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Abstract: In this work, a sliding-mode-based attitude controller constrained with the angular rate
for unmanned aerial vehicles (UAVs) is addressed to withstand conditions below the allowable
maximum angular velocity of UAVs in order to avoid the possibility of structural failure and to
operate UAVs safely. The sliding mode controller suggested in this work defines a new sliding surface,
inherently having two equilibrium points. These equilibrium points are carefully inspected, and
the stability of the system controlled by means of the proposed approach is also analyzed using
Lyapunov stability theory. To highlight the angular-rate constrained attitude control technique, a
three-dimensional path is constructed using the Dubins path technique, and three-axis attitude
commands for UAV are also generated by augmenting the line-of-sight algorithm. Compared with
conventional sliding mode control measures, the excellent performance of the suggested control
algorithm has been demonstrated by conducting numerical simulations.

Keywords: nonlinear control; sliding mode control; fixed-wing UAV (unmanned aerial vehicle);
angular rate constraints

1. Introduction

Various attitude control techniques designed to improve the maneuvering capability
of emerging high agile unmanned aerial vehicles (UAVs) have been studied in the past
several decades [1]. To meet the requirement for accomplishing complex missions that
needed to be performed in a short time, modern UAVs demand increasingly high levels of
maneuverability [2]. On the other hands, it is also known that the excessive maneuvering
capability of UAVs increases the risk of structural damage or cracks due to induced
gravitational forces and moments. Thus, resolving these opposite characteristics properly
is very important in order to operate UAVs effectively and safely, which was the major
motivation for this study.

Let us review the attitude control techniques applied to UAVs. The most commonly
used control technique is the classical proportional-integral-derivative (PID) algorithm,
which provides very reliable control performance and stability, despite its simple struc-
ture [3]. Nevertheless, due to its inherent limitations as a linear control method, this control
law is not appropriate to apply to highly nonlinear systems, and it is quite vulnerable in its
control of the system to external disturbances or internal uncertainty [4]. As an alternative,
various nonlinear control theories, such as sliding mode control (SMC) [5], backstepping
control [6], nonlinear model predictive control [7], and adaptive control [8], have been
studied in order to improve the maneuverability of UAVs.

One of the options to increase the maneuverability of modern UAVs is the back-
stepping algorithm, which is a nonlinear technique that adjusts other state variables by
sequentially setting each state as a virtual control input. The drawback of this approach
is that it largely relies on having a quite accurate system model. To solve this uncertainty
problem in the nonlinear platform, the adaptive backstepping control was augmented
by approximating the uncertainty in the system model using a fuzzy-based approach [9].
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Meanwhile, to control unsteady and highly nonlinear UAVs, the nonlinear model predictive
control technique was introduced [10]. In this approach, the control input is obtained by
selecting the current output among the several discretized control outputs, evaluated from
the present time to a few seconds by means of the optimization technique. The advantage
of this method is that it allows us to evaluate the optimal control input for a given cost
function by taking into account the various constraints. However, this powerful merit
ironically leads to a disadvantage in that it requires very high computational resources to
evaluate the optimal value. That is, the larger the size of the constraint to be considered in
the optimization process, the greater the computation burden required [11]. In an effort to
reduce the amount of computational resources, some studies have been conducted. As an
effective method of support for model predictive control, the neural network technique
was introduced [12]. Note that this adaptive-like control involves a technique in which
the gain value of the controller changes according to the state of the system, and has a
disadvantage in that the control performance depends on the initial value of the gain.
Therefore, learning-based control algorithms including the adaptive control technique have
an implicit burden—the question of how to select the stable initial values or parameters
when this technique is chosen as the primary option to control the actual platform.

The sliding mode control (SMC) approach for UAV attitude control applications has
useful characteristics, including a guaranteed control response time. This approach is a
control method that creates a sliding surface with state variables to control a nonlinear
system and directs the state variables to the control target by sliding on the surface using a
reaching law, which guarantees robustness [13]. This strong property leads to the biggest
advantage of SMC. On the other hand, it is also known that there is the drawback of
a high-frequency oscillation phenomenon, that is, a chattering problem, in the process
of controlling and compensating for disturbance and uncertainty. To solve this problem,
several studies have been carried out to find an effective reaching law [14,15].

In spite of the efforts to improve the attitude control capability of UAVs in the presence
of external disturbances and internal uncertainty, less attention has been paid to struc-
tural constraints or dynamic limitations for safe operations in controller design. Merely
increasing the maneuvering capability of UAVs does not cover the safe operation of UAVs
to conduct complex missions. In this work, a nonlinear control law for driving below the
allowable maximum angular velocity is considered in order to realizethe possibility of
structural failures and safety uncertainties. To ensure the stable dynamic ranges and the
capability of attitude control, the sliding mode control (SMC) technique is taken in account.
Since this not only requires fewer computational resources, but also has strong properties
against model uncertainty and perturbation, SMC could be one of the reliable options used
in the implementation of actual UAVs. The newly designed control law in this work is
called constrained SMC (CSMC). To guarantee the stable dynamic range by limiting the
angular rate, a sliding surface is proposed. It is revealed that the suggested sliding surface
has two equilibrium points in order to meet the exceptional requirement examined in this
work. Thus, these equilibrium points are carefully observed, and the stability at each point
is also investigated. Finally, the attitude control law, using the CSMC approach, is applied
to UAVs and the stability is proven using Lyapunov stability theory. Next, a 3-dimensional
guidance algorithm for path following of UAVs is additionally addressed to highlight the
control law. To provide guidelines for the operation of UAVs under the maximum allow-
able angular rate, the concept of Dubins curves has been considered in order to generate
3-dimensional smooth guidance curves. Then, the path-following algorithm is augmented
to CSMC, as proposed in this paper. The excellent performance of the proposed approach,
in cooperation with the path-following technique, for safe UAV operations is demonstrated
by integrated simulation studies involving external disturbances and internal uncertainties.

