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Abstract: This paper is an initial endeavor to bridge the gap between powerful Deep Reinforcement
Learning methodologies and the problem of exploration/coverage of unknown terrains. Within
this scope, MarsExplorer, an openai-gym compatible environment tailored to exploration/coverage
of unknown areas, is presented. MarsExplorer translates the original robotics problem into a Re-
inforcement Learning setup that various off-the-shelf algorithms can tackle. Any learned policy
can be straightforwardly applied to a robotic platform without an elaborate simulation model of
the robot’s dynamics to apply a different learning/adaptation phase. One of its core features is the
controllable multi-dimensional procedural generation of terrains, which is the key for producing
policies with strong generalization capabilities. Four different state-of-the-art RL algorithms (A3C,
PPO, Rainbow, and SAC) are trained on the MarsExplorer environment, and a proper evaluation
of their results compared to the average human-level performance is reported. In the follow-up
experimental analysis, the effect of the multi-dimensional difficulty setting on the learning capa-
bilities of the best-performing algorithm (PPO) is analyzed. A milestone result is the generation
of an exploration policy that follows the Hilbert curve without providing this information to the
environment or rewarding directly or indirectly Hilbert-curve-like trajectories. The experimental
analysis is concluded by evaluating PPO learned policy algorithm side-by-side with frontier-based
exploration strategies. A study on the performance curves revealed that PPO-based policy was
capable of performing adaptive-to-the-unknown-terrain sweeping without leaving expensive-to-
revisit areas uncovered, underlying the capability of RL-based methodologies to tackle exploration
tasks efficiently.

Keywords: Deep Reinforcement Learning; OpenAI gym; exploration; unknown terrains

1. Introduction
1.1. Motivation

At this very moment, three different uncrewed spaceships, PERSEVERANCE (USA),
HOPE (UAE), TIANWEN-1 (China), are on the surface or in the orbit of Mars. Never
before has such a diverse array of scientific gear arrived at a foreign planet at the same
time, and with such broad ambitions [1]. On top of that, several lunar missions have
been arranged for this year to enable extensive experimentation, investigation, and testing
on an extraterrestrial body [2]. In this exponentially growing field of extraterrestrial
missions, a task of paramount importance is the autonomous exploration/coverage of
previously unknown areas. The effectiveness and efficiency of such autonomous explorers
may significantly impact the timely accomplishment of crucial tasks (e.g., before the fuel
depletion) and, ultimately, the success (or not) of the overall mission.

Electronics 2021, 10, 2751. https://doi.org/10.3390/electronics10222751 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9774-5591
https://orcid.org/0000-0002-1688-036X
https://orcid.org/0000-0002-1595-2683
https://orcid.org/0000-0002-3735-4238
https://doi.org/10.3390/electronics10222751
https://doi.org/10.3390/electronics10222751
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10222751
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10222751?type=check_update&version=2


Electronics 2021, 10, 2751 2 of 15

Exploration/coverage of unknown territories is translated into the online design of the
path for the robot, taking as input the sensory information with the objective of mapping
the whole area in the minimum possible time [3,4]. This setup shares the same properties
and objectives with the well-known NP-complete setup of Traveling Salesman Problem
(TSP), with the even more restrictive property that the area to be covered is discovered
incrementally during the operation.

1.2. Related Work

The well-established family of approaches incorporates the concept of next best pose
process, i.e., a turn-based, greedy selection of the next best position (also known as frontier-
cell) to acquire measurement, based on heuristic strategy (e.g., [5–7]). Although this family
of approaches has been extensively studied, some inherent drawbacks significantly con-
strain its broader applicability. For example, every deadlock that may arise during the
previously described optimization scheme should have been predicted, and a correspond-
ing mitigation plan should have been already in place [8]; otherwise, the robot is going to
be stuck in this locally optimal configuration [9]. On top of that, to engineer a multi-term
strategy that reflects the task at hand is not always trivial [10].

The recent breakthroughs in Reinforcement Learning (RL), in terms of both algorithms
and hardware acceleration, have spawned methodologies capable of achieving above
human-level performance in high-dimensional, non-linear setups, such as the game of
Go [11], atari games [12], multi-agent collaboration [13], robotic manipulation [14], etc. A
milestone in the RL community was the standardization of several key problems under a
common framework, namely openai-gym [15]. Such release eased the evaluation among
different methodologies and ultimately led to the generation of a whole new series of RL
frameworks with standardized algorithms (e.g., [16,17]), all tuned to tackle openai-gym
compatible setups.

