workload. For example, a variation of the detection rate of an event in the acquired

signal can lead to a more frequent invocation of a processing task. Consequently,
there may be a need to reconfigure the device in case the real-time constraints are no
longer respected.

• other system variables, such as the remaining battery charge.

If from the continuous monitoring ADAM detects one of the events listed above, it
has the ability to act on the platform in different ways:

• act on individual tasks or on the entire task chain by enabling or disabling the con-
stituent elements;
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• decide when to enable the sleep mode state of peripherals, computing units, or the
entire device;

• act on the system frequency and supply voltage;
• reroute the FIFOs data flow according to the selected operating mode;
• efficiently split the workload into available resources.

An example of reconfiguration can be deduced from Figure 6; in this case, it is possible
to switch from an operating mode that involves the use of all the tasks and therefore enables
in-place processing, to an operating mode that only sends raw data to the server.

In our previous work [4], it was shown in detail how the entire system and application
model is managed in cases of operating mode or workload changing. As we see in more
detail in the next sections, in this work, we further decline the model to consider CNN
operators as an independent task. In this way, we can direct sub-parts of the network to
different processing elements. We can exploit merging, by mapping tasks on the same core,
or splitting, by partitioning tasks into parallel sub-tasks that can be mapped independently.

Get data Process Threshold Send

Get data Process Threshold Send

Figure 6. Two possible configurations of a generic system.

4. Adaptivity in Advanced Multi-Core Hardware Platforms

Modern data analysis algorithms, such as those relying on neural networks and
deep learning, are characterized by critical demands in terms of computing power. They
are composed of multiple layers, and each layer is usually processing tensors. Thus, such
algorithms intrinsically expose additional parallelism to be exploited when more processing
elements are available.

To comply with this complexity, we extended the application model described in
Section 3.1.3, enabling the representation of lower-level building components of the Process
tasks. For example, individual layers composing a Process task representing a CNN can be
represented themselves as single tasks and communicate with each other through FIFOs.
In this way, tasks can be independently mapped to physical cores, and throughput can
be improved.

Figure 7 shows an example where each layer in a CNN is mapped to an independent
core. The lower part of the figure shows a legend explaining how layers, cores, and FIFOs
are represented. In this case, the throughput is obviously determined by the layer with a
longer execution time, which limits the pipeline rate.
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Layer 1

Core 1

Layer 2

Core 2

Layer 3

Core 3

Block nLegend:

Core n
FIFO

Figure 7. One core for each convolutional layer.

4.1. ADAM for Multi-Cores

When multi-core platforms are enabled, ADAM can act to change the mapping and
partitioning of the software tasks a d to create a software pipeline configuration that
optimally fits with the required workload. The objective is to balance pipeline stages and
to set up an optimal frequency-voltage operating point for the platform.

We have defined a workload-partitioning mechanism, called splitting, that enables
one to divide a single task to be executed in parallel on several cores, as depicted in
Figure 8, to reduce the duration of a limiting pipeline stage and to improve the overall
throughput. In this case, ADAM, depending on a selected optimization policy, is in charge
to activate, when needed, a set of supporting cores sharing the initial workload, called
helpers. The lower part of the figure shows a legend explaining how blocks, cores, and
FIFOs are represented.

Block 1

Core 1

Block 2

Core 2

Block
helper

Core 4

Block 3

Core 3

Block 1

Core 1

Block 2

Core 2

Block
helper

Core 4

Block 3

Core 3

Block nLegend:

Core n
FIFO

Figure 8. Subdivision of the workload given by the blocks into several cores.

At the moment, we have tested the splitting technique on Orlando, referring to the
typical structure of neural network layers as a specific application use case. The splitting of
a layer with one or more helpers is operated asking the helpers to compute part (half in case
of one single helper) of the layer’s output features.

4.2. Splitting Policies

ADAM can implement different policies that may be used to combine splitting and
frequency/voltage scaling to dynamically adapt to changing workloads.

In this work, we have implemented two policies:
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• the first policy, which we call ADAM-FF (Frequency First), which tries to minimize
the working system frequency as the main objective;

• the second policy, that we call ADAM-IF (Idle First), which is more indicated for
systems that have less reactive frequency management, which tries to set as many
processing elements as possible in sleep mode.