This paper is organized as follows. First, the equations of motion of a fixed-wing UAV
are introduced in Section 2. Then, the conventional SMC is briefly reviewed, and the SMC-
based attitude control method limiting the angular rate of UAVs is addressed in Section 3.
The uniquely designed sliding surface is also described. Next, the stability analysis of the
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closed-loop system with the proposed control law is given for two equilibrium points.
Then, the 3-dimensional path generation algorithm for UAV attitude command generation
is followed in Section 4 using the Dubins curve concept. Finally, the proposed control
scheme is demonstrated using numerical simulation studies. In this simulation, the CSMC
technique is compared with the conventional SMC. Furthermore, to highlight the proposed
control method, several harsh scenarios are provided to ensure that the UAV with the
generated attitude command follows a given guidance route smoothly and safely.

2. Mathematical Model of UAVs

Various types of UAVs, for example, fixed-wing, rotary-wing, and multi-copter, have
been designed and studied during the past several decades. Note that a fixed-wing UAV is
employed in this paper to design the control law. Now, let us start by reviewing the coordi-
nate system presented in Figure 1. The position vector of the illustrated UAV is defined
by ξ = [X Y Z]T , and the attitude is defined by the Euler angle η = [φ θ ψ]T ∈ R3,
which can also be converted to quaternion parameters [q q4]

T ∈ R4 by the attitude trans-
formation. Note that most of the literature for the attitude representation of fixed wing
UAVs has been focused on Euler angles rather than quaternions, since the Euler angle is
much more intuitive for controller design. The attitude control law considered in this work,
however, employs the quaternion representation due to its simple mathematical structure.
Thus, the governing equations of motion of the fixed-wing UAV are given by [16].

Figure 1. The coordinate system of a UAV.

ξ̇ = Rν (1)

ν̇ = RT

0
0
g

−ω×ν +
1
m

F +
1
m

T
0
0

 (2)

q̇ =
1
2
(q× + q4 I3×3)ω (3)

q̇4 =
1
2

qTω (4)

Jω̇ = −ω× Jω + M (5)

where ν = [u v w]T represents the linear velocity vector, and ω is the angular velocity
vector of the UAV in the body frame. F ∈ R3 and M ∈ R3 denote the aerodynamic
force and moment in the body frame, respectively. m, g, and T represent the mass of the
UAV, the gravitational constant, and the thrust of the UAV, respectively. Furthermore,
I3×3 ∈ R3×3 represents the 3× 3 identity matrix. The inertia matrix J is the symmetric
positive matrix and is written in the body frame as

J =

 Jxx 0 −Jxz
0 Jyy 0
−Jzx 0 Jzz

 (6)
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The attitude transformation matrix from the body frame to the inertia frame can be
expressed by the quaternion as

R = (2q2
4 − 1)I3×3 + 2qqT − 2q4q× (7)

Note the operator × on any vector x = [x1, x2, x3]
T represents a skew-symmetric

matrix defined as

x× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (8)

The aerodynamic force and moment F and M are written as [16]

F =
[
Cx q̄S Cz q̄S Cz q̄S

]T (9)

M =
[
q̄SbCl q̄Sc̄Cm q̄SbCn

]T (10)

where the aerodynamic coefficients can be given by

CL = C0
L + Cα

L + Cδe
L δe +

(
Cα̇

Lα̇ + Cq
Lq
)

c̄/(2Va) (11)

CD = C0
D + Cδe

D δe + Cδr
D δr + (CL + CLmin)/(πeAR) (12)

Cx = −CDcosα + CLsinα (13)

Cy = Cβ
y β + Cδr

y δr +
(

Cp
y p + Cr

yr
)

(14)

Cz = −CDsinα− CLcosα (15)

Cl = Cβ
l β + Cδa

l δa + Cδr
l δr +

(
Cp

l p + Cr
l r
)

b/(2Va) (16)

Cm = C0
m + Cα

mα + Cδe
m δe +

(
Cα̇

mα̇ + Cq
mq
)

c̄/(2Va) (17)

Cn = Cβ
n β + Cδa

n δa + Cδr
n δr +

(
Cp

n p + Cr
n

)
(18)

Furthermore, b, S and c̄ denote the wingspan, the wing area, and the mean aerody-
namic chord (MAC) of the UAV, respectively. Furthermore, q̄ represents dynamic pressure,
e is the Oswald efficiency number, and AR is the wing aspect ratio. Lastly, δa, δe and δr are
the control input for the aileron, elevator, and rudder, respectively. The angle of attack and
the sideslip angle are defined respectively as

α = arctan
w
u

(19)

β = arcsin
v

Va
(20)

