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Abstract: This paper presents a robust and efficient fault detection and diagnosis framework for
handling small faults and oscillations in synchronous generator (SG) systems. The proposed frame-
work utilizes the Brunovsky form representation of nonlinear systems to mathematically formulate
the fault detection problem. A differential flatness model of SG systems is provided to meet the
conditions of the Brunovsky form representation. A combination of high-gain observer and group
method of data handling neural network is employed to estimate the trajectory of the system and
to learn/approximate the fault- and uncertainty-associated functions. The fault detection mecha-
nism is developed based on the output residual generation and monitoring so that any unfavorable
oscillation and/or fault occurrence can be detected rapidly. Accordingly, an average L1-norm crite-
rion is proposed for rapid decision making in faulty situations. The performance of the proposed
framework is investigated for two benchmark scenarios which are actuation fault and fault impact on
system dynamics. The simulation results demonstrate the capacity and effectiveness of the proposed
solution for rapid fault detection and diagnosis in SG systems in practice, and thus enhancing service
maintenance, protection, and life cycle of SGs.

Keywords: group method of data handling neural network; high-gain observer; L1-Norm criterion;
output residual generation; small fault detection; synchronous generator

1. Introduction

Fault detection and identification (FDI) approaches for nonlinear systems have drawn
attention in the last few decades, as they play a vital role in modern complex systems
with a higher reliability requirement. Particularly, FDI design tackling the actuator faults
is of significance. This is due to the key role of actuator effort on system stability and
performance. In contrast to sensors for which the physical redundancy can be readily
realized, several identical actuators are costly to be implemented as well as the increased
weight, occupied space, and data acquisition complexity. On the other hand, for the large
interconnected systems, e.g., wind farms [1], it is not easy to isolate the actuator faults. This
stems from the different sources that cause the final malfunctions. More importantly, in
the case of a small actuator fault, its symptoms may be buried in the system uncertainties
or external disturbances. In such a case, the well-known approaches, such as observer
design [2], parameter estimation [3], and parity space [4], fail to operate satisfactorily. It is
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worth noting that even though the actuator fault is small, it still may lead to degraded
performance, instability, or even catastrophe.

In safety-critical systems such as synchronous generator (SG) systems, which are
subject to hazardous operation conditions, even small hidden faults can result in the loss
of generator, impacting the stability of the entire grid. Stator faults or ground faults in
the stator windings are classified as common generator faults. The small fault currents
occur specifically when the SG systems are grounded with high impedance. However,
it is extremely difficult to detect such small-scale faults just by relying on differential
protection functions [5]. A common solution to overcome this issue is to simultaneously
use neutral overvoltage relays, percentage differential relays, and third harmonic schemes.
As documented in the literature, fault detection based on the generator neutral and terminal
third harmonic voltage characteristics are restricted to factors such as loading and generator
design and configuration. Moreover, the proposed solution imposes an extra cost on the
SG systems and additional complexity for service maintenance, protection, and real-world
applications [5–7].

In this regard, a robust FDI system, with the capacity for fast detection of small faults,
can contribute to the fault-tolerant control (FTC) module to maintain the stability and overall
performance of the SG systems. In addition, the early detection of such small faults in the
generator can significantly contribute to decreasing the maintenance/replacement cost and
outage period. As such, different hardware-based, model-based, and data-driven approaches
have been proposed in the literature [8–18]. A conventional class of FDI in the literature is called
hardware redundancy techniques which employ multiple identical components for monitoring and
acquiring data of interest and validation in a system [19–21]. However, the main disadvantage
of this approach is imposing cost, weight, and complexity on the system. Moreover, the
redundant hardware is usually used as a backup system at the occurrence of the fault and
it is not able to provide any information of fault features such as fault time, fault shape,
and its amplitude [10,11,20]. The second class of FDI approaches is called model-based
techniques (analytical redundancy), which is established on the mathematical model of
the underlying system. In this category, observer-based methods are quite popular as they
can either estimate states and faults of the system directly or compare residual evaluation
function with a predefined/adaptive threshold. In this regard, sliding mode observer-based
FDI (SMOFDI) is a popular model-based technique that has been extensively used due to
its accuracy, fast convergence, and robustness against disturbances [22–28]. For example,
in [29–31], the concept of first-order SMO is utilized for actuator fault detection and in [9],
the SMOFDI utilizes the principle of the equivalent injection signal to reconstruct the fault or
the quantity of non-measurable system parameters. To generate a chattering-free equivalent
output injunction signal, the use of low pass filters is essential; however, this imposes some
delays and consequently impacts the accuracy of estimation and stability of the underlying
system [32]. More recently, higher-order sliding mode observer (HSMO) techniques have
been proposed to accommodate the need for low pass filters while producing chattering-
free continuous estimations [33,34]. In [35], the HSMO technique for detecting a fault in
a linear time-invariant system is proposed and the necessary and sufficient condition of
finite time convergence is provided. However, the application of the proposed solution is
restricted in practice as the information of higher-order derivatives of the sliding surface
is required. In [36], an adaptive super-twisting sliding mode observer for actuator FDI is
proposed. This technique enables the system to adapt and maintain a sliding motion while
the system is experiencing high-frequency oscillation failures.

Finally, the third class of FDI approaches is called data-driven techniques which have
been employed for fault detection and protection in SG and interconnected power sys-
tems [8,12,14–16,18,37]. The fundamental of these techniques is to use available sensory
data for the purpose of detection and diagnosis without knowledge of physical modeling
of the underlying system. As opposed to the model-based techniques, the data-driven
solutions are load-dependent and require additional sensors, although their performance
is not highly dependent on the accuracy of the model and parameter estimation. The main
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drawbacks of the data-driven solutions, however, are the limitations in rapid and accurate
detection and diagnosis of different fault types and high computational training and tuning
demanding, which makes their real-time implementation difficult [37,38].

To overcome the inadequacies of FDI development for SG systems discussed above,
this paper develops a systematic and mathematically proven robust and efficient FDI
approach with the capacity for rapid detecting and handling small faults and oscillations
in practice. The FDI mechanism in this paper is developed based on output residual
generation and monitoring so that any unfavorable oscillation and/or fault occurrence
can be detected rapidly. To generate the residual for the FDI purpose, first, a bank of high-
gain observers is constructed for both normal and faulty modes of the monitored system.
A promising technology of group method of data handling neural network (GMDHNN)
is utilized for the approximation of unknown dynamics and fault functions in the SG
system. The rationale behind the use of GMDHNN in the proposed FDI system is to utilize
a computationally efficient set of hierarchically connected networks rather than a complex
neural model for uncertainty and system fault approximation which accommodates the
difficulties of rapid fault detection in practice. Finally, an average L1-norm criterion is
proposed for rapid decision making in faulty situations. In summary, this paper provides
the following contributions:

- A systematic FDI procedure with the capacity of rapid detection of small faults and
oscillations in the SG system is presented.

- A differential flatness approach is employed to model the SG system in a Brunovsky
form utilizable for the FDI procedure.

- A bank of a practically implementable high-gain observer is developed for state
estimation of the SG system in both healthy and faulty mode.

- A computationally efficient and real-time implementable GMDHNN is developed to
approximate unknown dynamics and fault functions in the SG system.

- A decision-making mechanism for the detection of small oscillation and fault occur-
rence based on an average L1-norm criterion is proposed.

The rest of the paper is organized as follows. In Section 2, technical preliminaries and
problem statements are presented. In Section 3, first, the original third-order model of SG
is presented and then the flatness-based representation is developed to meet the condition
of Brunovsky form systems described in Section 1. In Section 4, the GMDHNN-based FDI
design procedure including the essence of GMDHNN, high-gain observer design, and FDI
decision-making mechanism is discussed in detail. Section 5 demonstrates simulation re-
sults and performance evaluation of the proposed FDI system for two benchmark scenarios
of actuation fault and fault impact on the system’s dynamics. Finally, Section 6, presents
the conclusion of this paper.

2. Technical Preliminaries and Problem Description
2.1. Technical Preliminaries

Let us consider the strict feedback nonlinear system in a Brunovsky form including
faults and disturbances as (1):

.
x1 = x2.
x2 = x3

.

.