These breakthroughs motivated the appliance of RL methodologies in the path-
planning/exploration robotic tasks. Initially, the problem of navigating a single robot
in previously unknown areas to reach a destination, while simultaneously avoiding catas-
trophic collisions, was tackled with RL methods [18–20]. The first RL methodology solely
developed for exploration of unknown areas was developed in [21], and has successfully
presented the potential benefits of RL. Recently, RL methodologies have been proposed that
seek to leverage the deployment of multi-robot systems to cover an operational area [22].

However, Ref. [22] assumes only a single geometry for the environment to be covered
and thus being prone to overfit, rather than being able to generalize in different environ-
ments. This drawback is mitigated by Ref. [21] by introducing a learning scheme with
30 different environments during the training phase. Although such a methodology can
adequately tackle the generalization problem, the RL agent’s performance is still bounded
to the diversity of the human-imported environments.

1.3. Contributions

The main contribution of this work is to provide a framework for learning explo-
ration/coverage policies that possess strong generalization abilities due to the procedurally
generated terrain diversity. The intuition behind such an approach to exploration tasks
is the fact that most areas exhibit some kind of structure in their terrain topology, e.g.,
city blocks, trees in a forest, containers in ports, office complexes. Thereby, by training
multiple times in such correlated and procedurally generated environments, the robot will
grasp/understand the underlining structure and leverage it to efficiently complete its goal,
even in areas that it has never been exposed to.

Within this scope, a novel openai-gym compatible environment for exploration/coverage
of unknown terrains has been developed and is presented. All the core elements that govern
a real exploration/coverage setup have been included. MarsExplorer is one of the few RL
environments where any learned policy can be transferred to real-world robotic platforms,
providing that a proper translation between the proprioceptive/exteroceptive sensors’ read-
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ings and the generation of 2D perception (occupancy map) and also an integration with the
existing robotic systems (e.g., PID low level control, safety mechanisms, etc.) are implemented.

Four state-of-the-art RL algorithms, namely A3C [23], PPO [24], Rainbow [25], and
SAC [26], have been evaluated on the MarsExplorer environment. To better comprehend
these evaluation results, the average human-level performance in the MarsExplorer envi-
ronment is also reported. A follow-up analysis utilizing the best-performing algorithm
(PPO) is conducted with respect to the different levels of difficulty. The visualization of the
produced trajectories revealed that the PPO algorithm had learned to apply the famous
space-filling Hilbert curve, with the additional capability of avoiding on-the-fly obstacles
that might appear on the terrain. The analysis is concluded with a sclability study and a
comparison with non-learning methodologies.

It should be highlighted that the objective is not to provide another highly realistic
simulator but a framework upon which RL methods (and also non-learning approaches)
will be efficiently benchmarked in exploration/coverage tasks. Although several wrappers
are available for high-fidelity simulators (e.g., Gazebo [27], ROS [28]) that could be tuned
to formulate an exploration coverage setup, in practice the required execution time for each
episode severely limits the type of algorithms that can be used (for example PPO usually
needs several millions of steps for environment interactions to converge). To the best of
our knowledge, this is the first openai-gym compatible framework oriented for robotic
exploration/coverage of unknown areas.

Figure 1 presents 4 sample snapshots that illustrate the performance of a trained RL
robot inside the MarsExplorer environment. Figure 1a demonstrates the robot’s entry
inside the unknown terrain, which is annotated with black color. Figure 1b illustrates all
the so-far gained “knowledge”, which is either depicted with Martian soil or brown boxes
to denote free space or obstructed positions, respectively. An attractive trait is depicted in
Figure 1c, where the robot chose to perform a dexterous maneuver between two obstacles
to be as efficient as possible in terms of numbers of timesteps for the coverage task. Note
that any collision with an obstacle would have resulted in a termination of the episode and,
as a result, an acquisition of an extreme negative reward. Figure 1d illustrates the robot’s
final position, along with all the gained information for the terrain (non-black region)
during the episode.

All in all, the main contributions of this paper are:

• Develop an open-source (https://github.com/dimikout3/MarsExplorer (accessed
on 4 November 2021)), openai-gym compatible environment tailored explicitly to the
problem of exploration of unknown areas with an emphasis on generalization abilities.