Note that Va =
√

νTν is the airspeed of the UAV.
To facilitate the derivation of an attitude controller design, the aerodynamic moment

in Equation (10) can be linearly decoupled with two parts. Thus, the aerodynamic moment
can be rewritten in a simple vector form with Equations (16)–(18) as

M = f + Λu (21)
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where

f =

q̄Sb 0 0
0 q̄Sc̄ 0
0 0 q̄Sb




Cβ
l β +

(
Cp

l p + Cr
l r
)

b/(2Va)

C0
m + Cα

mα +
(

Cα̇
mα̇ + Cq

mq
)

c̄/(2Va)

Cβ
n β +

(
Cp

n p + Cr
n

)
 (22)

Λ =

q̄Sb 0 0
0 q̄Sc̄ 0
0 0 q̄Sb


Cδa

l 0 Cδr
l

0 Cδe
m 0

Cδa
n 0 Cδr

n

 (23)

u =
[
δa δe δr

]T (24)

3. Angular-Rate-Constrained Nonlinear Attitude Control

In this section, a new nonlinear attitude control law considering the maximum angular
rate for fixed-wing UAVs is presented. To employ this unique approach, the sliding mode
control (SMC) technology concept is utilized.

3.1. Sliding Mode Control

Let us first consider the baseline SMC. The first step in this technique is to reach the
designed sliding surface. Then, the second step is the sliding stage, in which the sliding
variable reaching the sliding surface goes to zero, which means that state errors converge
to zero. For attitude control using the sliding control approach, the representative sliding
surface s = [s1 s2 s3]

T is chosen as

s = ω + aqe (25)

and a simple reaching law ṡ is written as

ṡ = −k sgn(s) (26)

where qe is the vector part of quaternion error defined as qe = q⊗ q−1
c and qc is the quater-

nion command, and the operator ⊗ refers to the quaternion multiplication. Furthermore,
a and k are positive design parameters. Note that sgn() is the signum function, defined as

sgn(s) =
[
sign(s1) sign(s2) sign(s3)

]T (27)

To compute the control output from the sliding surface, the time derivative of sliding
surface in Equation (25) is expressed as

ṡ = ω̇ + a
1
2
(q×e + qe,4 I3×3)ω (28)

Inserting the angular acceleration, ω̇, in Equation (5) into the above equation leads to

ṡ = J−1(−ω× Jω + f + Λu) + a
1
2
(q×e + qe,4 I3×3)ω (29)

In terms of u from the above equation, the control input is expressed as

u = −Λ−1
(
−ω× Jω + f + aJ

1
2
(q×e + qe,4 I3×3)ω + kJsgn(s)

)
(30)

It is known that the discontinuity in the reaching law introduces the chattering prob-
lem. To release the burden of chattering, the alternative reaching law is given by

ṡ = −k1s− k2|s|εsgn(s) (31)
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where ε is a design parameter ranging from 0 to 1, and |s|ε ∈ R3×3 is a matrix function
defined as

|s|ε = diag(|s1|ε, |s2|ε, |s3|ε) (32)

and diag() is the 3× 3 diagonal matrix in this case. By inserting the above reaching law
into Equation (30) to mitigate the chattering problem, the control input is rewritten as

u = −Λ−1
(
−ω× Jω + f + aJ

1
2
(q×e + qe,4 I3×3)ω + J

(
k1s + k2|s|εsgn(s)

))
(33)

Note that the final form of the control input is the attitude sliding mode control law
for UAVs, overcoming the inherently introduced chattering problem.

Lemma 1. Once the sliding manifold s(t) = 0 is satisfied with properly chosen parameters, then
the desired attitude maneuver can be achieved, i.e., the variable qe and ω will converge to zero.
That is,

lim
t→∞

qe(t) = 0 (34)

lim
t→∞

ω(t) = 0 (35)

Proof. Assume that the sliding surface in Equation (25) is zero, and s = 0, then it can be
expressed as

ω = −aqe (36)

Substituting ω into Equation (4) and setting q→ qe introduces

q̇e,4 = −a
1
2

qT
e qe (37)

Due to the norm constraint of the quaternion given by qT
e qe = 1− q2

e,4, the right-hand
side of the equation is rewritten as

q̇e,4 = a
1
2
(1− q2

e,4) (38)

The closed-form solution of the differential equation for a given time is qe,4(t) = tanh
( a

2 t
)
.

As a sufficient time has elapsed, it can be seen that qe,4 converges to 1:

lim
t→∞

qe,4(t) = 1 (39)

With q4 converging to one, this means that qe converges to the zero vector due to
the norm constraint of the quaternion after a sufficient time has elapsed. Consequently,
the sliding surface s approaches zero, which means that qe converges to zero independently.
Furthermore, ω also converges to zero according to Equation (36). Thus, Lemma 1 is
proven.