.
.
xn−1 = xn
.
xn = f

(
x,

.
x, . . . , x(n−1)

)
+ g
(

x,
.
x, . . . , x(n−1)

)
u + η(t− T0)Λϕ(x, u) + d(t)

y = x1

(1)

where xi ∈ R, i = 1, . . . , n, is the unknown states vector, u ∈ R represents the control
input vector, y ∈ R is the output, f (.) is the continuous nonlinear function of the system
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dynamics, g(.) represents the continuous nonlinear mapping function associated with the
input, and Λϕ(.) represents the impact of the fault ϕ on the system dynamics. Indeed, the
variation of Λϕ(.) deteriorates the actuator effort g(.)u . On the other hand, η(t− T0) is the
fault time profile including the unknown fault time occurrence of T0, such that for t < T0,
η(t− T0) = 0, otherwise, η(t− T0) = 1 . d(t) represents unknown bounded disturbances.

To initiate the design, the following assumptions are made in the design procedure.

Assumption 1. The system states and controls are always bounded even under faults; that is,
(x, u) ∈ Ω ∈ Rn+1, ∀t ≥ t0where Ω is a compact set. It is assumed that the disturbance is
bounded, i.e., |d(t)| < d , where d > 0and dis known constant.

Assumption 2. The continuous nonlinear functions f (.) and g(.) can be expressed as a combina-
tion of a nominal part and an unknown part, that is:

f
(

x,
.
x, . . . , x(n−1)

)
= fo

(
x,

.
x, . . . , x(n−1)

)
+ υ
(

x,
.
x, . . . , x(n−1)

)
(2)

g
(

x,
.
x, . . . , x(n−1)

)
= go

(
x,

.
x, . . . , x(n−1)

)
+ σ

(
x,

.
x, . . . , x(n−1)

)
(3)

where fo(.) and go(.) are the nominal parts of f (.) and g(.), respectively, and υ(.) and σ(.)represent
unknown continuous bounded uncertainties associated with f (.) and g(.), respectively.

Assumption 3. The system trajectories in normal and fault modes are presented as
φ0(x(t < T0), u(t < T0)) and φs(x(t ≥ T0), u(t ≥ T0)), respectively, and are in oscillations.

Assumption 4. The nonlinear terms fo(.), go(.), υ(.), σ(.), and Λϕ(.) are local Lipchitz around
x, i.e., ∣∣∣ fo

(
x,

.
x, . . . , x(n−1)

)
− fo

(
x̂,

.
x̂, . . . , x̂(n−1)

)∣∣∣ ≤ ρ1|x− x̂| (4)∣∣∣go

(
x,

.
x, . . . , x(n−1)

)
− go

(
x̂,

.
x̂, . . . , x̂(n−1)

)∣∣∣ ≤ ρ2|x− x̂| (5)∣∣∣υ(x,
.
x, . . . , x(n−1)

)
− υ
(

x̂,
.
x̂, . . . , x̂(n−1)

)∣∣∣ ≤ ρ3|x− x̂| (6)∣∣∣σ(x,
.
x, . . . , x(n−1)

)
− σ

(
x̂,

.
x̂, . . . , x̂(n−1)

)∣∣∣ ≤ ρ4|x− x̂| (7)

|Λϕ(x, u)−Λϕ(x̂, u)| ≤ ρ5|x− x̂| (8)

where ρi (i = 1, ., 5) represents local Lipchitz constants in the setX , whereX is the system operation
set, i.e.,∀ x, x̂ ∈ X ,∀ u ∈ U , and U is an admissible control set.

Assumption 5. The fault magnitude ratio factor is bounded and defined as:
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0 < 𝓅 = |Λఝ(𝑥, 𝑢)|�̅� < 1 (9) 

where �̅�  is the upper bound of the modeling uncertainty 𝛽 = 𝜐(. ) + 𝜎(. )  + 𝑑(𝑡) , i.e., |𝜐(. ) + 𝜎(. )  + 𝑑(𝑡)| ≤ �̅�. 
Remark 1. Assumptions 1 and 4 consider the reasonable aspects of the practical dynamic systems, 
i.e., the unbounded signals and their variation are not admissible. Assumption 2 considers the sys-
tem uncertainties, covering a variety of model mismatches and variations. Assumption 5 stands
for the small faults, i.e., the fault size is smaller than the upper bound of model uncertainties and
disturbance. In such a case, the system state variation due to the fault may be buried under the

(9)

where β is the upper bound of the modeling uncertainty β = υ(.) + σ(.) + d(t), i.e.,
|υ(.) + σ(.) + d(t)| ≤ β.

Remark 1. Assumptions 1 and 4 consider the reasonable aspects of the practical dynamic systems,
i.e., the unbounded signals and their variation are not admissible. Assumption 2 considers the
system uncertainties, covering a variety of model mismatches and variations. Assumption 5 stands
for the small faults, i.e., the fault size is smaller than the upper bound of model uncertainties and
disturbance. In such a case, the system state variation due to the fault may be buried under the
effects of model uncertainties and disturbance. Therefore, most developed FDI schemes fail to detect
the fault accurately [39–41].
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2.2. Problem Description

The main objective of this paper is to develop a rapid FDI system for the SG model
to be used in real time and in practice. In order to develop a rapid fault detection system
for the SG model, enabling the detection of even small-magnitude faults, the following
requirements should be addressed:

(1) The dynamic model of SG should be in a Brunovsky form, as described in system (1).

Remark 2. The Brunovsky representation of a system is a popular controllable canonical form
including a finite set of integrators which allows implementing the strict state feedback and linear
observers. Thus, the differential flatness property of the system is utilized to transform the original
model of the generator into the Brunovsky representation.

(2) The SG states in the nominal form should be estimated robustly.

Remark 3. In practice, the measurement of all system states is often not available. On the other
hand, information on states’ trajectories of SG is essential for persistent monitoring and diagnosis of
any small oscillation/fault in the system. The nominal states’ trajectories can be estimated robustly
via a linear high-gain observer due to the representation of the system in the Brunovsky form. This
is incorporated in the neural network module.

(3) The unknown dynamics in (2) and (3) should be approximated accurately.

Remark 4. There exist unknown dynamics and uncertainties associated with the model of generators
in practice. These unmodeled dynamics should be approximated to enable the design of FDI. To
solve this problem, a rigorous function approximator method with the capacity of learning and
approximating unknown dynamics in a local region along any arbitrary recurrent or periodic
trajectory should be employed. This results in the exponential stability of the system (1) and is
achieved via GMDHNN.

(4) A bank of dynamical estimators should be developed to produce fault residual and
consequently detect the real-time fault occurrence at T0 .

Remark 5. The dynamical estimators take advantage of the learned knowledge of the system and
are established upon a bank of non-high gain observers to produce necessary information for the
residual generation and decision making on the fault occurrence at T0 .

In the subsequent sections of this paper, we show how to address the mentioned
requirements.

3. The SG Model
3.1. Third Order SG Model

The connection of an SG to a power grid is illustrated in Figure 1. This configuration
is known as a single-machine infinite bus (SMIB) model. In this model, the generator is
connected to the rest of the network via a transformer and purely reactive transmission
lines. The infinite bus is the representation of a machine that rotates at a synchronous
speed of ωo and has the capacity to absorb or deliver any energy amount. The classic
third-order dynamical model of this configuration in Figure 1 includes mechanical and
electrical dynamic models of SG [42,43]. The mechanical dynamics of SG are as follows:

.
δ = ω−ω0 (10)

.
ω = −D

2J
(ω−ω0) +

ω0

2J
(Pm − Pe) (11)

where δ is power angle of the generator, ω is rotor speed with respect to the synchronous
reference, ω0 represents the synchronous speed of the generator, J is the generator’s
moment of inertia, Pm is the mechanical input torque to the generator, D is the damping
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constant of the generator, and Pe is the electrical torque corresponding to the active power
of the generator. The electrical dynamical model of SG is as follows:

.
Éq =

1
Td0

(
E f − Eq

)
(12)

where Éq is the quadrature-axis transient voltage of the generator, Eq is the quadrature-
axis voltage of the generator, E f is the equivalent voltage in the excitation coil, and Td0
represents the direct-axis open-circuit transient time constant of the generator.
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The algebraic equations of the SG are given in (13).

