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Abstract: Diabetes is a chronic disease that can affect human health negatively when the glucose
levels in the blood are elevated over the creatin range called hyperglycemia. The current devices
for continuous glucose monitoring (CGM) supervise the glucose level in the blood and alert user
to the type-1 Diabetes class once a certain critical level is surpassed. This can lead the body of the
patient to work at critical levels until the medicine is taken in order to reduce the glucose level,
consequently increasing the risk of causing considerable health damages in case of the intake is
delayed. To overcome the latter, a new approach based on cutting-edge software and hardware
technologies is proposed in this paper. Specifically, an artificial intelligence deep learning (DL)
model is proposed to predict glucose levels in 30 min horizons. Moreover, Cloud computing and
IoT technologies are considered to implement the prediction model and combine it with the existing
wearable CGM model to provide the patients with the prediction of future glucose levels. Among
the many DL methods in the state-of-the-art (SoTA) have been considered a cascaded RNN-RBM
DL model based on both recurrent neural networks (RNNs) and restricted Boltzmann machines
(RBM) due to their superior properties regarding improved prediction accuracy. From the conducted
experimental results, it has been shown that the proposed Cloud&DL-based wearable approach
achieves an average accuracy value of 15.589 in terms of RMSE, then outperforms similar existing
blood glucose prediction methods in the SoTA.

Keywords: artificial intelligence; deep learning; blood glucose level prediction; type-1 diabetes;
cloud computing; IoT

1. Introduction

Nowadays, diabetes is considered one of the common diseases that is rapidly increas-
ing in the world. It naturally represents an important health problem in the world and the
World Health Organization (WHO) is also encouraging science to work along with this
objective. Since 1965, many contributions have been published about promoting specific
guidelines for the diagnosis, monitoring, and treatment of diabetes [1]. Regarding diabetes
conditions, the human body is unable to create enough insulin to manage blood sugar
levels, or the insulin produced is insufficiently utilized. It can also cause various diseases
such as diabetes, kidney disease, heart disease, nerve damage, blindness, and damage of
blood vessels [2].
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In the last few years, one of the most relevant systems used to help in type-1 diabetes
(T1D) is continuous glucose monitoring (CGM) systems which allow patients to contin-
uously monitor the blood glucose levels and react based on the current blood glucose
levels [3]. Predicting the future blood glucose level can be an early-prediction tool in order
to help patients to manage their insulin distribution and protect them from potentially
severe damage. However, the complex behavior of blood glucose levels which depends on
many factors such as sleeping patterns, recent insulin injections, and carbohydrate intake
makes the prediction phase for short terms a complex and challenging task [4]. Thus, it is
necessary to adopt those technologies that provide improved alternatives when dealing
with these health-care problems.

Recently, artificial intelligence and new learning techniques in the field have become
promising approaches for improving the health care of patients. The prediction of glucose
levels in the blood can be observed as a time series problem. Therefore, a sequence of
present and past glucose levels is used to predict the values of the next levels in the near
future. Usually, machine learning (ML) methods are preferred due to they provide more
accurate and fast results requiring less computational cost. Deep learning (DL) methods
belong to ML, and they allow to increase the predictive feature due to their inherent ability
to both combine data from various sources and manage large amounts of data [5].

In the last few years, IoT and Cloud computing paradigms have contributed to the
field of health care with new wearable technologies. These cutting-edge developments
are crucial for the direct increase of the comfort of the life of the patients dealing with the
disease. In particular, instant glucose, glucose trend, and direction information are three
relevant parameters that can be obtained by using a small sensor. Such a device requires
a low power consumption and it is worn on the arm of the patient, which replaces the
traditional invasive blood test. More importantly, these types of IoT devices lack processing
power, thus the obtained data can be processed and analyzed in a more powerful computing
device placed in the Cloud [6].