3.2. Angular-Rate-Constrained Sliding Mode Control

In this subsection, a modified control law based on SMC is introduced by defining
a sliding surface proposed in this work. Let us first assume that the fixed-wing UAV
has limited maneuverability to prevent structural failure or cracks or to operate various
missions safely. Without the loss of generality, the angular rate is directly linked with the
magnitude of the centrifugal force according to the given airspeed of the UAV. Thus, it is
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natural that the maneuverability constraint can be converted to the angular rate limitation
of the UAV. That is,

|ωi| ≤ ωm (40)

where ωi is the angular rate of UAV for each body axis, and ωm is the allowable maximum
angular speed of UAV to meet the maneuverability constraints. Now, to satisfy the angular
rate constraint, the new sliding surface suggested in this work is written as

s = ω + asatL(qe) (41)

where the saturation vector function is defined as

satL(qe) =
[
satL(qe,1) satL(qe,2) satL(qe,3)

]T (42)

and the saturation scalar function can be given by

satL(qe,i) = min(L, |qe,i|)sign(qe,i) (43)

L =
ωm

a
(44)

Furthermore, L is the limiting parameter, obtained by dividing the maximum angular
rate ωm by the design parameter a. The function min() compares two components and
selects a smaller value so that the saturation function selects a smaller value via the
comparison between the component of the quaternion absolute error qe,i and the limiter
L. From the inherent representation of the new sliding surface, there are two equilibrium
points, setting s = 0. That is, ω = qe = 0 and ω = −asatL(qe). The first equilibrium
point is related to the attitude control purpose, and the second equilibrium point is deeply
related to the angular rate limitation by forcing the UAV not to exceed the given limitation.
Let us consider for the second equilibrium point that the quaternion absolute error qe,i
is larger than the limiter L. Then, satL(qe) will be L according to Equation (43). Since
L = ωm

a , the saturation function can be the allowable maximum angular rate, that is,
asatL(qe,i) = ωmsign(qe,i). Thus, the second equilibrium point is related with the allowable
maximum angular rate such that ωi = −ωmsign(qe,i).

For the angular rate constrained control law design, the time derivative of the sliding
surface in Equation (41) is given by

ṡ = ω̇ + aD
1
2
(q×e + qe,4 I3×3)ω (45)

where D is the diagonal matrix with the element Di defined as

D = diag(D1 , D2 , D3) (46)

Di =

{
1, if − L ≤ qe,i ≤ L
0, otherwise

(47)

Note that Di is differentiation of the scalar satL() function, and it becomes 0 or 1 accord-
ing to the algebraic comparison of L and qe,i. Thus, by substituting Equations (5) and (31)
into (45), the constrained sliding mode control (CSMC) input can be expressed as

u = −Λ−1
(
−ω× Jω + f + aJD

1
2
(q×e + qe,4 I3×3)ω + J

(
k1s + k2|s|εsgn(s)

))
(48)

It is noted that the control input induced from the suggested sliding surface is the
angular-rate constrained attitude control law for fixed-wing UAVs based on the sliding
mode control. As seen in Equation (48), the control law is dedicated to the magnitude of
attitude errors. If the attitude error qe,i for each axis is larger than the reference value of L,
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the term of aJ 1
2 (q
× + q4 I3×3)ω is eliminated to improve the maneuverability. Otherwise,

the term is activated, and the control law in Equation (48) supports both ω and qe to
approach zero. In other words, it can be interpreted that the control law plays two important
roles, since there are two equilibrium points. The first equilibrium point of the sliding
surface, ω = −asatL(qe), is related to the case of Di = 0. In this case, the control law allows
us to reach the allowable maximum angular speed of the UAV in order to improve the
maneuverability. This strategy is made possible by approaching the first equilibrium point.
Next, for the second equilibrium point, ω = qe = 0, connected with the case of Di = 1,
the control input causes the attitude error and angular velocity to converge to zero by
controlling the sliding surface to reach the second equilibrium point. This property can be
regarded as the unique characteristic of the constrained sliding mode control approach
suggested in this paper.

3.3. Stability Analysis

Before verifying the stability of the control law, let us first inspect the overall process
of the control law to ensure that the sliding surface works appropriately to achieve the
control objective. As mentioned previously, there are two equilibrium points in the sliding
surface. This means that the structure of the proposed control law can vary depending on
the amount of attitude errors and the allowable maximum angular rate.

Suppose that a large attitude command is generated for the UAV in a steady state
so that a large amount of attitude errors are applied to CSMC. It is matched with the
case of Di = 0. That is, the first step to achieve the goal is to adjust the angular rate ωi
to converge to the allowable maximum angular rate ωm. This can done by sliding at the
first equilibrium point. It is noted that approaching the first equilibrium point is deeply
related with the maneuverability, since the angular rate increases quickly to the allowable
maximum angular rate of the UAV. Consequently, due to the consistent angular rate applied
to the UAV at the first equilibrium point, the magnitude of the attitude errors gradually
decreases below the given reference L. This is the reason the control law can naturally
move on to the second step, Di = 1. As seen previously, the second step is to approach the
second equilibrium point, ω = qe = 0 which is a step for controlling both the quaternion
error qe,i and the angular rate ωi, causing them to converge to zero.

Let us carefully investigate the sliding surface in detail. According to the attitude error,
the sliding surface defined in Equation (41) can be divided by two forms given by

si = ωi + ωmsign(qe,i) (49)

si = ωi + aqe,i (50)

Equation (49) is the sliding surface in the case of large attitude errors |qe,i| enough
to be larger than L, so that the point satisfying ωi = −ωmsign(qe,i) is the equilibrium
point. Furthermore, it is obvious that the variable of Di in Equation (47) becomes 0. Let us
substitute the control law in Equation (48) into the governing equations of motion of UAVs
in Equation (5). Then, it is found that the relationship between ω̇ and s is given by

ω̇ = −k1s− k2|s|εsgn(s) (51)

From the above equation, it can be seen that the angular acceleration ω̇i is opposite to
the sign of the sliding surface si in Equation (49).