Eq = xdΣ
x́dΣ

Éq − (xd − x́d)Id

Id =
Éq
x́dΣ
− Vs

x́dΣ
cos(δ)

Iq = Vs
x́dΣ

sin(δ)

Pe =
ÉqVs
x́dΣ

sin(δ)

Qe =
ÉqVs
′
xdΣ

cos(δ)− Vs
2

xdΣ

Vt =
√

´(Eq − x́d Id)2 +
(
x́d Iq

)2

(13)

where xdΣ = xd + xT + xL, x́dΣ = x́d + xT + xL ; xd represents the direct-axis synchronous
reactance; x́d is the direct-axis transient reactance; xT represents the reactance of the
transformer; xL is the reactance of the transmission line; Id and Iq are direct and quadrature
axis currents of generator, respectively; Vs represents the infinite bus voltage; Qe is the
generator reactive power that is delivered to the infinite bus; and Vt represents the terminal
voltage of the generator.

Now, let us substitute Equation (13) into the mechanical and electrical dynamic
equations of the SG in (10)–(12). This results in the complete model of SMIB systems as
presented in (14)–(16):

.
δ = ω−ω0 (14)

.
ω = −D

2J
(ω−ω0) + ω0

Pm

2J
− ω0

2J
VsÉq

x́dΣ
sin(δ) (15)

.
Éq = − 1

T́d
Éq +

1
Td0

xd − x́d
x́dΣ

Vscos(δ) +
1

Td0
E f (16)

where T́d = x́dΣ
xdΣ

Td0 represents the time constant of the field winding. The SMIB model
indicated in (14)–(16) can be further expressed by the general nonlinear state–space repre-
sentation of the form (17):

.
x = f (x) + g(x)u (17)

where x =
[
δ ω Éq

]T is the state vector, and f (x) and g(x) are as follows:

f (x) =


ω−ω0

− D
2J (ω−ω0) + ω0

Pm
2J −

ω0
2J

Vs Éq
x́dΣ

sin(δ)
− 1

T́d
Éq +

1
Td0

xd−x́d
x́dΣ

Vscos(δ)

, g(x) =
(

0, 0,
1

Td0

)T
(18)
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The control input and the measurable output are defined as u = E f and y = δ,
respectively. Evidently, the SG model (18) does not satisfy the Brunovsky form requirement.
This issue is resolved by using the differential flatness concept.

3.2. Flatness-Based SG Model

In order to meet the system requirement of the Brunovsky form in system (1), the
differential flatness theory is employed [44] and then, a flatness-based model of SG is
developed.

Definition 1. Suppose system (1) excludes the fault function and disturbance. The proposed
system, which is briefly expressed by

.
x = f (.) + g(.)u, is called differentially flat if there exists

an output vector

Electronics 2021, 10, x FOR PEER REVIEW 7 of 17 
 

 

𝑓(𝑥) = ⎝⎜
⎛ 𝜔 − 𝜔− ଶ (𝜔 − 𝜔) + 𝜔 ଶ − ఠబଶ ೞாሖ௫́ಂ 𝑠𝑖𝑛 (𝛿)− ଵ்ሖ  𝐸ሖ + ଵ்బ ௫ି௫́௫́ಂ 𝑉௦𝑐𝑜 𝑠(𝛿) ⎠⎟

⎞
, 𝑔(𝑥) = ቀ0,0, ଵ்బቁ்

 (18) 

The control input and the measurable output are defined as 𝑢 = 𝐸 and 𝑦 = 𝛿, re-
spectively. Evidently, the SG model (18) does not satisfy the Brunovsky form requirement. 
This issue is resolved by using the differential flatness concept. 

3.2. Flatness-Based SG Model 
In order to meet the system requirement of the Brunovsky form in system (1), the 

differential flatness theory is employed [44] and then, a flatness-based model of SG is de-
veloped. 

Definition 1. Suppose system (1) excludes the fault function and disturbance. The proposed sys-
tem, which is briefly expressed by 𝑥ሶ = 𝑓(. ) + 𝑔(. )𝑢, is called differentially flat if there exists an 
output vector 𝓏 ∈ ℝ  in conjunction with mapping functions 𝒽: ℝ × (ℝ)ାଵ → ℝ , 𝜙: (ℝ) → ℝ , and 𝜓: (ℝ)ାଵ → ℝ  such that 𝓏 = (𝓏ଵ, … , 𝓏) = 𝒽(𝑥, 𝑢, 𝑢ሶ , … , 𝑢())  im-
plies the following expressions: ቊ𝑥 = 𝜙(𝓏, 𝓏ሶ , … ,  𝓏(ିଵ))𝑢 = 𝜓൫𝓏, 𝓏ሶ , … ,  𝓏()൯    (19) 

Definition 1 demonstrates that all the system states and controls can be expressed in 
terms of the flat output and a finite number of its derivatives. As a result, the differential 
flatness theory can be used as a useful tool to transform the general nonlinear representa-
tion of a flat system into a controllable Brunovsky form facilitating the observer and feed-
back control design. Next, we investigate the flatness-based model of SG. 

Let us define the flat output as 𝑧 = 𝑥ଵ. Then, all state variables and its control inputs 
of the model (14)–(16) can be written as functions of the flat output and its derivatives as 
follows: 

⎩⎪⎨
⎪⎧ 𝑥ଵ = 𝑧                                 𝑥ଶ = 𝑧ሶ                                 

𝑥ଷ = 𝜔𝑃 − 2𝐽𝑧ሷ − 𝐷𝑧ሶ2𝐽𝜔𝑉௦2𝐽�́�ௗஊ 𝑠𝑖𝑛 (𝑧)               (20) 

where 𝑧ሷ = − 𝐷2𝐽 𝑧ሶ + 𝜔 𝑃2𝐽 − 𝜔2𝐽 𝑉௦𝑥ଷ�́�ௗஊ 𝑠𝑖 𝑛(𝑧)  (21) 

for 𝑧 ≠ 𝑛𝜋, 𝑛 = 0,1,2, …. Similarly, the control input can be written as: 𝑢 = 𝑇ௗ(𝑥ଷሶ + 1𝑇ሖௗ 𝑥ଷ 1𝑇ௗ 𝑥ௗ − �́�ௗ�́�ௗஊ 𝑉௦𝑐𝑜 𝑠(𝑧)) (22) 

Equations (20)–(22) hold the differential flatness property of the SG model. Now, let 
us apply the variable changes as 𝑧ଵ = 𝑧, 𝑧ଶ = 𝑧ሶ, 𝑧ଷ = 𝑧ሷ. Then, the SG model can be written 
in the following Brunovsky from: 𝑧ሶଵ𝑧ሶଶ𝑧ሶଷ൩ = 000 100 010൩ 𝑧ଵ𝑧ଶ𝑧ଷ൩ + 001൩ 𝑣 (23) 

where 𝑣 is the control input for the system (23) defined as: 

∈ Rm in conjunction with mapping functions

Electronics 2021, 10, x FOR PEER REVIEW 7 of 17 
 

 

𝑓(𝑥) = ⎝⎜
⎛ 𝜔 − 𝜔− ଶ (𝜔 − 𝜔) + 𝜔 ଶ − ఠబଶ ೞாሖ௫́ಂ 𝑠𝑖𝑛 (𝛿)− ଵ்ሖ  𝐸ሖ + ଵ்బ ௫ି௫́௫́ಂ 𝑉௦𝑐𝑜 𝑠(𝛿) ⎠⎟

⎞
, 𝑔(𝑥) = ቀ0,0, ଵ்బቁ்

 (18) 

The control input and the measurable output are defined as 𝑢 = 𝐸 and 𝑦 = 𝛿, re-
spectively. Evidently, the SG model (18) does not satisfy the Brunovsky form requirement. 
This issue is resolved by using the differential flatness concept. 

3.2. Flatness-Based SG Model 
In order to meet the system requirement of the Brunovsky form in system (1), the 

differential flatness theory is employed [44] and then, a flatness-based model of SG is de-
veloped. 

Definition 1. Suppose system (1) excludes the fault function and disturbance. The proposed sys-
tem, which is briefly expressed by 𝑥ሶ = 𝑓(. ) + 𝑔(. )𝑢, is called differentially flat if there exists an 
output vector 𝓏 ∈ ℝ  in conjunction with mapping functions 𝒽: ℝ × (ℝ)ାଵ → ℝ , 𝜙: (ℝ) → ℝ , and 𝜓: (ℝ)ାଵ → ℝ  such that 𝓏 = (𝓏ଵ, … , 𝓏) = 𝒽(𝑥, 𝑢, 𝑢ሶ , … , 𝑢())  im-
plies the following expressions: ቊ𝑥 = 𝜙(𝓏, 𝓏ሶ , … ,  𝓏(ିଵ))𝑢 = 𝜓൫𝓏, 𝓏ሶ , … ,  𝓏()൯    (19) 

Definition 1 demonstrates that all the system states and controls can be expressed in 
terms of the flat output and a finite number of its derivatives. As a result, the differential 
flatness theory can be used as a useful tool to transform the general nonlinear representa-
tion of a flat system into a controllable Brunovsky form facilitating the observer and feed-
back control design. Next, we investigate the flatness-based model of SG. 

