Green’s Functions of Multi-Layered Plane Media with Arbitrary Boundary Conditions and Its Application on the Analysis of the Meander Line Slow-Wave Structure
Abstract
:1. Introduction
2. The DGF and SGF of Multi-Layered Plane Media with Arbitrary Boundaries
3. Typical Boundary Conditions and Examples
3.1. Metal Boundary Conditions
Example: A Rectangular Waveguide Laterally Filled with Multi-Layered Media
3.2. Infinite Radiation Boundary Conditions
Example: A Rectangular Waveguide Longitudinally Filled with Multi-Layered Media
3.3. Metal and Infinite Radiation Boundary Conditions
4. Application on the Dispersion Analysis for a Meander Line Slow-Wave Structure
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Pincherle, L. Electromagnetic Wave in Metal Tubes Filled Longitudinally with Two Dielectrics. Phys. Rev. 1944, 55, 118–130. [Google Scholar] [CrossRef]
- Eroglu, A.; Lee, Y.H.; Lee, J.K. Dyadic Green’s functions for multi-layered uniaxially anisotropic media with arbitrarily oriented optic axes. IET Microw. Antennas Propag. 2011, 5, 1779–1788. [Google Scholar] [CrossRef]
- Kourkoulos, V.N.; Cangellaris, A.C. Accurate approximation of Green’s functions in planar stratified media in terms of a finite sum of spherical and cylindrical waves. IEEE Trans. Antennas Propag. 2006, 54, 1568–1576. [Google Scholar] [CrossRef]
- Boix, R.R.; Mesa, F.; Medina, F. Application of Total Least Squares to the Derivation of Closed-Form Green’s Functions for Planar Layered Media. IEEE Trans. Microw. Theory Tech. 2007, 55, 268–280. [Google Scholar] [CrossRef]
- Wu, B.P.; Tsang, L. Fast Computation of Layered Medium Green’s Functions of Multilayers and Lossy Media Using Fast All-Modes Method and Numerical Modified Steepest Descent Path Method. IEEE Trans. Microw. Theory Tech. 2008, 56, 1446–1454. [Google Scholar] [CrossRef]
- Kwon, M.S. A Numerically Stable Analysis Method for Complex Multilayer Waveguides Based on Modified Transfer-Matrix Equations. IEEE J. Lightwave Technol. 2009, 27, 4407–4414. [Google Scholar] [CrossRef]
- Tai, C.T. Dyadic Green’s Functions for a Rectangular Waveguide Filled with Two Dielectrics. J. Electromagn. Waves Applicat. 1988, 2, 245–253. [Google Scholar] [CrossRef]
- Chew, W. Waves and Field in Inhomogeneous Media; IEEE Press Series on Electromagnetic Wave Theory; IEEE: New York, NY, USA, 1999. [Google Scholar]
- Tai, C.T. Dyadic Green Functions in Electromagnetic Theory, 2nd ed.; IEEE Press: Piscataway, NJ, USA, 1993. [Google Scholar]
- Felsen, L.B.; Marcuvitz, N. Radiation and Scattering of Waves; IEEE Press Series on Electromagnetic Wave Theory; IEEE Press: New York, NY, USA, 1994. [Google Scholar]
- Jin, H.; Lin, W. Dyadic Green’s functions for a rectangular waveguide with an E-plane dielectric slab. IEE Proc. H Microw. Antennas Propag. 1990, 137, 231–234. [Google Scholar] [CrossRef]
- Joubert, J.; McNamara, D.A. Dyadic Green’s function of electric type for inhomogeneously loaded rectangular waveguides. IEE Proc. H Microw. Antennas Propag. 1989, 136, 469–474. [Google Scholar] [CrossRef]
- Hanson, G.W. Dyadic Green’s function for a multi-layered planar medium—A dyadic eigenfunction approach. IEEE Trans. Antennas Propag. 2004, 52, 3350–3356. [Google Scholar] [CrossRef]
- Hanson, G.W. Dyadic Eigenfunctions and Natural Modes for Hybrid Waves in Planar Media. IEEE Trans. Antennas Propag. 2004, 52, 941–947. [Google Scholar] [CrossRef]
- Qiu, C.W.; Yao, H.Y.; Li, L.W.; Zouhdi, S.; Yeo, T.S. Eigenfunctional representation of dyadic Green’s functions in multilayered gyrotropic chiral media. J. Phys. A Math. Theor. 2007, 40, 5751–5766. [Google Scholar] [CrossRef]
- Lobo, A.E.; Tsoy, E.N.; Martijn de Sterke, C. Green function method for nonlinear elastic waves in layered media. J. Appl. Phys. 2001, 90, 3762–3770. [Google Scholar] [CrossRef]