In this paper, it is proposed a new wearable CGM system to predict the blood glucose
level from glucose level history using a DL method run in the Cloud. Specifically, recurrent
neural networks (RNNs) are proven to have the ability to capture temporal auto-correlation
features in data, while restricted Boltzmann machines (RBM) have the ability to delineate
complex distributions in the data. Therefore, our Cloud&DL-based wearable approach
makes use of a DL model designed from the previous learning strategies, and a cascaded
RNN-RBM method is accordingly considered. Finally, the new health care system is aimed
at time series prediction of the glucose level in the blood for 30 min horizon to provide
greater precision than that given by other methods from the state-of-the-art (SoTA).

The contributions can be summarized as follows;

1. A DL-based blood glucose level perdition model is used together with a wearable
CGM device to provide T1D prediction of near-future blood glucose levels.

2. A cascaded DL hybrid model based on RNN and RBM to improve the accuracy
against the current techniques in the SoTA.

3. A high processing power tool based on using a Cloud computing architecture for
running the proposed DL models together with using the lower processing power of
a wearable CGM device.

The structure of the paper is organized as follows. A brief summary of the SToA
is provided in Section 2. Next, Sections 3 and 4 are devoted to, respectively, describing
the proposed approach and providing the details of the system. Section 5 is aimed at
performing the experimental evaluation of the proposal. Finally, those more relevant
conclusions are introduced in Section 6.

2. Review of the State-of-the-Art

This section is aimed at briefly introducing those more relevant contributions in the
field. Specifically, blood glucose level prediction is considered an important problem
and received considerable attention by researchers to improve the prediction accuracy.
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Artificial intelligence approaches such as DL and ML methods are highly considered by
the researchers for automatic and accurate prediction of glucose levels in the blood for T1D
patients.

In [7], to predict levels of blood glucose 60 min into the future a deep recurrent
neural network RNN model is presented. A parameterized univariate Gaussian output
distribution is used for estimating the uncertainty in the prediction. They acquire an RMSE
of 18.867 using blood glucose level measurements of six people with T1D.

A DL model to predict glucose concentration is presented in [8] using dilated recurrent
neural network (DRNN) to achieve a 30-min prediction of the future. The data used are
obtained from two sources, both simulator (UVA/Padova T1D simulator) and clinical trials
(OhioT1DM). Different inputs such as time index, historical blood glucose, meal intake,
and insulin bolus are provided to the network to acquire the glucose level prediction. The
result reveals an RMSE of 27.4 mg/dL for the clinical dataset.

ARTiDe presented in [9], which is a model for forecasting blood glucose levels based
on a jump neural network JNN to handle both the linear and nonlinear components of
inputs data. The model includes temporal delays for the input signals with auto-regressive
feedbacks. A private, as well as a public dataset, were used for the predictions of glucose
levels of 15, 20, and 30 min in the future the result shows an accuracy of 18.4 RMSE.

A hybrid cascaded DL model is presented in [10] to predict glucose levels in the blood
for up to 60 min. The model is based on a single layer from long-short-term memory
(LSTM) followed by a bidirectional LSTM layer. The model is trained using different
datasets obtained from T1D real patients and simulators. The model has achieved a
prediction result with an accuracy of 21.747 in terms of RMSE.

A deep neural network DNN approach is presented in [11] for the state prediction
of blood glucose for 30 min in the future in form of (hypoglycemic, euglycemic, and
hyperglycemic). The prediction error-grid analysis method is considered to improve
the model regarding accuracy. the training dataset is obtained from DirecNet Central
Laboratory for 25 T1D patient’s time series data. the model has achieved an average of 93%
in respect of prediction accuracy.

In [12], a framework called GluNet is presented for forecasting blood glucose levels
for T1D patients. The framework is used for CGM forecasting for 30 to 60 min in the future.
A deep convolution neural network CNN with label transform/recover method is trained
using datasets obtained from Silico virtual adult, Virtual adolescent, and Clinical adult.
The model achieved glucose forecasting results of 19.2 RMSE in terms of accuracy.

An LSTM DL method is considered in [13] to model the behavior of blood glucose for
T1D patients. The model predicts the blood glucose for 30 to 60 min ahead. A dataset of
5 actual patients with 200 data points is used for training and evaluating the model. The
model archived an accuracy of 37.8 regarding RMSE.