Assuming that the UAV is initially in a steady state, the angular rate of the UAV is
zero. It holds si = sgn(qe,i)ωm from Equation (49) so that the sign of si is identical with
the quaternion error, qe,i. This property is still valid, whereas si is approaching to zero.
In other words, It is valid before the angular rate of UAV, ωi, is identical with the allowable
maximum angular speed, ωm. From Equation (51), it is obvious due to the fact that the signs
of the quaternion error and the angular acceleration are opposite. That is, the angular rate
increases while the quaternion error decreases. Consequently, ωi becomes−ωmsign(qe,i) so
that the sliding surface goes to zero, si = 0. Then the angular acceleration in Equation (51)
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becomes zero. Finally, it is noted that the angular rate reaching the allowable maximum
angular rate remains unchanged, whereas the quaternion error decreases continuously
to be smaller than L. Once the quaternion error becomes small after a sufficient time
has elapsed, then the variable Di is switched to one. This is when the sliding surface of
Equation (49) turns into Equation (50). It can be also seen that the sliding surface is the
same as that of the conventional SMC in Equation (25). Therefore, the point where qe,i and
ωi become zero is the equilibrium point.

Now, let us investigate the stability of the closed-loop attitude control system uti-
lizing CSMC to ensure that the motion of the sliding surfaces work correctly. Stability
analysis is required for each sliding surface. For the stability of the closed-loop system,
the representative Lyapunov candidate by the first sliding surface in Equation (49), is
defined as

VL =
1
2

sTs (52)

Inserting Equation (45) into the time derivative of the Lyapunov candidate leads to

V̇L = sT ṡ

= sT
(

ω̇ + aD
1
2
(q×e + qe,4 I3×3)ω

)
(53)

Then, let us substitute Equation (5) into the above equation, and replace the con-
trol input with Equation (48). Then, the time derivative of the Lyapunov candidate is
rewritten as

V̇L = sT
(

J−1(−ω× Jω + f + Λu)
)

= sT(−k1s− k2|s|εsgn(s)
)

(54)

Note that D is zero in this case.
Moreover, the second term of the right-hand side of the above equation is always

positive. That is,

k2sT |s|εsgn(s) = k2

3

∑
i=1
|si||si|ε > 0 (55)

Thus, the time derivative of the Lyapunov candidate is given by

V̇L = −k1‖s‖2 − k2

3

∑
i=1
|si||si|ε < 0 (56)

where ‖s‖ ∈ R denotes the two-norm of s. Since the time derivative of the Lyapunov
candidate is always negative, the closed-loop system is asymptotically stable. This means
that for a given initial condition of ω and qe, the sliding surface, si, in Equation (49) will
converge to the first equilibrium point, ωi = −ωmsign(qe,i).

Once again, for the closed-loop system stability by the second equilibrium point,
the identical Lyapunov candidate by the sliding surface in Equation (50) is also defined as

VL =
1
2

sTs (57)
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By proceeding identically with the previous case, the time derivative of the Lyapunov
candidate is also written as

V̇L = sT
(

J−1(−ω× Jω + f + Λu) + aD
1
2
(q×e + qe,4 I3×3)ω

)
= sT(−k1s− k2|s|εsgn(s)

)
(58)

Note that the variable D does not disappear in this case. However, applying the control
input in Equation (48), the remaining procedure is identical with that of the previous case.
Since the closed-loop system is asymptotically stable for the given condition of−L ≤ qe,i ≤ L,
the sliding surface, si, in Equation (50) will converge to the second equilibrium point, that
is, ωi = qe,i = 0, which is proven by Lemma 1.

3.4. Summary

For the attitude control of fixed-wing UAVs that are able to be operated within
limited angular rates, the sliding mode control investigated in this section, similar to
variable structure control technologies, is summarized as follows. This technique consists
of two control laws separated by the amount of the attitude errors induced by the attitude
commands and the allowable maximum angular rate of the UAV. If the attitude errors are
larger than the limiter, for example, |qe,i| > L, then the related sliding surface and control
law are given respectively by

s = ω + ωmsgn(qe) (59)

u = −Λ−1(−ω× Jω + f + J
(
k1s + k2|s|εsgn(s)

))
(60)

otherwise, the relevant sliding surface and the control law are expressed respectively as

s = ω + aqe (61)

u = −Λ−1
(
−ω× Jω + f + aJ

1
2
(q×e + qe,4 I3×3)ω + J

(
k1s + k2|s|εsgn(s)

))
(62)

4. 3D Path-Following Technique

In this section, a three-dimensional guidance algorithm for the path following of
waypoints is additionally employed to ensure that the control law in Equation (48) works
effectively. To provide the guidelines of the angular rate for a given UAV to be oper-
ated safely within the allowable forces and moment, the concept of the Dubins curve is
introduced for the generation of three-dimensional smooth guidance curves. Thus, let us de-
scribe in this section the entire process used to generate the 3-dimensional Dubins path and
the tracking algorithm with the turning radius of the UAV, determined for safe operations.