Both policies envision the system to be set, at the start-up, in a mapping configuration,
called hereafter baseline setup, that balances pipeline stages as much as possible. To this
aim, we merge tasks (layers in our CNN-related experiments) in blocks, until we obtain
groups that are as similar as possible to each other in terms of execution time. The merging
of the operators in one single block is performed at design time. The merged block is
represented as a single process network; thus, there is no performance degradation due
to the scheduling of multiple nodes on the same processing element. Figure 9 shows an
example of a balanced pipeline: the first and second layers are processed by core 1; the third
layer is processed by core 2; and core 3 instead processes layers 4 and 5, merged together
in one single block. As can be seen from Figure 9 and for all subsequent figures, the first
layer, belonging to the first block, is not clearly visible on core 1; due to the computational
complexity, the execution time is extremely reduced compared to the other layers. Again,
Figure 9 and the figures representing the timing of the pipeline highlight the first stage of
the pipeline of each core. What each core does after the first pipeline stage is nothing more
than the same work repeated for all the other stages. In Figure 9 (and similar ones), the
pipeline stages following the first one are shown in gray, in order to make the graph more
readable, while the empty spaces indicate the sleep state of the cores.

We envision the definition of the baseline setup to be identified offline, at design time,
by manual profiling or using adequate existing system-level design tools, such as those
described in [50,51].

0 25 50 75 100 125

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

Unit of time

C
or

e 
#

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 9. Example of balanced pipeline (gray shadows show the potential execution of successive
pipelined computations of the same application).

At this point, thanks to the splitting mechanism, it is possible to divide the workload
of each task (being an independently mapped layer or a block) between several cores,
activating one or more helpers. Figure 10 shows an example of how this is used to reduce
the execution time of the three stages of the pipeline (the first stage is shared by three cores,
and the second and third stages by two cores each). By reducing the limiting length of the
stages, the pipeline can switch at a higher rate; thus, the throughput is improved.
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Figure 10. Example of redistribution of the workload over multiple cores (gray shadows show the
potential execution of successive pipelined computations of the same application).

ADAM-FF policy is outlined in Algorithm 1. In this policy, the system starts from
the baseline setup and, independently from the actual workload to be supported, applies
splitting iteratively to throughput-limiting tasks until all the available processing elements
are used as helpers. After this phase, ADAM enters in a routine, that may be triggered
by a timer (as in the pseudo-code) or by other external events. It monitors the workload
and increases the system frequency (adapting the voltage accordingly) when a higher
performance level is required to support real-time constraints or reduces it when constraints
are more relaxed.

Algorithm 1: ADAM-FF policy algorithm.

setup baseline;
while there are cores available do

locate the bottleneck;
apply the splitting mechanism on the bottleneck;

end
while true do

wait trigger from periodic timer;
check workload;
if real-time constraints are not respected then

Increase system frequency;
Increase supply voltage;

else
Decrease system frequency;
Decrease supply voltage;

end
end

ADAM-IF is outlined in Algorithm 2. Again, the system starts from the baseline.
It sets the system frequency to be capable of respecting worst-case real-time constraints,
corresponding to the highest workload, when the maximum splitting of the tasks is applied.
At this point, ADAM keeps monitoring the workload and adds or removes helpers to meet
the needs posed by real-time at any monitoring step. When constraints are relaxed, the
system uses the minimum number of cores, leaving the others to wait when to be activated
as helpers, moving them from idle to active state only when more performance is needed.

The two policies are tested on Orlando hardware platform and considering a reference
CNN use case in Section 5.
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Algorithm 2: ADAM-IF policy algorithm

setup baseline;
set system frequency and supply voltage in worst-case;
while true do

wait trigger from periodic timer;
check workload;
if real-time constraints are not respected then

enable helper cores;
else

disable helper cores;
end

end

4.3. Splitting Model on Orlando

As already described in Section 3.1.1 and as visible in Figure 3, Orlando chip mounts
8 clusters containing: 2 DSPs, 2 instruction cache memories (each of 16 kB) 2 local 64 kB
memories, and a memory of 64 kB shared between the two DSPs. In general, it is possible
to exploit these local cluster memories in order to optimize access to memory using the
layer-level strategy mentioned in [37]. This optimization was not possible in this case due
to the size of data (CNN weights) which forces the adoption of the 4 × 1 MB SRAM banks.