Let us define the flat output as 𝑧 = 𝑥ଵ. Then, all state variables and its control inputs 
of the model (14)–(16) can be written as functions of the flat output and its derivatives as 
follows: 

⎩⎪⎨
⎪⎧ 𝑥ଵ = 𝑧                                 𝑥ଶ = 𝑧ሶ                                 

𝑥ଷ = 𝜔𝑃 − 2𝐽𝑧ሷ − 𝐷𝑧ሶ2𝐽𝜔𝑉௦2𝐽�́�ௗஊ 𝑠𝑖𝑛 (𝑧)               (20) 

where 𝑧ሷ = − 𝐷2𝐽 𝑧ሶ + 𝜔 𝑃2𝐽 − 𝜔2𝐽 𝑉௦𝑥ଷ�́�ௗஊ 𝑠𝑖 𝑛(𝑧)  (21) 

for 𝑧 ≠ 𝑛𝜋, 𝑛 = 0,1,2, …. Similarly, the control input can be written as: 𝑢 = 𝑇ௗ(𝑥ଷሶ + 1𝑇ሖௗ 𝑥ଷ 1𝑇ௗ 𝑥ௗ − �́�ௗ�́�ௗஊ 𝑉௦𝑐𝑜 𝑠(𝑧)) (22) 

Equations (20)–(22) hold the differential flatness property of the SG model. Now, let 
us apply the variable changes as 𝑧ଵ = 𝑧, 𝑧ଶ = 𝑧ሶ, 𝑧ଷ = 𝑧ሷ. Then, the SG model can be written 
in the following Brunovsky from: 𝑧ሶଵ𝑧ሶଶ𝑧ሶଷ൩ = 000 100 010൩ 𝑧ଵ𝑧ଶ𝑧ଷ൩ + 001൩ 𝑣 (23) 

where 𝑣 is the control input for the system (23) defined as: 

: Rn × (Rm)r+1 → Rm ,
φ : (Rm)r → Rn , and ψ : (Rm)r+1 → Rm such that

Electronics 2021, 10, x FOR PEER REVIEW 7 of 17 
 

 

𝑓(𝑥) = ⎝⎜
⎛ 𝜔 − 𝜔− ଶ (𝜔 − 𝜔) + 𝜔 ଶ − ఠబଶ ೞாሖ௫́ಂ 𝑠𝑖𝑛 (𝛿)− ଵ்ሖ  𝐸ሖ + ଵ்బ ௫ି௫́௫́ಂ 𝑉௦𝑐𝑜 𝑠(𝛿) ⎠⎟

⎞
, 𝑔(𝑥) = ቀ0,0, ଵ்బቁ்

 (18) 

The control input and the measurable output are defined as 𝑢 = 𝐸 and 𝑦 = 𝛿, re-
spectively. Evidently, the SG model (18) does not satisfy the Brunovsky form requirement. 
This issue is resolved by using the differential flatness concept. 

3.2. Flatness-Based SG Model 
In order to meet the system requirement of the Brunovsky form in system (1), the 

differential flatness theory is employed [44] and then, a flatness-based model of SG is de-
veloped. 

Definition 1. Suppose system (1) excludes the fault function and disturbance. The proposed sys-
tem, which is briefly expressed by 𝑥ሶ = 𝑓(. ) + 𝑔(. )𝑢, is called differentially flat if there exists an 
output vector 𝓏 ∈ ℝ  in conjunction with mapping functions 𝒽: ℝ × (ℝ)ାଵ → ℝ , 𝜙: (ℝ) → ℝ , and 𝜓: (ℝ)ାଵ → ℝ  such that 𝓏 = (𝓏ଵ, … , 𝓏) = 𝒽(𝑥, 𝑢, 𝑢ሶ , … , 𝑢())  im-
plies the following expressions: ቊ𝑥 = 𝜙(𝓏, 𝓏ሶ , … ,  𝓏(ିଵ))𝑢 = 𝜓൫𝓏, 𝓏ሶ , … ,  𝓏()൯    (19) 

Definition 1 demonstrates that all the system states and controls can be expressed in 
terms of the flat output and a finite number of its derivatives. As a result, the differential 
flatness theory can be used as a useful tool to transform the general nonlinear representa-
tion of a flat system into a controllable Brunovsky form facilitating the observer and feed-
back control design. Next, we investigate the flatness-based model of SG. 

Let us define the flat output as 𝑧 = 𝑥ଵ. Then, all state variables and its control inputs 
of the model (14)–(16) can be written as functions of the flat output and its derivatives as 
follows: 

⎩⎪⎨
⎪⎧ 𝑥ଵ = 𝑧                                 𝑥ଶ = 𝑧ሶ                                 

𝑥ଷ = 𝜔𝑃 − 2𝐽𝑧ሷ − 𝐷𝑧ሶ2𝐽𝜔𝑉௦2𝐽�́�ௗஊ 𝑠𝑖𝑛 (𝑧)               (20) 

where 𝑧ሷ = − 𝐷2𝐽 𝑧ሶ + 𝜔 𝑃2𝐽 − 𝜔2𝐽 𝑉௦𝑥ଷ�́�ௗஊ 𝑠𝑖 𝑛(𝑧)  (21) 

for 𝑧 ≠ 𝑛𝜋, 𝑛 = 0,1,2, …. Similarly, the control input can be written as: 𝑢 = 𝑇ௗ(𝑥ଷሶ + 1𝑇ሖௗ 𝑥ଷ 1𝑇ௗ 𝑥ௗ − �́�ௗ�́�ௗஊ 𝑉௦𝑐𝑜 𝑠(𝑧)) (22) 

Equations (20)–(22) hold the differential flatness property of the SG model. Now, let 
us apply the variable changes as 𝑧ଵ = 𝑧, 𝑧ଶ = 𝑧ሶ, 𝑧ଷ = 𝑧ሷ. Then, the SG model can be written 
in the following Brunovsky from: 𝑧ሶଵ𝑧ሶଶ𝑧ሶଷ൩ = 000 100 010൩ 𝑧ଵ𝑧ଶ𝑧ଷ൩ + 001൩ 𝑣 (23) 

where 𝑣 is the control input for the system (23) defined as: 

= (

Electronics 2021, 10, x FOR PEER REVIEW 7 of 17 
 

 

𝑓(𝑥) = ⎝⎜
⎛ 𝜔 − 𝜔− ଶ (𝜔 − 𝜔) + 𝜔 ଶ − ఠబଶ ೞாሖ௫́ಂ 𝑠𝑖𝑛 (𝛿)− ଵ்ሖ  𝐸ሖ + ଵ்బ ௫ି௫́௫́ಂ 𝑉௦𝑐𝑜 𝑠(𝛿) ⎠⎟

⎞
, 𝑔(𝑥) = ቀ0,0, ଵ்బቁ்

 (18) 

The control input and the measurable output are defined as 𝑢 = 𝐸 and 𝑦 = 𝛿, re-
spectively. Evidently, the SG model (18) does not satisfy the Brunovsky form requirement. 
This issue is resolved by using the differential flatness concept. 

3.2. Flatness-Based SG Model 
In order to meet the system requirement of the Brunovsky form in system (1), the 

differential flatness theory is employed [44] and then, a flatness-based model of SG is de-
veloped. 

Definition 1. Suppose system (1) excludes the fault function and disturbance. The proposed sys-
tem, which is briefly expressed by 𝑥ሶ = 𝑓(. ) + 𝑔(. )𝑢, is called differentially flat if there exists an 
output vector 𝓏 ∈ ℝ  in conjunction with mapping functions 𝒽: ℝ × (ℝ)ାଵ → ℝ , 𝜙: (ℝ) → ℝ , and 𝜓: (ℝ)ାଵ → ℝ  such that 𝓏 = (𝓏ଵ, … , 𝓏) = 𝒽(𝑥, 𝑢, 𝑢ሶ , … , 𝑢())  im-
plies the following expressions: ቊ𝑥 = 𝜙(𝓏, 𝓏ሶ , … ,  𝓏(ିଵ))𝑢 = 𝜓൫𝓏, 𝓏ሶ , … ,  𝓏()൯    (19) 

Definition 1 demonstrates that all the system states and controls can be expressed in 
terms of the flat output and a finite number of its derivatives. As a result, the differential 
flatness theory can be used as a useful tool to transform the general nonlinear representa-
tion of a flat system into a controllable Brunovsky form facilitating the observer and feed-
back control design. Next, we investigate the flatness-based model of SG. 