• Translate the original robotics exploration problem to an RL setup, paving the way to
apply off-the-shelf algorithms.

• Perform preliminary study on various state-of-the-art RL algorithms, including A3C,
PPO, Rainbow, and SAC, utilizing the human-level performance as a baseline.

• Challenge the generalization abilities of the best performing PPO-based agent by
evaluating multi-dimensional difficulty settings.

• Present side-by-side comparison with frontier-based exploration strategies.

https://github.com/dimikout3/MarsExplorer
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(a) (b)

(c) (d)

Figure 1. Indicative example: Trained RL agent executes exploration/coverage task in previously
unknown and cluttered terrain utilizing MarsExplorer environment. (a) Initial timestep; (b) 30%
progress; (c) 65% progress; (d) Final timestep.

1.4. Paper Outline

The remainder of this paper is organized as follows: Section 2 presents the details of
the openai-gym exploration environment, called MarsExplorer, along with an analysis of
the key RL attributes inserted. Section 3 presents the experimental analysis from the survey
regarding the performance of the state-of-the-art RL algorithm to the evaluation against
standard frontier-based exploration. Finally, Section 4 summarizes the findings the draws
the conclusions of this study.

2. Environment

This section identifies the fundamental elements that govern the family of setups
that fall into the coverage/exploration class and translates them to the openai gym frame-
work [15]. In principle, the objective of the robot is to cover an area of interest in the
minimum possible time while avoiding any non-traversable objects, the position of which
gets revealed only when the robot’s position is in close proximity [29,30].

2.1. Setup

Let us assume that the area to be covered is constrained within a square, which has
been discretized into n = rows× cols identical grid cells:

G = {(x, y) : x ∈ [1, rows], y ∈ [1, cols]} (1)

The robot cannot move freely inside this grid, as some grid cells are occupied by
non-traversable objects (obstacles). Therefore, the map of the terrain is defined as follows:

M(q) =
{

0.3 free space
1 obstacle

q = (x, y) ∈ G (2)
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The values of M correspond to the morphology of the unknown terrain and are
considered a priori unknown.

2.2. Action Space

Keeping in mind that the movement capabilities of the robot mainly impose the
discretization of the area into grid cells, the action space is defined in the same grid context
as well. The position of the robot is denoted by the corresponding x, y cell of the grid,
i.e., pa(t) = [xa(t), ya(t)]. Then, the possible next actions are simply given by the Von
Neumann neighborhood [31], i.e.,

Apa = {(x, y) : |x− xa|+ |y− ya| ≤ 1} (3)

In the openai-gym framework, the formulation above is realized by a discrete space of
size 4 (North, East, South, West).

2.3. State Space

With each movement, the robot may acquire some information related to the formation
of the environment that lies inside its sensing capabilities, according to the following lidar-
like model:

yq(t) =


1 if ‖pa(t)− q‖ ≤ d AND
∃ line-of-sight between
pa(t) and q

0 otherwise

∀q ∈ G (4)

where d denotes the maximum scanning distance.
An auxiliary boolean matrix D(t) is introduced to denote all the cells that have been

discovered from the beginning till t timestep. D(t) annotates with one all cells that have
been sensed and with zero all the others. Starting from a zero matrix rows× cols, its values
are updated as follows:

Dq(t) = Dq(t− 1) ∨ yq(t), ∀q ∈ G (5)

where ∨ denotes the logical OR operator. The state is simply an aggregation of the acquired
information over all past measurements of the robot (4). Having updated (5), the state s(tk)
is a matrix of the same size as the grid to be explored (1), where its values are given by:

sq(t) =
{
Mq if Dq(t)
0 (= undefined) otherwise

∀q ∈ G (6)

Finally, the robot’s position is declared by making the value of the corresponding cell
equal to 0.6, i.e., sq=pa(t)(t) = 0.6. Overall, state s(t) is defined as a 2D matrix, that takes
values from the following discrete set: {0, 0.3, 0.6, 1}. Figure 2 presents an illustrative exam-
ple of a registration between the graphical environment (Figure 2a) and the corresponding
state representation (Figure 2b).
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(a) (b)

Figure 2. State encoding convention. (a) Graphical environment; (b) State s(t) representation.