In order to better explain the splitting method adopted on Orlando, the function
rpc_call() seen in the Table 5 is better described. Table 6 describes the input parameters
associated with the aforementioned function.

Table 6. rpc_call(...) function arguments.

Input Parameter Description

int flags

The first parameter specifies how the function is executed. Between the
two mainpossibilities we find:
- RPC_SYNC, request will be blocking until completion.
- RPC_ASYNC, request will be executing asynchronously.

void *func It’s the pointer to the function to be executed on the specified core.
int core_caller Indication of the core that executed the rpc_call function.
int core_helper Core on which the pointed function will be executed.
int n_parameters Number of parameters that the pointed function takes as input.
int *ret Pointer to the return variable of the specified function.
varargs Input parameters to the previously specified function.

Each block is associated with one or more rpc_call() functions, generally one for
each layer of the neural network. For example, in *func a convolutional function pointer is
specified. In varargs the structure containing all the data pointers useful for the convo-
lution is provided. If the n-th core is in a sleep state, once an RPC function is executed,
by assigning the value n to the core_helper variable, the n-th core is awakened from the
sleep state and performs the function specified in *func.

The steps to enable core helper activation and workload splitting are described in the
following list:

1. The ADAM system constantly calculates how many helper cores must be enabled for
each i-th block;

2. The core dedicated to the i-th block is constantly informed by the ADAM system on
how many helper cores are assigned to its block. Within this core, as many rpc_call()
functions are performed as there are helper cores specified by ADAM on the i-th block;

3. Furthermore, the core dedicated to the i-th block takes care of passing data in a coherent
way to the helper core. For example, if two helper cores are assigned for the i-th block,
the convolutional kernel pointer of each rpc_call() function that awakens a core
helper is changed; in particular, a third of the kernels is associated with each core helper
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(so that each core helper calculates one-third of the output features), and the remaining
third is used within the calling core.

5. Results

In this section, we show the results obtained with the proposed extension of ADAM
for multi-core platforms, and in particular, considering the Orlando board from STMicro-
electronics [20]. In Section 5.1, we describe more in detail the adopted use case, modeled
according to the application model introduced in Section 3.1.3. This use case was evaluated
on the target hardware platform in two different conditions, to show the potentials of the
proposed approach: single channel, considering one sensor connected to the sensing node
and whose results are shown in Section 5.3, and multi-channel, where multiple sensors are
connected to the sensing node and whose results are shown in Section 5.4.

5.1. Use Case

In order to test the effectiveness of our system, we propose an architecture that allows
constant monitoring of a patient’s ECG signal, capable of detecting cardiac anomalies,
by exploiting artificial intelligence techniques. Connected to the ADC of the reference
platform, Orlando, there is the AD8232 sensor module developed by Analog Devices
(https://www.analog.com/en/products/ad8232.html, accessed on 3 August 2021). For the
considered application model, several operating modes have been originally envisioned [4].
In this work, besides targeting an advanced multi-core hardware platform, for which
ADAM was extended, we focus on the CNN processing operating mode.

As shown in Figure 11, We identified five different task types with respect to the
selected use case:

• Get data: takes care of acquiring the signal from the AD8232 module;
• Peak: analyzes the ECG signal to detect peaks and calculate the heart rate, and the

amount of information sent to the server is greatly reduced;
• CNN: using cognitive analysis based on concurrent neural networks, cardiac abnor-

malities are detected in the ECG tracing. Signal frames around the peaks detected
by the previous processing task are considered. Also in this case, the amount of
information sent to the server is greatly reduced;

• Threshold: decides whether or not the results from the enabled processing levels should
be sent to the cloud; for example, if the heart rate is within a normal range there is no
need to transmit the data;

• Send: packages and sends the data to the server.

Get data Peak CNN Threshold Send

Figure 11. ECG application model for the CNN processing operating mode [4].