In [14], LSTM based DL method is used to predict Blood Glucose Dynamics in respect
of three classes (High, Normal, and Low). The model trained with 112 patient data and
obtained classification results with an average 86.7% of accuracy.

A comparative study is presented in [15] to evaluate different types of ML and DL
methods for glucose level prediction in blood for 30 min ahead. The study considered
LSTM DL methods against the classical auto-regression with exogenous inputs ARX.
OhioT1DM dataset is used to train and test the performance of the models. Based on the
evaluation experiments the ARX method achieved the lowest RMSE of 19.53 compared to
the VanillaLSTM DL model which obtained an RMSE of 19.58.

For prediction and forecasting time series data the authors in [16] presented and used
a hybrid deep learning model based on a combination of recurrent neural network and
restricted Boltzmann machine RNN-RBM. This model is used for different types of time
series prediction and forecasting applications such as modeling temporal dependencies
in high-dimensional sequence [16], forecasting disasters for the mobile network [17], pre-
dicting stock market trends [18], transportation network congestion evolution prediction
of network congestion evolution [19], and wastewater treatment plants anomaly predic-
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tion [20]. The presented method shows its ability to capture both spatial and temporal
dependencies in the data which distinguishes it from other models. RBM is a generative
stochastic neural network that learns the probabilistic distribution of the data. There-
fore, RBMs have the ability for pattern completion by generating samples based on data
distribution. This feature of RBM can be utilized for temporal time series prediction in
RNN-RBM architecture where RBM biases are permitted to be adjusted by the RNN to
transmit temporal information and RBM parameters are kept constant as a prior for the
data distribution.

Different models have their own set of benefits and drawbacks and are better suited
to different sorts of tasks and issues, as well as different datasets. In this work, the possible
benefits of using the RNN-RBM model to achieve more accurate (compared to SoTA)
time-series blood glucose levels prediction will be evaluated.

3. The Proposed Approach

This section presents the theoretical framework of the proposed system.

3.1. Restricted Boltzmann Machines (RBM)

Restricted Boltzmann machines (RBM) have emerged as one of the most popular
probabilistic learning methods. Combined with advances in learning theory, RBMs have
expanded their applicability to a variety of tasks such as contrast divergence, persistent
and parallel coupling. While successful, most of these models have been used not in the
context of relational data, but often with a flat feature representation (vectors, matrices,
tensors) [21].

RBM structure shown in Figure 1 has two layers, the first layer is the input layer and
the second layer is defined as the hidden layer. Circles have a structure similar to neurons
and consist of connections called nodes. Nodes provide connections between layers, but
there are no connections between nodes in the same layer.
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There is no intra-layer communication. Each node in the layer makes a calculation by
making random decisions. All the nodes in the input node layer receive a feature that is
lower-level than the item in the dataset that needs to be learned. The x value is multiplied
by a weight and added to the bias value at the first node of the hidden layer. The output of
the node, or the strength of the signal flowing through it, is produced by feeding the result
of these two processes into an activation function that, given input x, creates the output of
the node, or the strength of the signal traveling through it. When the combination of the
inputs at the hidden node is reviewed, the x values are multiplied by the w weight value,
these values are added together and the bias value is added, and the calculated value is
passed through an activation function to arrive at the result of the node. The x value for
each of the hidden nodes is multiplied by the weight W. Thus, the three weights of each
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input x form the sum of the twelve weights. Each hidden node consists of four inputs
multiplied by their respective weights. The sum of these values is added to the deviation
value and the calculated result value is used with the activation algorithm that produces
the result for the hidden node [22].

Equation (1) shows a general form of the energy function for the pair of visible and
hidden vectors 〈v|h〉 the weight matrix W is associated with the connection between v and
h of a KBM [23].

E(v, h) = −aTv− bT − vTWh (1)

here; a and b are the visible and hidden units bias weights. The probability distributions of
v and h are expressed with regard to energy function E(v,h) as in Equation (2).

P(v, h) =
1
Z

e−E(v,h) (2)

here; Z is the normalizing constant and is given in Equation (3).