2.4. Reward Function

Having in mind that the ultimate objective is to discover all grid cells, the instan-
taneous core reward, at each timestep t, is defined as the number of newly explored
cells, i.e.,

rexplor(t) = ∑
q∈G

Dq(t)− ∑
q∈G

Dq(t− 1) (7)

Intuitively, if ∑T
k=0 rexplor(k) → n , then the robot has explored the whole grid (1) in

T timesteps.
To force the robot to explore the whole area (7), while avoiding unnecessary move-

ments, an additional penalty rmove = 0.5 per timestep is applied. In essence, this negative
reward aims to distinguish among policies that lead to the same number of discovered
cells but needed a different number of exploration steps. Please note that the value of rmove
should be less than 1, to have less priority than the exploration of a single cell.

The action space, as defined previously, may include invalid next movements for the
robot, i.e., out of the operational area (1) or crashing into a discovered obstacle. Thus, apart
from the problem at hand, the robot should be able to recognize these undesirable states
and avoid them at all costs. Towards that direction, an additional penalty rinvalid = n is
introduced for the cases where the robot’s next movement leads to an invalid state. Along
with such a reward, the episode is marked as “done”, indicating that a new episode should
be initiated.

At the other side of the spectrum, a completion bonus rbonus = n is given to the robot
when more than β% (e.g., 95%) of the cells have been explored. Similar to the previous
case, this is also considered a terminal state.

Putting everything together, the reward is defined as:

r(t) =



−rinvalid if next state
is invalid

rexplor(t)− rmove+{
rbonus if ∑q∈G D(t)

n ≥ β
0 otherwise

otherwise

(8)

2.5. Key RL Attributes

MarsExplorer was designed as an initial endeavor to bridge the gap between pow-
erful existing RL algorithms and the problem of autonomous exploration/coverage of a
previously unknown, cluttered terrain. This subsection presents the build-in key attributes
of the designed framework.

Straightforward applicability. One of the fundamental attributes of MarsExplorer is
that any learned policy can be straightforwardly applied to an appropriate robotic platform
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with little effort required. This can be achieved by the fact that the policy calculates a high-
level exploration path based on the perception of the environment (6). Thus, assuming that
a smooth integration with the sensor’s readings (for example, using a Kalman filter), can
be used to represent the environment as in (6), no elaborate simulation model of the robot’s
dynamics is required to adjust the RL algorithm into the specifics of the robotic platform.

Terrain Diversity. For each episode, the general dynamics are determined by a specific
automated process that has different levels of variation. These levels correspond to the
randomness in the number, size, and positioning of obstacles, the terrain scalability (size),
the percentage of the terrain that the robot must explore to consider the problem solved,
and the bonus reward it will receive in that case. This procedural generation [32] of terrains
allows training in multiple/diverse layouts, forcing, ultimately, the RL algorithm to enable
generalization capabilities, which are of paramount importance in real-life applications
where unforeseen cases may appear.

Partial Observability. Due to the nature of the exploration/coverage setup, at each
timestep, the robot is only aware of the location of the obstacles that have been sensed from
the beginning of the episode (5). Therefore, any long-term plan should be agile enough to
be adjusted on the fly, based on future information about the unknown obstacles’ positions.
Such a property renders the acquisition of a global exploration strategy quite tricky [33].

Fast Evaluation. Disregarding the environment from any irrelevant physics dynamics
and focusing only on the exploration/coverage aspect (1)–(8), MarsExplorer allows rapid
execution of timesteps. This feature can be of paramount importance in the RL ecosystem,
where the algorithms usually need millions of timesteps to converge, as it can enable fast
experimental pipelines and prototyping.

3. Performance Evaluation

This section presents an experimental evaluation of the MarsExplorer environment.
The analysis begins with all the implementation details that are important for realizing
the MarsExplorer experimental setup. For the first evaluation iteration, 4 state-of-art RL
algorithms are applied and evaluated in a challenging version of MarsExplorer that requires
the development of strong generalization capabilities in a highly randomized scenario, where
the underlying structure is almost absent. Having identified the best performing algorithm,
a follow-up analysis is performed with respect to the difficulty vector values. The learned
patterns and exploration policies for different evaluation instances are further investigated
and graphically presented. The analysis is concluded with a scale-up study in two larger
terrains and a comparison between the trained robot and two well-established frontier-
based approaches.