The Process data tasks, according to the application model presented in Section 3.1.3,
are then two: Peak and CNN. The peak detection algorithm on the ECG signal is based
on a derivative filter, which was chosen for its simplicity of implementation and the low
computational capacity it requires. The adopted CNN recognizes anomalies on the ECG
signal with an accuracy of 88%, and the inference process leads to three different output
classes: Normal Sinus Rhythm, Atrial Fibrillation, or Other Rhythm [52]. The neural
network consists of 13 layers, each involving a one-dimensional convolution, a batch
normalization, a ReLU, and a dropout stage. Only three layers have also a max pooling
stage with a pooling size of two between ReLU and dropout. The overall size of the data
transferred to the cloud is 6 bytes (1 heartbeat datum represented with 8 bit, 1 classification
label data represented with 8 bit, and 1 timestamp represented with 32 bit). This network

https://www.analog.com/en/products/ad8232.html
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requires a huge computational power, thus deeply stressing the capabilities of the adopted
hardware platform. It constitutes a proper test bench for the proposed approach, which
adapts the exploited level of parallelism to changing workload and operating conditions.

5.2. Experimental Setup

We have executed the CNN described in Section 5.1 on the Orlando multi-core plat-
form, adopting ADAM for the dynamic adaptation of the processing, as discussed in
Section 4. The baseline has been chosen manually at design time and is shown in Figure 12.
Two layers are mapped on core 1; core 2, 3, and 4 execute one layer each, while in core 5,
eight layers have been merged and mapped together.

Core 1

Core 2

Core 3

Core 4

Core 5

Mcycles

C
or

e 
#

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13

0 25 2252001751501251007550

36 MHz 50 bpm

System frequency Heartbeat

Figure 12. The baseline setup for the selected use case on Orlando.

The Orlando prototyping board provides pins to measure all the device current supply,
and therefore a digital oscilloscope and a hall effect probe were used to evaluate power
consumption corresponding to different workload conditions. We forced the system to
sustain three different workloads in order to show how the system reacts and dynamically
adapts itself to this variation. For this purpose, we adopted three workload conditions by
fixing the average heart rate, respectively, to 50 bpm, 100 bpm and 200 bpm. Such values
are chosen to represent the low, moderate, and high cardiac activity of a healthy individual.
We considered 200 bpm as the overall maximum workload to be supported by the system.
For testing purposes, dummy data were adopted in order to activate the CNN, evaluate
the execution times, and measure the related power consumption.

To assess the benefits of the proposed splitting technique and of its combination with
dynamic voltage and frequency scaling, we compared ADAM solutions with two more
static policies, namely Fixed Topology (FT) and Static System Frequency (SSF). Overall,
four policies were then considered in the reported experiments:

• FT: splitting support is not available, and the application is split according to the base-
line setup, and, to meet real-time constraints for the maximum heart rate (200 bpm),
a starting system frequency is also selected. The resulting mapping is kept equal
during execution, while the frequency can be tuned to optimize consumption.

• SSF: no frequency scaling neither splitting support are available. The baseline setup is
used for splitting application, and the system frequency is then selected in order to
meet real-time constraints for the given maximum heart rate (200 bpm). The resulting
mapping and frequency are kept equal during execution.

• ADAM-FF: the proposed ADAM approach for runtime adaptation is enabled, and
the frequency-first policy is considered, with the main goal of minimizing the system
operating frequency while meeting real-time constraints.

• ADAM-IF: the proposed ADAM approach for runtime adaptation is enabled, and the
idle-first policy is considered, with the main goal of minimizing the number of idle
cores while meeting real-time constraints.

Please consider that the supply voltage Vdd is not directly considered by the proposed
approach, rather it is set according to the adopted frequency, as resulting from the prelimi-
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nary study shown in Section 3.1.1 which led to the frequency-voltage pairing depicted in
Figure 4.