4.1. Dubins Path Generation

It is known that the Dubins path consists of only a few circles and lines so that it can
be mathematically simplified for the generation of waypoint guidance for UAVs. The illus-
trative Dubins path indicating these two points is illustrated in Figure 2. The process of
geometrically generating the Dubins path, for example, a CSC (Circular, Straight, Circular
line) type in the 3D space is reviewed briefly in [17]. The minimum turning radius of the
UAV, rm, can be first determined by the maximum allowable angular rate, ωm, and the
given airspeed, Va. Assume that there is a UAV at a position ξ1 heading to the unit vector,
v̄ς,1. There is an another waypoint ξ2 heading to the unit vector v̄ς,2 that the UAV must
pass. In Figure 2 the straight line, xς, connecting two points of p1 and p2 is the Dubins
line to generate the guidance route. The unit heading vector at a position ξ, which can be
evaluated by means of the velocity vector of the UAV, is given by

ν̄ =
ξ̇

‖ξ̇‖
(63)



Electronics 2021, 10, 2776 11 of 19

To define the three orthogonal unit vectors at the point, the vector perpendicular to
the plane, consisting of the Dubins line and velocity vector, can be given by

uς = xς × ξ̇ (64)

and the orthogonal unit vector is also written as

ūς =
uς

‖uς‖
(65)

Figure 2. Geometry of the Dubins path connecting two waypoints of ξ1 and ξ2.

Then, the third orthogonal unit vector, namely, the radius unit vector which is oriented
toward the center of the circle from the position is evaluated as

w̄ς = ūς × ν̄ς (66)

Then, using the unit vector and a given way point vector, the center point of the circle
can be computed as

oς = ξ + rmw̄ς (67)

Next, the unit radius vector, ȳ, leading from the point p to the center of the circle is
given by

ȳς = x̄ς × ūς (68)

where x̄ς is the unit vector given by xς

‖xς‖ . The point p at which the tangent meets in the
circle is also computed with respect to the center of the circle as

p = oς − rmȳς

= ξ + rmw̄ς − rmȳς (69)

Consequently, since there are two waypoints illustrated in Figure 2, the straight line
xς connecting two points p1 and p2 can be evaluated as

xς = p2 − p1

= (ξ2 + rmw̄ς,2 − rmȳς,2)− (ξ1 + rmw̄ς,1 − rmȳς,1) (70)

Furthermore, the angles denoted θς,1 and θς,2 shown in Figure 2 are computed using
the inner product of the two unit vectors as, respectively,

cos θς,1 = v̄ς,1 · x̄ς (71)

cos θς,2 = v̄ς,2 · x̄ς (72)
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From the geometrical relationships, the straight line vector is also given by

xς = (ξ2 − ξ1)− rm(x̄ς + v̄ς,1) tan
(

θς,1

2

)
− rm(x̄ς + v̄ς,2) tan

(
θς,2

2

)
(73)

Now, for the given waypoints, the straight line can be obtained by resolving Equation (73)
so that the guidance path from point p1 to point p2 can be designed. However, Equation (73)
is the nonlinear multivariate system so that it is unable to obtain the closed-form solution.
It is favorable to employ a numerical solver.

4.2. Path Tracking

In this subsection, a nonlinear UAV path tracking algorithm similar to the line-of-sight
guidance algorithm is addressed to follow the Dubins path explained previously for the
waypoint guidance. The kinematic equations of motion for UAVs with respect to time are
simply given by [18]

Ẋ = Va cos ψ cos γ (74)

Ẏ = Va sin ψ cos γ (75)

Ż = Va sin γ (76)

where the airspeed Va is assumed to be constant, and γ = θ − α is the flight path angle of
the UAV.

Now, let us assume that there is a Dubins path, Γ, to be tracked. With respect to the
distance variable, ς, the kinematic equations of the Dubins path can be also expressed as

dXr(ς)

dς
= cos ψr(ς) cos γr(ς) (77)

dYr(ς)

dς
= sin ψr(ς) cos γr(ς) (78)

dZr(ς)

dς
= sin γr(ς) (79)

where ψr and γr are the reference angles for the UAV to be tracked, and Xr, Yr and Zr are
the reference locations to follow the Dubins path.

Also, let us define a straight line Ω tangent to the path Γ at a given point Xr(ς∗),
Yr(ς∗), Zr(ς∗). A reference point on the line Ω can be defined as

Xl(ς
∗) = Xr(ς

∗) + 1/Kp cos ψ∗r cos γ∗r (80)

Yl(ς
∗) = Yr(ς

∗) + 1/Kp sin ψ∗r cos γ∗r (81)

Zl(ς
∗) = Zr(ς

∗) + 1/Kp sin γ∗r (82)

where ς∗ indicates the location that is closest to the UAV, and Kp is the positive parameter.
When the positive parameter Kp is chosen close to zero, the reference point (Xl , Yl , Z1)

on the line Ω will be located very far from the point Xr(ς∗), Yr(ς∗), Zr(ς∗). Meanwhile,
when Kp is selected as almost Kp → ∞, then the reference point is identical with the point
Xr(ς∗), Yr(ς∗), Zr(ς∗). In this work, the reference point is the actual point to be employed
for the path tracking algorithm by adjusting Kp.