Z = ∑ v′, h′e−E(v′ ,h′) (3)

where v is the probability of vector; It is equal to the sum of Equation (2) over hidden layers
[P(v,h)] If we take the derivative of the log-probability of the training data with respect to
W we get Equation (4).

∑N
n=1

∂ log(P(vn))

∂wij
= 〈vi|hj〉data − 〈vi|hj〉model (4)

here,
〈
vi|hj

〉
is the model distribution or the expected values of the data. Equation (5) is

the learning rule for the weights of the network on log-probability-based training data.

∆wij = ε
(〈

vi|hj
〉

data −
〈
vi|hj

〉
model

)
(5)

here, ε is the learning rate.
In addition, activations of hidden or visible units can be conditionally dependent on

visible or hidden units; The conditional probability of h depending on v is defined as in
Equations (6)–(9).

P(h|v) = ∏j

(
hj
∣∣v) hj ∈ {1, 0} (6)

P
(
hj = 1

∣∣v) = σ(bj + ∑i viWij) (7)

P(vi = 1|h) = σ(ai + ∑j hjWij) (8)

σ(x) =
(
1 + e−x)−1 (9)

3.2. Recurrent Neural Networks

RNNs are a type of artificial neural network in which the connections between units
form a directed loop. RNNs are feedforward neural networks with edges that expand along
with adjacent time steps, introducing the idea of time to the traditional neural network
paradigm [24]. The difference between RNN and the feedforward networks, NNs do not
have traditional edge-to-edge loops. However, edges connecting adjacent time steps, called
repeating edges, can form loops, including loops of length that are self-connecting from
a node [25]. Nodes with recurring edges at time t are taken their input from the hidden
node values ht−1 in the network prior state and the present data point xt as shown in
Equation (10). The output yt is calculated at time t by giving the values ht of the hidden
node at time t as shown in Equation (11). The input xt−1 at time t − 1 can affect the output
at time t through recursive connections to yt and beyond [26].

ht = σ
(

Whxxt + Whhht + bh

)
(10)
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yt = sortmax
(

Whxht + by

)
(11)

Here, Whx is input and the hidden layer conventional weights. Whh is the recurring weights
matrix of the hidden layer and itself in adjacent time steps. The bias parameters vectors are
bh and by. An illustration of a simple RNN structure is given in Figure 2.
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3.3. RNN-RBM Model

RNN and RBM DL methods can predict a temporal sequence. Combining each one
of them into a deep architecture called RNN-RBM can take advantage of both models for
capturing complex temporal dependencies in the data. This architecture is obtained by
combining and including RBM at every time step with RNN, therefore the RBM model
parameters are determined from an RNN as shown in Figure 3 [19].
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The hidden units of RNN layers at time t are connected to each other in chain configu-
ration and connected with visible layers of RBM as shown in Equation (12) [27].

ĥt = σ
(

W2vt + W3ĥt−1 + bĥ

)
(12)

where ĥt , W2.W3 and bĥ are the single-layer RNN-RBM parameters.

3.4. Message Queuing Telemetry Transport

Message queuing telemetry transport MQTT is an application layer protocol that runs
on top of the TCP/IP transport layer protocol for data transfer. It is a protocol suitable
for resource-constrained devices and was developed by Andy Stanford-Clark and Arlen
Nipper in 1999. It is a lightweight and easy-to-use protocol, which provides a convenient
transfer facility for communicating in resource-constrained systems such as the IoT. The
design intent of MQTT is to provide reliable message transmission in environments such
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as low bandwidth and unreliable networks for resource-constrained systems. The delivery
of data is done using client-server and broadcast-subscriber mechanisms [28].