5.3. Single Channel

In ADAM-FF, splitting is used at the start-up to balance the pipeline as much as
possible using all cores. At 50 bpm, ADAM-FF minimizes the system frequency, and to
comply with real-time constraints in this condition, it is settled around 9 MHz (frequency
numbers are rounded to consider that available precision in clock generation is 1 MHz).
When the workload increases to 100 bpm, ADAM-FF compensates by increasing the
frequency, doubling it to around 18 MHz. The same happens when moving to 200 bpm,
requiring a frequency increase to 36 MHz.

Thus, 36 MHz corresponds to the frequency required to support the worst-case work-
load with complete splitting. When using ADAM-IF, this value is set for all the workload
levels. At 50 bpm, the system uses the baseline mapping setup represented in Figure 12.
Five out of sixteen processors (DSPs) are in active mode while the others are in idle state.
When passing to 100 bpm, six helpers are activated, to create the pipeline configuration
represented in Figure 13. Obviously, for 200 bpm, all cores are activated.

Core 1
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Core 3

Core 4

Core 5

Core 6

Core 7

Core 8

Core 9

Core10

Core 11

Mcycles

C
or

e 
#

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13

0 25 2252001751501251007550

36 MHz 100 bpm

System frequency Heartbeat

Figure 13. Dataflow on cores with a balanced pipeline and medium workload (ADAM-IF with
maximum 100 bpm).

In FT, frequency is the only knob usable to comply with varying workloads. Five cores
are always used, while frequency is set to 33 MHz for 50 bpm, 66 MHz for 100 bpm, and
132 MHz for the worst case.

Finally, in SSF, the system uses five cores and is always clocked to 132 MHz.
The results for single-channel power consumption are presented in Figure 14. For

50 bpm, ADAM-IF consumes slightly more than FT. In fact, the two policies lead, for a
different system frequency, which in the ADAM-IF case is higher, to the use of the same
number of cores. As may be noticed, in Orlando, in this case, ADAM-FF is the best solution
for every workload condition. It saves around 5% on average when compared with ADAM-
IF and up to 15% with respect to more static policies (SSF, FT). This is basically due to
the amount of power that depends on the system frequency: by dividing the workload
into several cores, it is possible to achieve a significant system frequency reduction. In
devices where some components cannot be completely shut down, this method can be
very effective for energy saving. When targeting devices that do not provide effective
support for rapid and low-overhead frequency adaptation, changing the system frequency
at runtime can be impossible. In this case, ADAM-IF can still be a good policy for saving
power consumption. It is possible to save up to 15% power with respect to SSF, by changing
the partitioning and using splitting instead of frequency to improve performance.
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Savings appear to be overall limited in the proposed experimental results. This is
mainly due to the fact that for the considered use case Orlando works in a frequency region
that is lower than 300 MHz. In this region, Vdd is always set to 675 mV, as depicted in
Figure 4. Lower frequencies do not enable the use of lower voltages; thus, using splitting
instead of increasing clock speed does not provide maximum benefits.

16 core, 9 MHz, 675 mV

16 core, 18 MHz, 675 mV

16 core, 36 MHz, 675 mV

5 core, 36 MHz, 675 mV

10 core, 36 MHz, 675 mV

16 core, 36 MHz, 675 mV

5 core, 33 MHz, 675 mV

5 core, 66 MHz, 675 mV

5 core, 132 MHz, 675 mV

5 core, 132 MHz, 675 mV

5 core, 132 MHz, 675 mV

5 core, 132 MHz, 675 mV

0 10 20 30 40 50 60 70 80 90 100

50 bpm

100 bpm

200 bpm

Power consumption (%)

SSF FT ADAM-IF ADAM-FF

Figure 14. Comparison of power consumption considering different adaptation policies (with or
without ADAM) and different workloads.

5.4. Multi-Channel

In order to explore the full potential of the proposed approach, we compare the
proposed ADAM adaptation policies on a prospective benchmark that requires heavier
workloads to be supported. For example, we can envision using Orlando to implement
an embedded microserver analyzing multiple ECG channels (e.g., a single data collector
in a hospital room, performing in-place analysis for all the patients). For this purpose, six
different signals coming from 6 AD8232, each monitoring a different patient, are consid-
ered. These signals are computed by the hardware platform concurrently, stressing the
available 16 cores and forcing the system to move to frequencies that imply a modification
of the supply voltage. In this case, always considering the baseline setup depicted in
Figure 12 as initial splitting for the application, the starting frequency necessary to meet
real-time constraints with the maximum workload (200 bpm) is 789 MHz, which requires
increasing Vdd to 843 mV with respect to the 675 mV of the single-channel experiments.
This baseline setup and 789 MHz operating frequency are, as occurred for single-channel,
the configuration adopted with the SSF policy for all the tests.