3.1. Implementation Details

Aside from the standardization as an openai-gym environment, MarsExplorer pro-
vides an API that allows manually controlled experiments, translating commands from
keyboard arrows to next movements. Such a feature can assess human-level performance
in the exploration/coverage problem and reveal important traits by comparing human and
machine-made strategies.

Ray/RLlib framework [34] was utilized to perform all the experiments. The fact that
RLlib is a well-documented, highly-robust library also eases the build-on developments
(e.g., apply a different RL pipeline), as it follows a common framework. Furthermore,
such an experimental setup may also leverage the interoperability with other powerful
frameworks from the Ray ecosystem, e.g., Ray/Tune for hyperparameters’ tuning.

Table 1 summarizes all the fixed parameters used for all the performed experiments.
MarsExplorer admits the distinguishing property of stochastically deploying the obstacles
at the beginning of each episode. This stochasticity can be controlled and ultimately
determines the difficulty level of the MarsExplorer setup. The state-space of MarsExplorer
has a strong resemblance to thoroughly studied 2D environments, e.g., ALE [35], only with
the key difference that the image is generated incrementally and based on the robot’s actions.



Electronics 2021, 10, 2751 8 of 15

Therefore, as it has been standardized from the DQN algorithm’s application domain [12],
a vision-inspired neural network architecture is incorporated as a first stage. Figure 3
illustrates the architecture of this pre-processor, which is comprised of 2 convolutional
layers followed by a fully connected one. The vectorized output of the fully connected
layer is forwarded to a “controller” architecture dependent on the RL algorithm enabled.

Figure 3. Overview of the experimental architecture.

Table 1. Implementation parameters.

Parameter Value Equation

Grid size [21× 21] (1)
Sensor radius d = 6 grid cells (4)

Considered done β = 99% (8)

3.2. State-of-the-Art RL Algorithms Comparison

Apart from the details described in the previous subsection, for the comparison study,
at the beginning of each episode, the formation (position and shape) of obstacles was set
randomly. This choice was made to force RL algorithms to develop novel generalization
strategies to tackle such a challenging setup. The list of studied RL algorithms is comprised
by the following model-free approaches: PPO [24], DQN-Rainbow [25], A3C [23] and
SAC [26]. All hyperparameters of these algorithms are reported in the Appendix A.

Figure 4 presents a comparison study among the approaches mentioned above. For
each RL agent, the thick colored lines stand for the episode’s total reward, while the
transparent surfaces around them correspond to the standard deviation. Moreover, the
episode’s reward (score) is normalized in such a way that 0 stands for an initial invalid
action by the robot, rinvalid in (8), while 1 correspond to the theoretical maximum reward,
which is the rbonus in (8) plus the number of cells.
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Figure 4. Learning curves for MarsExplorer with randomly chosen obstacles.

To increase the qualitative comprehension of the produced results, the average human-
level performance is also introduced. To approximate this value, 10 players were drawn
from the pool of CERTH/ConvCAO employees to participate in the evaluation process.
Each player had an initial warm-up phase of 15 episodes (non-ranked), and after that, they
were evaluated on 30 episodes. The average achieved score of the 300 human-controlled
experiments is depicted with a green dashed line.

A clear-cut outcome is that the PPO algorithm achieves the highest average episodic
reward, reaching an impressive 85.8% of the human-level performance. DQN-Rainbow
achieves the second-best performance; however, the average is 50.04% and 42.73% of the
PPO and human-level performance, respectively.

3.3. Multi-Dimensional Difficulty

Having defined the best performing RL algorithm (PPO), now the focus is shifted
on producing some preliminary results, related to the difficulty settings of MarsExplorer.
As mentioned in the definition section, MarsExplorer allows for setting the elements of
difficulty vector independently. More specifically, the difficulty vector comprises 3 elements
[dt, dm, db], where:

• dt denotes the topology stochasticity, which defines the obstacles’ placement on the field.
The fundamental positions of the obstacles are equally arranged in a 3 columns–3 rows
format. The radius of deviation around these fundamental positions is controlled
by dt. As the value of dt increases, the obstacles’ topology has a more unstructured
formation. dt takes values from {1, 2, 3} discrete set.

• dm denotes the morphology stochasticity, which defines the obstacles’ shape on the
field. dm controls the area that might be occupied from each obstacle. The bigger
the value of dm, the larger the compound areas of obstacles that might appear on the
MarsExplorer terrain. dm takes values from {1, 2} discrete set.