Let us define the flat output as 𝑧 = 𝑥ଵ. Then, all state variables and its control inputs 
of the model (14)–(16) can be written as functions of the flat output and its derivatives as 
follows: 

⎩⎪⎨
⎪⎧ 𝑥ଵ = 𝑧                                 𝑥ଶ = 𝑧ሶ                                 

𝑥ଷ = 𝜔𝑃 − 2𝐽𝑧ሷ − 𝐷𝑧ሶ2𝐽𝜔𝑉௦2𝐽�́�ௗஊ 𝑠𝑖𝑛 (𝑧)               (20) 

where 𝑧ሷ = − 𝐷2𝐽 𝑧ሶ + 𝜔 𝑃2𝐽 − 𝜔2𝐽 𝑉௦𝑥ଷ�́�ௗஊ 𝑠𝑖 𝑛(𝑧)  (21) 

for 𝑧 ≠ 𝑛𝜋, 𝑛 = 0,1,2, …. Similarly, the control input can be written as: 𝑢 = 𝑇ௗ(𝑥ଷሶ + 1𝑇ሖௗ 𝑥ଷ 1𝑇ௗ 𝑥ௗ − �́�ௗ�́�ௗஊ 𝑉௦𝑐𝑜 𝑠(𝑧)) (22) 

Equations (20)–(22) hold the differential flatness property of the SG model. Now, let 
us apply the variable changes as 𝑧ଵ = 𝑧, 𝑧ଶ = 𝑧ሶ, 𝑧ଷ = 𝑧ሷ. Then, the SG model can be written 
in the following Brunovsky from: 𝑧ሶଵ𝑧ሶଶ𝑧ሶଷ൩ = 000 100 010൩ 𝑧ଵ𝑧ଶ𝑧ଷ൩ + 001൩ 𝑣 (23) 

where 𝑣 is the control input for the system (23) defined as: 

, . . . ,

Electronics 2021, 10, x FOR PEER REVIEW 7 of 17 
 

 

𝑓(𝑥) = ⎝⎜
⎛ 𝜔 − 𝜔− ଶ (𝜔 − 𝜔) + 𝜔 ଶ − ఠబଶ ೞாሖ௫́ಂ 𝑠𝑖𝑛 (𝛿)− ଵ்ሖ  𝐸ሖ + ଵ்బ ௫ି௫́௫́ಂ 𝑉௦𝑐𝑜 𝑠(𝛿) ⎠⎟

⎞
, 𝑔(𝑥) = ቀ0,0, ଵ்బቁ்

 (18) 

The control input and the measurable output are defined as 𝑢 = 𝐸 and 𝑦 = 𝛿, re-
spectively. Evidently, the SG model (18) does not satisfy the Brunovsky form requirement. 
This issue is resolved by using the differential flatness concept. 

3.2. Flatness-Based SG Model 
In order to meet the system requirement of the Brunovsky form in system (1), the 

differential flatness theory is employed [44] and then, a flatness-based model of SG is de-
veloped. 

Definition 1. Suppose system (1) excludes the fault function and disturbance. The proposed sys-
tem, which is briefly expressed by 𝑥ሶ = 𝑓(. ) + 𝑔(. )𝑢, is called differentially flat if there exists an 
output vector 𝓏 ∈ ℝ  in conjunction with mapping functions 𝒽: ℝ × (ℝ)ାଵ → ℝ , 𝜙: (ℝ) → ℝ , and 𝜓: (ℝ)ାଵ → ℝ  such that 𝓏 = (𝓏ଵ, … , 𝓏) = 𝒽(𝑥, 𝑢, 𝑢ሶ , … , 𝑢())  im-
plies the following expressions: ቊ𝑥 = 𝜙(𝓏, 𝓏ሶ , … ,  𝓏(ିଵ))𝑢 = 𝜓൫𝓏, 𝓏ሶ , … ,  𝓏()൯    (19) 

Definition 1 demonstrates that all the system states and controls can be expressed in 
terms of the flat output and a finite number of its derivatives. As a result, the differential 
flatness theory can be used as a useful tool to transform the general nonlinear representa-
tion of a flat system into a controllable Brunovsky form facilitating the observer and feed-
back control design. Next, we investigate the flatness-based model of SG. 

Let us define the flat output as 𝑧 = 𝑥ଵ. Then, all state variables and its control inputs 
of the model (14)–(16) can be written as functions of the flat output and its derivatives as 
follows: 

⎩⎪⎨
⎪⎧ 𝑥ଵ = 𝑧                                 𝑥ଶ = 𝑧ሶ                                 

𝑥ଷ = 𝜔𝑃 − 2𝐽𝑧ሷ − 𝐷𝑧ሶ2𝐽𝜔𝑉௦2𝐽�́�ௗஊ 𝑠𝑖𝑛 (𝑧)               (20) 

where 𝑧ሷ = − 𝐷2𝐽 𝑧ሶ + 𝜔 𝑃2𝐽 − 𝜔2𝐽 𝑉௦𝑥ଷ�́�ௗஊ 𝑠𝑖 𝑛(𝑧)  (21) 

for 𝑧 ≠ 𝑛𝜋, 𝑛 = 0,1,2, …. Similarly, the control input can be written as: 𝑢 = 𝑇ௗ(𝑥ଷሶ + 1𝑇ሖௗ 𝑥ଷ 1𝑇ௗ 𝑥ௗ − �́�ௗ�́�ௗஊ 𝑉௦𝑐𝑜 𝑠(𝑧)) (22) 

Equations (20)–(22) hold the differential flatness property of the SG model. Now, let 
us apply the variable changes as 𝑧ଵ = 𝑧, 𝑧ଶ = 𝑧ሶ, 𝑧ଷ = 𝑧ሷ. Then, the SG model can be written 
in the following Brunovsky from: 𝑧ሶଵ𝑧ሶଶ𝑧ሶଷ൩ = 000 100 010൩ 𝑧ଵ𝑧ଶ𝑧ଷ൩ + 001൩ 𝑣 (23) 

where 𝑣 is the control input for the system (23) defined as: 

) =

Electronics 2021, 10, x FOR PEER REVIEW 7 of 17 
 

 

𝑓(𝑥) = ⎝⎜
⎛ 𝜔 − 𝜔− ଶ (𝜔 − 𝜔) + 𝜔 ଶ − ఠబଶ ೞாሖ௫́ಂ 𝑠𝑖𝑛 (𝛿)− ଵ்ሖ  𝐸ሖ + ଵ்బ ௫ି௫́௫́ಂ 𝑉௦𝑐𝑜 𝑠(𝛿) ⎠⎟

⎞
, 𝑔(𝑥) = ቀ0,0, ଵ்బቁ்

 (18) 

The control input and the measurable output are defined as 𝑢 = 𝐸 and 𝑦 = 𝛿, re-
spectively. Evidently, the SG model (18) does not satisfy the Brunovsky form requirement. 
This issue is resolved by using the differential flatness concept. 

3.2. Flatness-Based SG Model 
In order to meet the system requirement of the Brunovsky form in system (1), the 

differential flatness theory is employed [44] and then, a flatness-based model of SG is de-
veloped. 

Definition 1. Suppose system (1) excludes the fault function and disturbance. The proposed sys-
tem, which is briefly expressed by 𝑥ሶ = 𝑓(. ) + 𝑔(. )𝑢, is called differentially flat if there exists an 
output vector 𝓏 ∈ ℝ  in conjunction with mapping functions 𝒽: ℝ × (ℝ)ାଵ → ℝ , 𝜙: (ℝ) → ℝ , and 𝜓: (ℝ)ାଵ → ℝ  such that 𝓏 = (𝓏ଵ, … , 𝓏) = 𝒽(𝑥, 𝑢, 𝑢ሶ , … , 𝑢())  im-
plies the following expressions: ቊ𝑥 = 𝜙(𝓏, 𝓏ሶ , … ,  𝓏(ିଵ))𝑢 = 𝜓൫𝓏, 𝓏ሶ , … ,  𝓏()൯    (19) 

Definition 1 demonstrates that all the system states and controls can be expressed in 
terms of the flat output and a finite number of its derivatives. As a result, the differential 
flatness theory can be used as a useful tool to transform the general nonlinear representa-
tion of a flat system into a controllable Brunovsky form facilitating the observer and feed-
back control design. Next, we investigate the flatness-based model of SG. 