- How, H.; Zuo, X.; Vittoria, C. Dyadic Green’s function calculations on a layered dielectric/ferrite structure. J. Appl. Phys. 2001, 89, 6722–6724. [Google Scholar] [CrossRef]
- Song, W.M. Dyadic Green’s Function and Operator Theory of Electromagnetic Filed; Press of University of Science and Technology of China: Hefei, China, 1991. [Google Scholar]
- Sphicopoulos, T.; Teodoridis, V.; Gardiol, F.E. Dyadic green function for the electromagnetic field in multilayered isotropic media: An operator approach. IEE Proc. H Microw. Antennas Propag. 1985, 132, 329–334. [Google Scholar] [CrossRef]
- Chen YP, P.; Chew, W.C.; Jiang, L.J. A New Green’s Function Formulation for Modeling Homogenerous Objects in Layered Medium. IEEE Trans. Antennas Propag. 2012, 60, 4766–4776. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Lin, W.; Lin, Y. Dyadic Green’s functions for rectangular waveguide filled with longitudinally meltilayered isotropic dielectric and their application. IEE Proc. Microw. Antennas Propag. 1994, 141, 504–508. [Google Scholar] [CrossRef]
- Michalski, K.A.; Mosig, J.R. Multilayered Media Green’s Functions in Integral Equation Formulations. IEEE Trans. Antennas Propag. 1997, 45, 508–519. [Google Scholar] [CrossRef]
- Kakade, A.B.; Ghosh, B. Analysis of the rectangular waveguide slot coupled multilayer hemispherical dielectric resonator antenna. IET Microw. Antennas Propag. 2012, 6, 338–347. [Google Scholar] [CrossRef]
- Muhlschlegel, P.; Eisler, H.J.; Martin, O.J.F.; Hecht, B.; Pohl, D.W. Resonant Optical Antennas. Science 2005, 308, 1607–1609. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.T.; Xue, Q.; Liao, S.W.; Pang, S.W.; Chiu, L.; Tang, Q.Y.; Zhao, X.H. Low-Cost Narrowed Dielectric Microstrip Line-A Three-Layer Dielectric Waveguide Using PCB Technology for Millimeter-Wave Applications. IEEE Trans. Microw. Theory Tech. 2017, 65, 119–127. [Google Scholar] [CrossRef]
- Dey, U.; Hesselbarth, J. Building Blocks for a Millimetere-wave Multiport Multicast Chip-to-Chip Interconnect Based on Dielectric Waveguides. IEEE Trans. Microw. Theory Tech. 2018, 66, 5508–5520. [Google Scholar] [CrossRef]
- Su, Q.C.; Wu, H.S. Green’s function solution of the waveguide with two pairs of double ridges. Acta Electron. Sin. 1983, 11, 81–87. (In Chinese) [Google Scholar]
- Wen, Z.; Fan, Y.; Yang, C.; Luo, J.R.; Zhu, F.; Zhu, M.; Guo, W.; Gong, Y.B.; Feng, J.J. Theory, Simulation and Analysis of the High Frequency Characteristics for a Meander Line Slow-wave Structure Based on Field-matching Methods with Dyadic Green’s Function. IEEE Trans. Electron Devices 2020, 67, 697–703. [Google Scholar] [CrossRef]
b | b0 | A | a0 | a1 | z0 | z1 | z2 | zT | εr |
---|---|---|---|---|---|---|---|---|---|
1 | 0.5 | 0.7 | 0.45 | 0.5 | 0.2 | 0.25 | 0.45 | 0.5 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Z.; Luo, J.; Li, W. Green’s Functions of Multi-Layered Plane Media with Arbitrary Boundary Conditions and Its Application on the Analysis of the Meander Line Slow-Wave Structure. Electronics 2021, 10, 2716. https://doi.org/10.3390/electronics10212716
Wen Z, Luo J, Li W. Green’s Functions of Multi-Layered Plane Media with Arbitrary Boundary Conditions and Its Application on the Analysis of the Meander Line Slow-Wave Structure. Electronics. 2021; 10(21):2716. https://doi.org/10.3390/electronics10212716
Chicago/Turabian StyleWen, Zheng, Jirun Luo, and Wenqi Li. 2021. "Green’s Functions of Multi-Layered Plane Media with Arbitrary Boundary Conditions and Its Application on the Analysis of the Meander Line Slow-Wave Structure" Electronics 10, no. 21: 2716. https://doi.org/10.3390/electronics10212716
APA StyleWen, Z., Luo, J., & Li, W. (2021). Green’s Functions of Multi-Layered Plane Media with Arbitrary Boundary Conditions and Its Application on the Analysis of the Meander Line Slow-Wave Structure. Electronics, 10(21), 2716. https://doi.org/10.3390/electronics10212716