Figure 15 shows the results for the multi-channel experiments. ADAM-FF resulting
frequencies are now equal to 52 MHz for 50 bpm, 108 MHz for 100 bpm, and 216 MHz for
50 bpm, all requiring the minimum supply voltage (675 mV) and employing the entire 16
available cores. This is, again, the best policy for power consumption, reaching a saving
which is more than 80% with respect to SSF in the 50 bpm case.
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Figure 15. Comparison of power consumption in different ADAM configurations with high work-
loads (processing of six ECG streams).

ADAM-IF, instead of minimizing frequency, aims at minimizing active cores. For
this reason, it employs only 5 cores for 50 bpm, 10 cores for 100 bpm, and all 16 cores for
200 bpm, with an operating frequency equal to 216 MHz, requiring the minimum supply
voltage (675 mV). The overall power saving of the ADAM-IF policy with respect to SSF
is slightly lower than ADAM-FF, but still consistent and close to 80% in the best case. By
always using the same number of cores, five, the FT policy is instead adopting a frequency
which is 198 MHz, 395 MHz and 789 MHz, respectively, for 50 bpm, 100 bpm and 200 bpm,
and requiring in turn a Vdd equal to 675 mV, 767 mV and 843 mV. This, again, leads to a
saving of the FT policy with respect to the ADAM-IF one for 50 bpm due to the overhead of
running the same ADAM task. In any case, with higher workloads (100 bpm and 200 bpm)
ADAM-IF saves always more than 50% power with respect to FT.

Increasing the overall computing load within the hardware platform, for all the
considered workloads (50 bpm, 100 bpm and 200 bpm), both ADAM-based policies provide
much more significant savings with respect to non-splitting policies. This is true especially
considering the highest workload cases: up to 60% power reduction is achieved when
higher performance is required.

6. Conclusions

We proposed a template of a hardware/software/firmware architecture concerning a
remote-controlled IoMT wearable device able to recognize cardiac anomalies by means of
deep learning algorithms. We have introduced a component called ADAM, able to manage
the hardware/software configuration of the device in order to better manage the energy
efficiency at runtime.

The workload distribution, through adaptive pipeline management techniques and
process splitting, allows for an energy saving of at least 15% with respect to a static system.
For the same system that manages six ECG channels at a time, the energy saving rises to
60% compared to a static system. In both cases, the reconfiguration policy called ADAM-
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FF (Frequency First), which exploits all the available cores and acts exclusively on the
system frequency, is the one giving the best performance. The obtained results confirm the
potential of data-dependent runtime architecture management.

Author Contributions: Conceptualization, M.A.S., P.M., C.S. and L.R.; Data curation, M.A.S.; Formal
analysis, M.A.S., P.M. and C.S.; Funding acquisition, L.R.; Methodology, M.A.S., P.M. and C.S.;
Software, M.A.S.; Writing—original draft, M.A.S. and P.M.; Writing—review and editing, M.A.S.,
P.M. and C.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by EU Commission for funding ALOHA Project (H2020) under
Grant Agreement n. 780788. This work was also supported by the joint research and development
project F/050395/01-02/X32, INSIEME: Intelligent Systems for Integrated Health Management,
CUP:B28I17000060008, funded by Italian MISE (Ministero dello Sviluppo Economico), D.M. 1 June
2016, Axis 1, action 1.1.3. of the National Operative Program «Imprese e Competitività» 2014–2020
FESR, Horizon 2020–PON I&C 2014-20.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Research, A.M. Internet of Things (IoT) Healthcare Market-Global Opportunity Analysis and Industry Forecast, 2014–2020. 2016.

Available online: https://www.alliedmarketresearch.com/iot-healthcare-market (accessed on 3 August 2021).
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