If the UAV is located far from the guidance route, approaching the closest Dubins path
could be the first priority for tracking the path. To accomplish this option, the parameter Kp
needs to be chosen as a large positive value so that the reference point can be identical with
the point closest to the UAV. On the other hand, if the UAV is located close to the guidance
route, heading toward the tangent direction of the Dubins path could be the priority to
track the path appropriately. For this scenario, it can be achieved by selecting Kp close to
zero. Thus, adjusting Kp with respect to the errors between the UAV position and the point
Xr(ς∗), Yr(ς∗), Zr(ς∗) is very important to track the given route.
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Therefore, the attitude command angles of ψd, γd are chosen with respect to the
distance error between the reference point, Xl , Yl and Z1 and the UAV’s actual location.
Thus, the relevant relationships are given geometrically as

cos ψd =
ẽx√

ẽ2
x + ẽ2

y

, sin ψd =
ẽy√

ẽ2
x + ẽ2

y

(83)

cos γd =

√
ẽ2

x + ẽ2
y

ẽ
, sin γd =

ẽz

ẽ
(84)

where, ẽx = Xl − X, ẽy = Yl −Y, ẽz = Zl − Z, ẽ =
√

ẽ2
x + ẽ2

y + ẽ2
z .

As is known, most fixed-wing UAVs allow roll commands to follow the heading com-
mands. Thus, the path in the lateral dimension for fixed-wing UAVs is usually controlled
by a coordinated turn maneuver by controlling the ailerons to achieve the desired roll
command φd. When the UAV is banked at an angle φ, the lift FL by the wings can be divided
into two components. For the successive coordinated turn maneuver, the requirement is
given by

FL sin φ = macmd (85)

FL cos φ = mg (86)

where acmd is the lateral acceleration command. Furthermore, manipulating the two re-
quirements leads simply to

tan φ =
acmd

g
(87)

In order to obtain the roll command from the yaw command, let us assume a reference
point ξr on the desired trajectory shown in Figure 3. The distance between the reference
point and the UAV is denoted as l, and the angle between the velocity vector ξ̇ and the line
l is the yaw error defined as ψe = ψ− ψd. Then, the lateral acceleration command is given
by [19]

acmd =
2V2

a
l

cos ψe (88)

Figure 3. Nonlinear lateral control for the UAV.

By inserting the acceleration command into Equation (87), the roll command φd is
expressed as

φd = tan−1
(

2V2
a

gl
cos ψe

)
(89)
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Note that the pitch command is also evaluated by θd = α + γd. From the evalu-
ated three-axis attitude command represented by Euler angles (φd, θd, ψd), the quaternion
command, qc, is generated to employ the suggested control law to follow the given guid-
ance route.

5. Numerical Simulations, Results, and Discussions

In this section, the proposed attitude control law and the path-following algorithm
are examined using numerical simulations. Let us first explain the simulation conditions.
The US 25e model [16,20] is employed for the numerical model of the fixed wing UAV in
this work. The specifications of the model are listed in Table 1. The aerodynamic coefficients
in Equations (11)–(18) for a given airspeed Va = 20 m/s are also listed in Table 2.

Table 1. Characteristics for US 34e.

Parameter Value Parameter Value

m 1.9 kg b 1.27 m
S 0.31 m2 c̄ 0.25 m

Jxx 0.089 kg m2 Jyy 0.14 kg m2

Jzz 0.16 kg m2 Jxz 0.014 kg m2

Table 2. Parameters of aerodynamic coefficients for US 25e.

Parameter Value Parameter Value Parameter Value

C0
L 0.23 Cα

L 4.58 Cδe
L 0.13

Cα̇
L 1.97 Cq

L 7.95 C0
D 0.043

Cδe
D 0.014 Cδr

D 0.03 Cβ
y −0.83

Cδr
y 0.191 Cp

y 0 Cr
y 0

Cβ
l

−0.04 Cδa
l 0.068 Cδr

l 0.017
Cp

l −0.41 Cr
l 0.4 C0

m 0.135
Cα

m −1.5 Cδe
m −1.13 Cα̇

m −10.4
Cq

m −50.8 Cβ
n 0.034 Cδa

n −0.012
Cδr

n −0.035 Cp
n −0.075 Cr

n −0.41

The proposed constrained sliding mode control (CSMC) approach is compared with
the conventional SMC in this simulation. The gains for each control law are listed in
Tables 3 and 4, respectively. Note that by employing the angular rate constraint,
ωm = 10.0 deg/s chosen for this simulation scenario, there is a slight modification of
design parameters between the two control laws. Furthermore, to highlight the excellent
performance of the proposed CSMC, wind dust is added to the simulation environment
for the time from t = 25 s to t = 40 s. To simulate the disturbance varying sinusoidally,
the external moment ranging from −0.2 Nm to 0.2 Nm shown in Figure 4 is applied to
the UAV.

Table 3. Design parameters for SMC.

Parameter Value Parameter Value

a 12 ε 0.95
k1 2.5 k2 4.5

Table 4. Design parameters for CSMC.

Parameter Value Parameter Value

a 8 ε 0.95
k1 2 k2 5.5
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Figure 4. Scenario of external disturbances applied to the UAV.

Now, let us select some reference waypoints to design the flight path for the UAV.
To examine properly the control capability for CSMC, the randomly chosen waypoints and
heading unit vectors are listed in Table 5. Then, the Dubins path generation algorithm is
applied to the waypoints to design the guidance trajectory. Since the airspeed (Va) and
the angular rate limit (ωm) of the UAV are chosen as 20 m/s and 10 deg/s, respectively,
the turning radius for the Dubins circle can be also evaluated as rm = Va/ωm for this
scenario. By applying these parameters and the given waypoints above, the guidance
trajectory route from point 1 to point 5 can be calculated simply using Equation (73).
The 3-D trajectory generated using only Dubins circles and lines results in Figure 5.