Let us define the flat output as 𝑧 = 𝑥ଵ. Then, all state variables and its control inputs 
of the model (14)–(16) can be written as functions of the flat output and its derivatives as 
follows: 

⎩⎪⎨
⎪⎧ 𝑥ଵ = 𝑧                                 𝑥ଶ = 𝑧ሶ                                 

𝑥ଷ = 𝜔𝑃 − 2𝐽𝑧ሷ − 𝐷𝑧ሶ2𝐽𝜔𝑉௦2𝐽�́�ௗஊ 𝑠𝑖𝑛 (𝑧)               (20) 

where 𝑧ሷ = − 𝐷2𝐽 𝑧ሶ + 𝜔 𝑃2𝐽 − 𝜔2𝐽 𝑉௦𝑥ଷ�́�ௗஊ 𝑠𝑖 𝑛(𝑧)  (21) 

for 𝑧 ≠ 𝑛𝜋, 𝑛 = 0,1,2, …. Similarly, the control input can be written as: 𝑢 = 𝑇ௗ(𝑥ଷሶ + 1𝑇ሖௗ 𝑥ଷ 1𝑇ௗ 𝑥ௗ − �́�ௗ�́�ௗஊ 𝑉௦𝑐𝑜 𝑠(𝑧)) (22) 

Equations (20)–(22) hold the differential flatness property of the SG model. Now, let 
us apply the variable changes as 𝑧ଵ = 𝑧, 𝑧ଶ = 𝑧ሶ, 𝑧ଷ = 𝑧ሷ. Then, the SG model can be written 
in the following Brunovsky from: 𝑧ሶଵ𝑧ሶଶ𝑧ሶଷ൩ = 000 100 010൩ 𝑧ଵ𝑧ଶ𝑧ଷ൩ + 001൩ 𝑣 (23) 

where 𝑣 is the control input for the system (23) defined as: 

(
x, u,

.
u, . . . , u(r)

)
implies the following expressions:

Electronics 2021, 10, x FOR PEER REVIEW 7 of 17 
 

 

𝑓(𝑥) = ⎝⎜
⎛ 𝜔 − 𝜔− ଶ (𝜔 − 𝜔) + 𝜔 ଶ − ఠబଶ ೞாሖ௫́ಂ 𝑠𝑖𝑛 (𝛿)− ଵ்ሖ  𝐸ሖ + ଵ்బ ௫ି௫́௫́ಂ 𝑉௦𝑐𝑜 𝑠(𝛿) ⎠⎟

⎞
, 𝑔(𝑥) = ቀ0,0, ଵ்బቁ்

 (18) 

The control input and the measurable output are defined as 𝑢 = 𝐸 and 𝑦 = 𝛿, re-
spectively. Evidently, the SG model (18) does not satisfy the Brunovsky form requirement. 
This issue is resolved by using the differential flatness concept. 

3.2. Flatness-Based SG Model 
In order to meet the system requirement of the Brunovsky form in system (1), the 

differential flatness theory is employed [44] and then, a flatness-based model of SG is de-
veloped. 

Definition 1. Suppose system (1) excludes the fault function and disturbance. The proposed sys-
tem, which is briefly expressed by 𝑥ሶ = 𝑓(. ) + 𝑔(. )𝑢, is called differentially flat if there exists an 
output vector 𝓏 ∈ ℝ  in conjunction with mapping functions 𝒽: ℝ × (ℝ)ାଵ → ℝ , 𝜙: (ℝ) → ℝ , and 𝜓: (ℝ)ାଵ → ℝ  such that 𝓏 = (𝓏ଵ, … , 𝓏) = 𝒽(𝑥, 𝑢, 𝑢ሶ , … , 𝑢())  im-
plies the following expressions: ቊ𝑥 = 𝜙(𝓏, 𝓏ሶ , … ,  𝓏(ିଵ))𝑢 = 𝜓൫𝓏, 𝓏ሶ , … ,  𝓏()൯    (19) 

Definition 1 demonstrates that all the system states and controls can be expressed in 
terms of the flat output and a finite number of its derivatives. As a result, the differential 
flatness theory can be used as a useful tool to transform the general nonlinear representa-
tion of a flat system into a controllable Brunovsky form facilitating the observer and feed-
back control design. Next, we investigate the flatness-based model of SG. 

Let us define the flat output as 𝑧 = 𝑥ଵ. Then, all state variables and its control inputs 
of the model (14)–(16) can be written as functions of the flat output and its derivatives as 
follows: 

⎩⎪⎨
⎪⎧ 𝑥ଵ = 𝑧                                 𝑥ଶ = 𝑧ሶ                                 

𝑥ଷ = 𝜔𝑃 − 2𝐽𝑧ሷ − 𝐷𝑧ሶ2𝐽𝜔𝑉௦2𝐽�́�ௗஊ 𝑠𝑖𝑛 (𝑧)               (20) 

where 𝑧ሷ = − 𝐷2𝐽 𝑧ሶ + 𝜔 𝑃2𝐽 − 𝜔2𝐽 𝑉௦𝑥ଷ�́�ௗஊ 𝑠𝑖 𝑛(𝑧)  (21) 

for 𝑧 ≠ 𝑛𝜋, 𝑛 = 0,1,2, …. Similarly, the control input can be written as: 𝑢 = 𝑇ௗ(𝑥ଷሶ + 1𝑇ሖௗ 𝑥ଷ 1𝑇ௗ 𝑥ௗ − �́�ௗ�́�ௗஊ 𝑉௦𝑐𝑜 𝑠(𝑧)) (22) 

Equations (20)–(22) hold the differential flatness property of the SG model. Now, let 
us apply the variable changes as 𝑧ଵ = 𝑧, 𝑧ଶ = 𝑧ሶ, 𝑧ଷ = 𝑧ሷ. Then, the SG model can be written 
in the following Brunovsky from: 𝑧ሶଵ𝑧ሶଶ𝑧ሶଷ൩ = 000 100 010൩ 𝑧ଵ𝑧ଶ𝑧ଷ൩ + 001൩ 𝑣 (23) 

where 𝑣 is the control input for the system (23) defined as: 

(19)

Definition 1 demonstrates that all the system states and controls can be expressed in
terms of the flat output and a finite number of its derivatives. As a result, the differential
flatness theory can be used as a useful tool to transform the general nonlinear representation
of a flat system into a controllable Brunovsky form facilitating the observer and feedback
control design. Next, we investigate the flatness-based model of SG.

Let us define the flat output as z = x1 . Then, all state variables and its control inputs
of the model (14)–(16) can be written as functions of the flat output and its derivatives as
follows: 

x1 = z
x2 =

.
z

x3 =
ω0Pm−2J

..
z−D

.
z

2J
ω0Vs
2Jx́dΣ

sin(z)

(20)

where
..
z = −D

2J
.
z + ω0

Pm

2J
− ω0

2J
Vsx3

x́dΣ
sin(z) (21)

for z 6= nπ, n = 0, 1, 2, . . . . Similarly, the control input can be written as:

u = Td0

(
.

x3 +
1
T́d

x3
1

Td0

xd − x́d
x́dΣ

Vscos(z)
)

(22)

Equations (20)–(22) hold the differential flatness property of the SG model. Now, let
us apply the variable changes as z1 = z, z2 =

.
z, z3 =

..
z . Then, the SG model can be written

in the following Brunovsky from: .
z1.
z2.
z3

 =

 0
0
0

1
0
0

0
1
0

 z1
z2
z3

+

 0
0
1

v (23)



Electronics 2021, 10, 2637 8 of 17

where v is the control input for the system (23) defined as:

v = fb

(
z,

.
z,

....
z
)
+ gb

(
z,

.
z,

....
z
)

u

=

((
D

2J2

) .
z−ω0

D
2J

Pm
2J + ω0

D
(2J)2

Vs
′
xdΣ

x3sin
( .
z
)

+ω0
2J

Vs
x́dΣ

1
T́d

x3sin(z)− ω0
2J

Vs
x́dΣ

1
Td0

xd−x́d
x́dΣ

Vs cos(z)sin(z)

−ω0
2J

Vs
′
xdΣ

x3cos(z)
.
z

)
+

(
−ω0

2J
1

Td0

Vs
′
xdΣ

sin(z)

)
u

(24)

Equation (24) provides the flatness-based model of SG and hence meets the require-
ments of system (1).