• db denotes the bonus rewards, that are assigned for the completion (rbonus) and failure
(rinvalid) of the mission (8). For this factor only two values are allowed {1, 2}, that
correspond to cases of providing and not-providing the bonus rewards, respectively.

Higher values in the elements of the difficulty vector correspond to less structured
behavior in the formation of the obstacles. Thus, a trained agent that has been successfully
trained in greater difficulty setups may exhibit increased generalization abilities. Overall,
the aggregation of the aforementioned elements’ domain generates 12 combinations of
difficulty levels. Figure 5 shows the total average return of the evolution of the average
episodic reward for each one of the 12 levels during the training of the PPO algorithm. To
improve the readability of the graphs, the results are organized into 3 graphs, one for each
level of dt, with 4 plot lines each.
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(a) (b) (c)

Figure 5. The sensitivity of PPO algorithm learning curves with respect to the different levels of multi-dimensional difficulty
vector. (a) Topology stochasticity level dt = 1; (b) Topology stochasticity level dt = 2; (c) Topology stochasticity level dt = 3.

A study on the learning curves reveals that dm has the largest effect on the learned
policy. Blue and red lines (cases where dm = 1), in all three figures, demonstrate a
similar convergence rate and also the highest-performance policies. However, a serious
degradation in the results is observed in purple and gray lines (dm = 2). As it was expected,
when dm = 2 and also dt = 3 (purple and gray lines in Figure 5c), the final achieved
performance reached only a little bit above 0.6 in the normalized scale. It seems that db
does not affect the overall performance much, at least until this vector of difficulty, apart
from the convergence rate depicted in the gray line of Figure 5c.

3.4. Learned Policy Evaluation

This section is devoted to the characteristics of the learned policy from the PPO
algorithm. For each of the 12 levels of difficulty defined in the previous section, the best
PPO policy was extracted and evaluated in a series of 100 experiments with randomly
(controlled by the difficulty setting) generated obstacles. Figure 6 presents one heat map for
each difficulty level. The blue colormap corresponds to the frequency of the robot visiting
a specific cell of the terrain. The green colormap corresponds to the number of detected
obstacles in each position during the robot’s exploration.

A critical remark is that, for each scenario, the arrangement of discovered obstacles
matches the drawn distribution as described in the previous subsection, implying that the
learned policy does not have any “blind spots”.

(a) (b) (c)

Figure 6. Cont.
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6. Heatmap of the evaluation results of the learned PPO policy. For each of the 12 difficulty levels, 100 experiments
were performed, with the randomness in obstacles’ formation as imposed by the corresponding level. The blue colormap
corresponds to the frequency of cell visitations by the RL agent, while the green colormap corresponds to the location of the
encountered obstacles for all the evaluations. (a) level-[1,1,1]; (b) level-[1,1,2]; (c) level-[1,2,1]; (d) level-[1,2,2]; (e) level-[2,1,1];
(f) level-[2,1,2]; (g) level-[2,2,1]; (h) level-[2,2,2]; (i) level-[3,1,1]; (j) level-[3,1,2]; (k) level-[3,2,1]; (l); level-[3,2,2].

Examining the heatmap of the trajectories in each scenario, it is crystal clear that the
same family of trajectories has been generated in all cases and with great confidence. The
important conclusion here is that this pattern is the first order of the Hilbert curve that
has been utilized extensively in the space-filling domain (e.g., [36,37]). This highlights that
such a pattern has not been imported to the simulator or rewarded when achieved from
the RL algorithm; however, the algorithm learned that this is the most effective strategy by
interacting with the environment.

It would be an omission not to mention the learned policy’s ability to adapt to changes
in the obstacles’ distribution and, ultimately, find the most efficient obstacle-free route. This
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trait can be observed more clearly in Figure 6k,l, where the policy needed to be extremely
dexterous and delicate to avoid obstacles’ encounters.

3.5. Comparison with Frontier-Based Methodologies for Varying Terrain Sizes

The analysis is concluded with a scalability study and comparison to non-learning
methodologies. Two terrains with sizes [42× 42] and [84× 84] were used. The difficulty
level was set to [dt, dm, db] = [2, 2, 1], while 100 experiments were conducted for each
scenario. Utility and cost-based frontier cell exploration methodologies [7] were enabled
for positioning the achieved PPO policy in the context of non-learning approaches. In these
frontier-based approaches, the exploration policy is divided into two categories based on
the metric to be optimized:

• Cost: the next action is chosen based on the distance from the nearest frontier cell.
• Utility: the decision-making is governed by frequently updated information

potential field.