4. The Proposed Architecture

The proposed system architecture for cloud-based blood glucose level perdition IoT
device is shown in Figure 4. The system consists of three main parts IoT device with a
blood glucose sensor and display, an MQTT broker to provide the connection between the
IoT device and the cloud environment, and cloud-based perdition RNN-RBM DL model.
The IoT device includes a glucose level sensor to measure and monitor the patient’s blood
glucose level values and send it to the cloud environment via Wi-Fi using the MQTT
protocol. The cloud environment contains a database to store the patient’s glucose levels
for the 20 data points in the last 100 min which then feed to the DL model used to predict
the glucose level up to 30 min horizon into the future. The predicted value of glucose level
is sent back to the IoT device to display to the patient.
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5. Experimental Evaluation

The dataset used to train the proposed RNN-RBM DL model for blood glucose level
prediction is obtained from Diabetes Research in Children Network (DirecNet). The dataset
contains historical data of blood glucose levels reordered in 5 min intervals for 110 T1D
patients with ages between 7–17. The data were collected and obtained based on patients’
and parents’ approval in 3 months period and in separated sessions to ensure patient
comfort and safety [29]. Table 1 summarizes information about the considered patients,
where Record ID represents the sample number for taking glucose level measurements for
each patient with a specific Patient ID.

Table 1. Dataset Information.

Record ID Patient ID Reading Date Reading Time Sensor Glucose Level
mg/dL

35 2 1/1/2000 0:00 10:12 p.m. 164
36 2 1/1/2000 0:00 10:17 p.m. 160
37 2 1/1/2000 0:00 10:22 p.m. 152
38 2 1/1/2000 0:00 10:27 p.m. 145
39 2 1/1/2000 0:00 10:32 p.m. 135
40 2 1/1/2000 0:00 10:37 p.m. 128
41 2 1/1/2000 0:00 10:42 p.m. 125
42 2 1/1/2000 0:00 10:47 p.m. 118
43 2 1/1/2000 0:00 10:52 p.m. 116
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In this work, a subset of randomly selected 10 patients with glucose level data points
more than 1000 is considered as shown in Table 2 below.

Table 2. The information of the 10 randomly selected patients.

Patient ID Glucose Level Measurement Data Points

1 1053
5 1139

24 1589
45 1425
60 1165
71 1090
80 1055
85 1671
97 1448
104 1303

For each one of the selected patients, 80% of the glucose level values are considered
for training the proposed RNN-RBM DL model and the remaining 20% is considered for
testing and evaluating the model performance.

To avoid model overfitting issues a 10- fold Blocked cross-validation method [30] is
considered for performance evaluation of the model.

The hyperparameters selected of the proposed RNN-RBM DL method for blood
glucose level prediction are shown in Table 3.

Table 3. Model hyperparameter.

Hyperparameter Value Search Space

Number of hidden units 100 (50–15)
Window size 20 data points (10–30)

optimizer Adam (Adam, SGD)
Batch size 512 (64–1024)

Learning rate 0.001 (0.001–0.1)
epochs 150 (50–250)

The best values of the hyperparameters are selected through an experimental method
based on the search space value range shown in Table 3.

In our evaluation experiments, the presented model is trained using batch learning
data are sent to the network as batches determined by a sliding window.

The DL model is trained on the cloud environment using the training data and
evaluated using the test data for each one of the selected 10 patients mentioned above.
Root mean square error RMSE and mean absolute error MAE metrics are used to evaluate
the performance of the model, RMSE and MAE can be calculated based on Equations (13)
and (14), respectively [31].

RMSE =

√
∑n

i=1(predictedi−actuali)
2

n
(13)

MAE =
1
n

n

∑
i=1
|predictedi−actuali| (14)

where n represents the number of samples.
Figure 5 shows the RMSE for the proposed DL model during training and validation

in different epochs.
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Table 4 shows the evaluation results of the RNN-RBM DL model for glucose blood
level perdition compared to the regular RNN method using the data of the selected 10
patients.

Table 4. The evaluation results.

Patient Number Patient ID
RNN-RBM Method RNN Method

RMSE MAE RMSE MAE

1 1 15.589 13.185 18.617 13.319
2 5 17.962 15.114 19.165 15.238
3 24 15.747 14.352 21.429 13.318
4 45 15.278 11.990 18.485 13.317
5 60 15.245 13.920 18.559 13.319
6 71 14.539 10.857 16.594 11.646
7 80 15.589 12.684 18.720 12.454
8 85 14.356 10.703 17.543 13.868
9 97 15.139 12.226 16.545 13.626

10 104 16.446 14.229 20.523 13.085

Average for all Patients 15.589 12.926 18.618 13.319

Based on the results shown in Table 4 the proposed RNN-RBM achieved an average
RMSE value of 15.589 and 12.926 of MAE for all 10 patients’ evaluation data, where the
RNN method achieved an average of 18.618 of RMSE and 13.319 of MAE. Therefore RNN-
RBM has outperformed the regular RNN model for glucose level prediction in terms of
error since it has 16.27% less error.