4. FDI Design Process

In this section, the FDI mechanism is established based on the GMDHNN and high-
gain observer, utilized for the approximation of unknown dynamics, system states, and
fault function in system (1). To this end, first, the essence of GMDHNN is briefly presented,
followed by the role of the high-gain observer that provides estimates of states as a regressor
vector for the proposed GMDHNN. Finally, the residual generation and FDI algorithms
are presented.

4.1. The Essence of GMDH Neural Network

The GMDHNN can be employed for nonlinear function approximation and provides
more flexibility in design and robustness in performance over the conventional neural
networks, such as multi-layer perceptron [45,46]. The rationale behind the GMDHNN is
to utilize a set of hierarchically connected networks rather than a complex neural model
for function approximation and system identification purposes. Automatic selection of a
network structure just based on the measured data becomes possible in GMDHNN and
thus, modeling uncertainty, as a result of neural networks structure, is accommodated to a
great extent. The GMDHNN is a layered structure network in which each layer consists of
pairs of independent neurons being linked via a quadratic polynomial. In all layers, new
neurons are developed on the connections of the previous layers. In this self-organized
neural structure, the input–output relationship is obtained via the Kolmogorov–Gabor
polynomial of the form [47–49]:

y = a0 +
n

∑
i=1

aixi +
n

∑
i=1

n

∑
j=1

aijxixj +
n

∑
i=1

n

∑
j=1

n

∑
k=1

aijkxixjxk + . . . (25)

where y represents the network’s output, the input vector is represented by X = (x1, x2, x3,
. . . , xn), ( ai, aij, aijk ) represents the coefficient of the quadratic polynomial, and i, j, k ∈ (1,
2, . . . , n).

To implement a GMDHNN, the following steps can be adopted:

- Step 1: Neurons with inputs consist of all possible couple of input variables that are(
n
2

)
are developed.

- Step 2: The neurons with higher error rates are ignored and other neurons are utilized
to construct the next layer. In this regard, each neuron is used to calculate the quadratic
polynomial.

- Step 3: The second layer is constructed via the output of the first layer and hence,
a higher-order polynomial is developed. Then, Step 2 is repeated to determine the
optimal output utilized for the next layer input. This process is continued until the
termination condition is fulfilled, i.e., the function approximation is achieved with the
desired accuracy.
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The above procedure indicates the evolution of the GMDHNN structure by which
more desired quality of system approximation and identification can be obtained. This
approach addresses the weakness of classic neural networks in system identification, as the
determination of appropriate structures (including hidden layers and number of neurons)
is often a cumbersome and tedious process.

To employ a GMDHHNN for FDI purposes, let us define the network by:
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(.) represents the GMDHNN structure, l denotes the number of layers in
the GMDHNN, and nl expresses the number of neurons in the lth layer. In the proposed
network (26), each neuron’s model is as:

f (l)n

(
k, W(l)

n

)
= ξ

(
(ψl

n(k))
T

W(l)
n

)
(27)

where f (l)n (k) represents the output of the nth neuron in the lth layer based on the kth input
signal, ξ(.) expresses the nonlinear invertible activation function, ψl

n(k) are the regressor
vectors, and W(l)

n represent the parameter vectors.

Remark 6. Proven in [49], for any function f (k) : Ωk → Rwhere Ωk ⊂ Rq is a compact set,
there exists an ideal parameter (weight) vector W∗ that satisfies the following equation:

Θ =
{

W∗ ∈ Rnp
∣∣∣ f (k)− ε(k) ≤ ψ(k)TW∗ ≤ f (k)− ε(k), k = 1, . . . , nT

}
(28)

where ε(k) ∈ [ ε(k), ε(k) ] represents the bounded approximation error.

There exists a spectrum of GMDHNN algorithms in the state-of-the-art for obtaining
an ideal weight vector [49,50]; in this study, the following theorem is used for updating the
weight vector.

Theorem 1. Let us consider the following dynamical GMDHNN for the approximation of a
dynamic f(x) in an nth-order controllable canonical system

.
xn = f (x):

.
χ = −α(χ− x̂n) + ψ(x̂)TW (29)

where χ represents the state of dynamical GMDHNN, x̂n is an estimated state variable obtained by
any observer,α is the design constant, and ψ(x̂)TW denotes a GMDHNN used for approximation
of f(x). The adaptation law for the weight vector W is provided by (30):

.
W = −Γψ(x̂)Txn − ΓµW (30)

where Γ = ΓT > 0 is the learning coefficient, µ > 0is a small value, and xn is defined as
xn := χ− x̂n .

For the sake of brevity, the proof of Theorem 1 is not presented here and can be found
in [51].

4.2. High-Gain Observer Design

In the past three decades, the design and development of high-gain observers have
been under the attention of nonlinear system control communities to be used for output
feedback control of nonlinear systems [52]. The main idea behind the high-gain observers
is to separate a nonlinear system into linear and nonlinear parts and obtain the gain of
the observer in such a way that the linear part becomes dominant over the nonlinear
part [52,53]. This is carried out by selecting the observer gains large enough to converge
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the observation error into a sufficiently small region in a finite time, i.e., a neighborhood of
the system state trajectory.

In order to implement the FDI mechanism, the estimate of full states of system (1)
(or, equivalently, (23)) is required. To this end, a high-gain observer, which only uses the
output information, is designed in the following theorem.

Theorem 2. Consider system (1) in conjunction with Assumptions 1–5. The following high-gain
observer is designed to estimate the system states, i.e., the estimation error asymptotically converges
to a sufficiently small neighborhood of the origin.



.
x̂1 = x̂2 + α1κ (y− ŷ)
.
x̂2 = x̂3 + α2κ2(y− ŷ)

.

.

.
.
x̂n−1 = x̂n + αn−1κn−1 (y− ŷ)
.
x̂n = fo

(
x̂,

.
x̂, . . . , x̂(n−1)

)
+ go

(
x̂,

.
x̂, . . . , x̂(n−1)

)
u + αnκn(y− ŷ)

ŷ = x̂1

(31)

where αi(i = 1, . . . , n) and κ are constant values and αi should be chosen in a way to make
sn + α1sn−1 + . . . + αn−1s + αn Hurwitz polynomial with distinct roots; x̂i is the estimate
of the system states xi ; and ŷ represents the system’s output estimate.

For the sake of brevity, the proof of Theorem 2 is not presented here, as it is similar to
the proof of [51,54].

Remark 7. Theorem 2 indicates that the observer (31) only requires the output y(t) to estimate
the states of the system. To achieve the convergence of the estimates x̂i to a sufficiently small
neighborhood of the system states, and hence to reduce the estimation errors, κ should be chosen
large enough.

It should be noted that known functions associated with f (.) and g(.) in system (1)
depend on the system states of (1). Therefore, x̂i can be used instead of the xi as the input
to the GMDHNN to approximate f (.) and g(.) when xi → x̂i , i.e.,{

f̂
(

xi

∣∣∣w f

)
= S f (x̂i)

Tw f + εi(x̂i)

ĝ
(
xi
∣∣wg
)
= Sg(x̂i)

Twg + εi(x̂i)
(32)

where f̂
(

xi

∣∣∣w f

)
and ĝ

(
xi
∣∣wg
)

represent approximations of f (.) and g(.), respectively;
S f (x̂i) and Sg(x̂i) are basis functions associated with f (.) and g(.), respectively, in the
GMDHNN; and εi(x̂i) ≤ ε is an approximation error. w f and wg are ideal weight vectors on
the compact sets Ω f w and Ωgw associated with f (.) and g(.), respectively, which minimize
εi(x̂i) when xi → x̂i , i.e.,

w f = arg min
w f∈Ω f w

[ sup
x∈Ωx

∣∣∣ f̂
(

xi

∣∣∣w f

)
− f (.)

∣∣∣ ]
wg = arg min

wg∈Ωgw
[ sup
x∈Ωx

∣∣∣ ĝ
(

xi

∣∣∣w f

)
− g(.)