Figure 7 summarizes the result of such evaluation study by presenting the average
exploration time for each algorithm (PPO, cost frontier-based, utility frontier-based) over
100 procedurally generated runs. A direct outcome is that the learning-based approach
requires the robot to travel less distance to explore the same percentage of terrain as the
non-learning approaches. The final remark is devoted to the “knee” that can be observed
in almost all the final stages of the non-learning approaches. Such behavior is attributed
to having several distant sub-parts of the terrain unexplored, the exploration of which
requires this extra effort. On the contrary, the learning-based approach (PPO) seems to
handle this situation quite well, not leaving these expensive-to-revisit regions along its
exploration path.

Figure 7. Comparison between 3 exploration methodologies, depicting the average and standard
deviation over 100 procedurally generated environments. Red and blue colors correspond to the
non-learning approaches, while purple corresponds to the performance of the PPO trained policy.
Line type (solid or dashed) denotes the terrain size (422 or 842).

4. Conclusions

A new openai-gym environment called MarsExplorer that bridges the gap between
reinforcement learning and the real-life exploration/coverage in the robotics domain
is presented. The environment transforms the well-known robotics problem of explo-
ration/coverage of a completely unknown region into a reinforcement learning setup that
can be tackled by a wide range of off-the-shelf, model-free RL algorithms. An essential
feature of the whole solution is that trained policies can be straightforwardly applied
to real-life robotic platforms without being trained/tuned to the robot’s dynamics. To
achieve that, the same level of information abstraction between the robotic system and the
MarsExplorer is required. A detailed experimental evaluation was also conducted and
presented. 4 state-of-the-art RL algorithms, namely A3C, PPO, Rainbow, and SAC, were
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evaluated in a challenging version of MarsExplorer, and their training results were also
compared with the human-level performance for the task at hand. The PPO algorithm
achieved the best score of 85.8%, which was the same as the human-level performance.
Then, the PPO algorithm was utilized to study the effect of the multi-dimensional difficulty
vector changes in the overall performance. The visualization of the paths for all these
difficulty levels revealed a rather important trait. The PPO learned policy has learned to
perform a Hilbert curve with the extra ability to avoid any encountered obstacle. Lastly,
a scalability study clearly indicates the ability of RL approaches to be extended in larger
terrains, where the achieved performance is validated with non-learning, frontier-based
explorations strategies.
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Appendix A

Table A1. PPO Hyperparameters.

Parameter Value Comments

γ 0.95 Discount factor of the MDP
λ 5× 10−5 Learning rate

Critic True Used a critic as a baseline
GAE l 0.95 GAE (lambda) parameter

KL coeff 0.2 Initial coefficient for KL divergence
Clip 0.3 PPO clip parameter

Table A2. DQN-Rainbow Hyperparameters.

Parameter Value Comments

γ 0.95 Discount factor of the MDP
λ 5× 10−4 Learning rate

Noisy Net True Used a noisy network
Noisy σ 0.5 initial value of noisy nets

Dueling Net True Used dueling DQN
Double dueling True Used double DQN

ε-greedy [1.0, 0.02] Epsilon greedy for exploration.
Buffer size 50,000 Size of the replay buffer

Priorited Replay True Prioritized replay buffer used
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Table A3. SAC Hyperparameters.

Parameter Value Comments

γ 0.95 Discount factor of the MDP
λ 3× 10−4 Learning rate

Twin Q True Use two Q-networks
Q hidden [256, 256] Hidden layer activation

Policy hidden [256, 256] Hidden layer activation
Buffer size 1e6 Size of the replay buffer

Priorited Replay True Prioritized replay buffer used

Table A4. A3C Hyperparameters.

Parameter Value Comments

γ 0.95 Discount factor of the MDP
λ 1× 10−4 Learning rate

Critic True Used a critic as a baseline
GAE True General Advantage Estimation

GAE l 0.99 GAE(lambda) parameter
Value loss 0.5 Value Function Loss coefficient

Entropy coef 0.01 Entropy coefficient
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