Figure 6 shows the predictions from the proposed RNN-RBM model with respect to
the actual value.
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Table 5 shows a comparison between the presented RNN-RBM method for blood
glucose level prediction and similar related SoTA works with regard to RMSE accuracy.

Table 5. Comparison between the proposed RNN-RBM method results and the other well-established methods in the
literature.

Method RMSE Dataset Number of Patients Model Parameters

RNN [7] 18.867 OhioT1DM 6

Layers 256
learning rate 0.001

batch size 1024
Adam optimizer

200 epochs

DRNN [8] 27.4 OhioT1DM 6

Length of sequences 12
Hidden nodes 32

Batch size 512
learning rate 0.001

JNN [9] 18.4
Unit of Endocrinology and

Diabetology of Campus
Bio-Medico University Hospital

17 Hidden neuro 4

LSTM [10] 21.747 GoCARB 26
Layers 4, 8, 64, 8

1300 epochs

CNN [12] 19.2 OhioT1DM 6
Layers 5, 64, 32

window of size 16

LSTM [13] 37.8 OhioT1DM 5

Layers 3
Learning rate 0.0001

5000 epoches
batch size of 500

ARX [15] 19.53 OhioT1DM 6
Alpha = 0.0001

window size 576

VanillaLSTM [15] 19.58 OhioT1DM 6

Layers 3, 10
10 epochs

Adam optimization
learning rate 0.001
window size to 576

The proposed
RNN-RBM 15.589 DirecNet 10 Table 3

The comparison results in Table 5 show that the proposed RNN-RBM method achieves
the lowest value of RMSE and is considered the best method in the SoTA according to
accuracy.

6. Conclusions

In this paper, a cloud-based DL model based on cascaded RNN and RBM methods is
proposed for wearable IoT continuous glucose monitoring CGM devices. The proposed
Cloud&DL-based model is used to predict the glucose levels in the blood for 30 min horizon
in 5 min intervals ahead based on the prior 20 samples of blood glucose levels of the patient.
Therefore, the model is able to predict the fluctuations in glucose level that occurred in
5 min intervals which are sufficient for the patient to take any action in case of perdition a
hyperglycemia condition.

The DL model is implemented and trained using batch learning in the considered
Cloud computing environment which provides many features such as virtualization and
resource sharing. Cloud computing also provides machine learning specific services such
as Machine Learning as a Service (MLaaS) which is specifically designed for machine
learning perdition applications to provide services to multiple users simultaneously via
using multiple virtual machines.

For the actual application, the model can be initially pre-trained using batch learning
and since the model is implemented in a cloud environment online learning can be used
for continuously updating the model to learn from patient data.



Electronics 2021, 10, 2719 11 of 12

Lightweight MQTT communication protocol is considered for data exchanging be-
tween the low-power CGM IoT device and the cloud-based prediction model. Real data
of 10 T1D patients were used to train and evaluate the proposed DL RNN-RBM method.
From the experimental results, it was demonstrated that the RNN-RBM DL model acquired
the highest performance regarding accuracy prediction which outperformed the regular
RNN methods and similar ones in the state-of-the-art. Since the model is implemented in a
Cloud computing environment it required a high QoS service provider with a high level of
security for patients’ information security and privacy.

For future research, the proposed architecture can extend to be used with insulin
delivery devices to provide the patients with the required amount of insulin based on the
predicted future blood glucose levels. In this case, a second deep learning model can be
deployed to estimate the required amount of insulin that should provide to the patient
based on the future values of blood glucose levels obtained from the presented model in
this work. The estimated amount of insulin then will be supplied to the patient via the
insulin delivery device. Furthermore, optimization methods can be used for finding the
optimal models hyperparameters instead of the traditional experimental method.
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