∣∣∣ ] (33)

4.3. FDI Mechanism

The FDI mechanism in this paper is developed based on output residual generation
and monitoring so that any unfavorable oscillation and/or fault occurrence can be detected
rapidly. To generate the residual for the FDI purpose, first, the following bank of N+1
observers are constructed for both normal and faulty modes of the monitored system (1):
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.
x̂

s
1 = x̂s

2 + κ1 (y− ŷs)
.
x̂

s
2 = x̂s

3 + κ2(y− ŷs)
.
.
.

.
x̂

s
n−1 = x̂s

n + κn−1 (y− ŷs)
.
x̂

s
n = f0

(
x̂s,

.
x̂

s
, . . . , x̂s(n−1)

)
+ g0

(
x̂s,

.
x̂

s
, . . . , x̂s(n−1)

)
u + W f

sTS f (x̂s) + Wg
sTSg(x̂s) + κn (y− ŷs)

ŷs = x̂s
1

(34)

where x̂s ∈ Rn represents the state vector of the estimator, ŷs represents the estimated
output, and s = {0, 1, . . . , N} indicates the sth estimator. W f

sTS f (x̂s) and Wg
sTSg(x̂s) com-

pose the GMDHNN for the approximation of the unknown dynamics and fault functions.
K = [κ1, . . . , κn]

T represents the observer gains, which are identical for all normal and fault
estimators.

Theorem 3. The residual ỹs = y− ŷs will asymptotically converge to a small neighborhood of
origin if the estimator gain K in (34) is chosen so that the residual dynamic matrix A =

(
A− KCT),

obtained by comparing (1) and (34), is stable and for all eigenvalues of A and all the eigenvalues of
A satisfy:

Re(−λ) > K2(P)ρs, s = 0, 1, . . . , N (35)

where A = PΛP−1 , P is a symmetric positive definite matrix, K2(P) is the condition number of
matrix P, and ρs is defined as follows:

ρs =
4
∑

i=1
ρi , f or s = 0

ρs =
5
∑

i=1
ρi , f or s = 1, 2, . . . , N

(36)

where ρi represents the Lipchitz constants defined in (4)–(8).

For the sake of brevity, the proof of Theorem 3 is not presented here, as it is similar to
the proof of [51].

The result of Theorem 3 enables us to utilize the average L1-norm for the FDI mecha-
nism as follows:

‖ỹs(t)‖1 =
1
T

t∫
t−T

|ỹs(τ)dτ|, t ≥ T (37)

where T is a design parameter and represents the time window length of the residual. It
should be noted that the robustness and rapidness of the FDI mechanism are functions of
the time window length, as the larger T increases the robustness of the FDI mechanism
by making the residual norm (37) less sensitive to noise but decreases the rapidness as the
system should be monitored under a longer residual window time. Hence, the designer
deals with a compromise in tuning T. Accordingly, by considering (37) and the following
lemma, the fault detection decision is made.

Lemma 1. The decision on the occurrence of a fault on the system (1) is made if there exists some
finite time, as Td, and for some s ∈ {1, 2, . . . , N}, such that ‖ỹs(Td)‖1 < ‖ỹ0(Td)‖1. This yields
the fault detection time td = Td − T0 [54].

For the sake of summarization, we exclude the analysis of the fault detectability in
this paper; interested readers can refer to [54].
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Consequently, Algorithm 1 summarizes the FDI mechanism of this paper.

Algorithm 1 FDI Mechanism

High-gain Observer

n Construct the high-gain observer (31) to estimate the states (x̂i ) and output (ŷ ) of the
system (1).

GMDHNN

n Construct a GMDHNN using (26) and (27);
n Use the estimated states (x̂i ) in (31) as a regressor vector in the GMDHNN.
n Employ the adaptation law (30) for training the network and obtaining the ideal weight

vector.
n Use the developed GMDHNN for the approximation of unmodeled dynamics in (2) and (3)

and fault function Λϕ(x, u) .

Residual Generation

n Construct the bank of N+1 observer (34) for both healthy and faulty modes of the system.
n Develop the L1-norm residual (37) to constantly monitor the system status.

Decision Making

n Use Lemma 1 for decision making on the fault occurrence and determining the fault
detection time td = Td − T0 .

5. Results and Discussion

In this section, the effectiveness and robustness of the proposed fault detection system
are demonstrated through extensive simulation studies. In this study, all computations
were performed on a desktop PC with an Intel i7 3.20-GHz quad-core processor in MATLAB
2021a. The SG system (23) is simulated based on the parameters tabulated in Table 1 [42,43].
The SG is excited by u = 2sin(2πt)cos(t) and unknown disturbance d(t) = 0.01sin(t) +
0.02cos(0.5t) is imposed on the system. The GMDHNN uses topology as illustrated in
Figure 2 and for the training phase, its weighting vector W is initialized by zero. The
weights are updated according to (29) and (30), and the design parameters are chosen as
α = 1, Γ = 1.5, µ = 0.05 . Similarly, in the training phase, the design parameters for the
high-gain observer (31) are set as α1 = 4, α2 = 8, α3 = 12, κ = 5 .

Table 1. Parameters of the studied SG model [42,43].

Parameter Value

xd 2.1 (p.u)
x́d 0.4 (p.u)
H 3.5 (s)

Td0 8 (s)
D 4

xT 0.016 (p.u)
xL 0.054 (p.u)
Vs 1 (p.u)
Pm 0.9 (p.u)

Two scenarios are defined for the performance assessment of the proposed FDI system.
In the first scenario, the SG is experiencing an actuation fault defined as u = u + (qu − 1)u
where u is the control signal in the healthy mode and qu = 0.1, which means 10% fault on
the actuator. In the second scenario, a fault model impacting the system dynamics of the
SG, Λϕ(x, u) = −x3, is considered. This is a general purpose scenario and for example, the
short-circuit fault can be categorized under scenario 2 by just considering the infinite bus
voltage Vs = 0 [55,56].

Figure 3 compares the SG’s state trajectories in normal and fault modes. Figure 4
focuses on the comparison of fault functions and modeling uncertainty involved with
the SG. This confirms that magnitudes of both fault functions are smaller than the SG’s
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modeling uncertainty, a sort of indication of the difficulty of detecting such small magnitude
faults in practice (as described in Section 1). Figure 5 represents the estimation of the
system’s output under actuator and system dynamics faults. This confirms the fidelity
and high accuracy of both trained GMDHNN and the high-gain observer for the diagnosis
phase of the fault detection process.

To evaluate the performance of the FDI system in the diagnosis phase, a bank of
four nonlinear observers (34) incorporating the knowledge of the trained GMDHNN, is
constructed. In this regard, the observer gains are defined as κ1 = 4, κ12 = 8, κ3 = 12 .
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Figure 2. Topology of GMDHNN.

In the first scenario, the actuation fault on the SG model is applied at T0 = 6 s. The
L1-norm residual (37) with a length of the time interval T = 20 is utilized for constantly
monitoring the system status. Figure 6 illustrates the profile of the L1-norm residual for
both normal and fault modes. This figure obeys Lemma 1 and thus, the detection of the
fault as the residual of actuation fault becomes smaller than the normal one at the time of
the fault detection, Td = 6.147 s.
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Similarly, in the second scenario, the corresponding fault is applied on the SG model
at T0 = 6 s. Figure 7 shows the profile of the L1-norm residual of this scenario and confirms
that at the time of the fault detection, Td = 6.089 s, the average L1-norm of the fault becomes
smaller than the normal counterpart, thus obeying Lemma 1 and the detection of the fault
very rapidly, td = 0.1 s.
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6. Conclusions

This paper developed an FDI framework to rapidly detect the small faults and os-
cillations in SG systems. The proposed framework was established upon the GMDHNN
and high-gain observer to estimate the trajectory of the system and to approximate uncer-
tainties associated with unmodeled dynamics and external disturbances in the SG. The
fault detection mechanism was developed based on the average L1-norm criterion for
rapid decision making in faulty situations. The performance of the proposed framework
was investigated via simulation studies. In this regard, two benchmark scenarios of the
actuation fault and fault impact on system dynamic changes were applied on the SG. The
simulation results confirmed the fidelity, effectiveness, and robustness of the proposed FDI
system in fast detection of small-magnitude faults on the SG system, which is promising
for practical applications. An example of these practical applications includes fast fault
detection in the critical truncation systems in electric vehicles, electric trains, etc. The future
line of this research will focus on integrating the proposed FDI system with a robust FTC
module based on sliding mode control [57–60] and include the impact of sensor faults,
as well. Moreover, the performance of the integrated FDI-FTC system in practice will be
investigated on a laboratory SG system.
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