Table 5. The selected waypoints and heading unit vectors.

Waypont Index ξi (meter) ν̄i

1 [0.000 0.000 100.00]T [0.8192 0.5736 0.0000]T

2 [1000.0 400.0 80.0]T [0.9848 0.0000 − 0.1736]T

3 [700.0 − 500.0 95.0]T [−0.8627 0.4981 0.0872]T

4 [500.0 0.000 110.0]T [−0.4924 0.8529 0.1736]T

5 [100.0 − 600.0 100.0]T [0.8192 0.5736 0.0000]T

Figure 5. A 3-dimensional Dubins path constructed by circles and lines for the five waypoints.

In order to verify the tracking capability of the proposed control law, the initial position
of the UAV is chosen to be relatively far from waypoint 1. The resultant tracking trajectories
by CSMC and SMC laws are indicated in Figure 6. It can be seen that both control laws are
able to trace the reference trajectory without difficulty, even though the UAV is initially
located far away from waypoint 1. The slight difference between the two tracking paths
controlled by the two techniques is evident at the very beginning. This difference originates
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from the angular rate limitation. The detailed reasons for this are given below in the
inspection of the steady state variables. Furthermore, it can be seen that the tracking path is
slightly deviated on the first straight path, which shows that the UAV is pushed back due
to wind gusts. Except for the first straight path, it can be noted that the UAVs controlled
by means of SMC and CSMC follow the curved path and other straight paths without
significant differences.

Figure 6. Tracking lines of the UAVs controlled by means of SMC and CSMC, respectively.

The detailed plots of the steady state variables for the given scenario are displayed
in Figures 7–9. Extracted from the attitude commands by Equations (83), (84) and (89) to
track the designed route, the relevant UAV attitude commands are plotted in Figure 7.
The attitude tracking histories using the control laws are also displayed in the Figure as
well. Let us focus on the very beginning of the plots. It is obvious that in the case of SMC the
attitude command in Figure 7a is quickly followed without errors, whereas in the case of
CSMC the attitude tracking time illustrated in Figure 7b is slower than that of SMC due to
the limitation of the angular rate. Then, let us inspect the angular rate of the UAV. Figure 8
is the graph of the angular rate. As expected, unrealistic large angular rates take place in
Figure 8a to compensate for the generated large attitude errors in the beginning for the
UAV controlled by means of SMC. Meanwhile, the angular rate of the UAV controlled by
means of CSMC over the simulation time is bounded by the given maximum angular rate,
which is plotted in Figure 8b. It is believed that several control transitions have occurred to
ensure that the angular velocity does not exceed the angular velocity limit.

(a) SMC (b) CSMC

Figure 7. Time histories of Euler angles.
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(a) SMC (b) CSMC

Figure 8. Angular rate responses of the UAV.

Lastly, by examining the control input histories applied to the UAV, it can be high-
lighted that the proposed CSMC has clear advantages for actual applications. When SMC
is utilized, very unrealistic control inputs are applied to the UAV to compensate for the
attitude errors introduced by the relatively large attitude command at the beginning of
the scenario, which is plotted in Figure 9a. The CSMC approach proposed in this work
does not generate the excessive deflection of the control inputs shown in Figure 9b. This
characteristic originates from the control law restricting the angular rate, even though very
large attitude commands are applied. Therefore, it is believed that the proposed technique
providing the permissible control input can be applicable to actual applications.
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(a) SMC (b) CSMC

Figure 9. The deflection angles of control surfaces generated by the control laws.

Of course, the maneuverability of UAVs can deteriorate, when the proposed CSMC
is chosen to be utilized primarily for the attitude control of UAVs. However, depending
upon whether the emphasis is placed on significant emergencies for structural damage,
cracks or safe operation as the first priority to accomplish complex missions, there are
several options available for control.A numerical simulation according to the angular
velocity limit is performed using CSMC using an identical scenario to that which has
been conducted previously. Without the loss of generality, only the tracking histories are
examined in this simulation study. Consequently, it can be noted in Figure 10 that when
the proposed CSMC is applied, it is evident that the attitude maneuverability can even
be identical to that of SMC. Therefore, the control law proposed can be applicable to
actual applications by adjusting the angular rate limit, properly satisfying the attitude
control capability requirements.
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Figure 10. Tracking histories conducted by CSMC according to the angular rate limit variations.

6. Conclusions

A sliding mode-based attitude controller was proposed in the consideration of angular
rate constraints for UAVs in this work. The sliding surfaces suggested have two different
equilibrium points. These equilibrium points were evaluated through stability analysis.One
of these points is used for maneuverability improvements within the allowable maximum
angular rate for the safe operation of UAVs; the other is used to determine the attitude
control capability. Switching between the two equilibrium points defined by the sliding
surfaces is conducted very smoothly according to the magnitude of the attitude errors.
Numerical simulations were performed on the path generated by means of the Dubins
algorithm in the presence of external disturbances. It was demonstrated clearly that the
guidance path generated was followed by the UAVs using the proposed technique, while
satisfying the angular rate constraints. Consequently, it is also believed that the proposed
technique is appropriate for actual applications to accomplish complex missions safely by
operating the UAV within the allowable structural force and moment conditions.
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