Diffusion Generalized MCC with a Variable Center Algorithm for Robust Distributed Estimation
Abstract
:1. Introduction
2. Generalized Maximum Correntropy Criterion with Variable Center
2.1. Briefly Review of the Generalized Correntropy
2.2. Generalized Maximum Correntropy Criterion with Variable Center
3. Diffusion Adaptive Filtering Algorithm under GMCC-VC
3.1. Signal Model and Diffusion GMCC-VC
3.2. Free Parameter Optimization
3.3. DGMCC-VC Algorithm with No Measurement Exchange
Algorithm 1 Diffusion GMCC-VC |
Start with wk,(−1) = 0. |
fori = 0 to I do |
for k = 1 to N do |
The free parameters and c optimazition acccording to Equations (18) and (19) |
end for |
end for |
4. Simulation Results
- (1)
- (2)
- Laplace distribution with mean of one and unit variance;
- (3)
- Binary distribution over {0,1} with probability mass .
4.1. Performance Comparison among the Proposed Algorithm and Other Algorithms
4.2. Performance Comparison under Time-Varying Parameter Estimation
4.3. Performance of the Proposed Algorithm with Different Free Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, W.; Yang, X.; Liu, D.; Chen, S. Diffusion LMS with component-wise variable step-size over sensor networks. IET Signal Process. 2016, 10, 37–45. [Google Scholar] [CrossRef]
- Meng, W.; Xiao, W.; Xie, L. A Projection Based Fully Distributed Approach for Source Localization in Wireless Sensor Networks. Ad. Hoc. Sens. Wirel. Netw. 2013, 18, 131–158. [Google Scholar]
- Ainomäe, A.; Bengtsson, M.; Trump, T. Distributed largest eigenvalue-based spectrum sensing using diffusion LMS. IEEE Trans. Signal Inf. Process. Over Netw. 2018, 4, 362–377. [Google Scholar] [CrossRef]
- Cattivelli, F.; Sayed, A.H. Diffusion LMS strategies for distributed estimation. IEEE Trans. Signal Processing 2010, 58, 1035–1048. [Google Scholar] [CrossRef]
- Lopes, C.G.; Sayed, A.H. Diffusion least-mean squares over adaptive networks: Formulation and performance analysis. IEEE Trans. Signal Process. 2008, 56, 3122–3136. [Google Scholar] [CrossRef]
- Azam, K.; Mohammad, A.T.; Amir, R.; Jonathon, A.C. Transient analysis of diffusion least-mean squares adaptive networks with noisy channels. Int. J. Adapt. Control Signal Process. 2012, 26, 171–180. [Google Scholar]
- Cattivelli, F.S.; Lopes, C.G.; Sayed, A.H. Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Trans. Signal Process. 2008, 56, 1865–1877. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, N.; Li, J.; Leung, V.C.M. Spectrum Sensing Based on Maximum Generalized Correntropy Under Symmetric Alpha Stable Noise. IEEE Trans. Veh. Technol. 2019, 68, 10262–10266. [Google Scholar] [CrossRef]
- Wen, F. Diffusion least-mean P-power algorithms for distributed estimation in alpha-stable noise environments. Electron Lett. 2013, 49, 1355–1356. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.; Yang, J. Variable step-size diffusion least mean fourth algorithm for distributed estimation. Signal Process. 2016, 122, 93–97. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, Z.; Huang, M. Diffusion least mean square/fourth algorithm for distributed estimation. Signal Process. 2017, 134, 268–274. [Google Scholar] [CrossRef]
- Ni, J.; Chen, J.; Chen, X. Diffusion sign-error LMS algorithm: Formulation and stochastic behavior analysis. Signal Process. 2016, 128, 142–149. [Google Scholar] [CrossRef]
- Liu, W.; Pokharel, P.P.; Principe, J.C. Correntropy: Properties and Applications in Non-Gaussian Signal Processing. IEEE Trans. Signal Process. 2007, 55, 5286–5298. [Google Scholar] [CrossRef]
- Chen, B.; Príncipe, J.C. Maximum Correntropy Estimation Is a Smoothed MAP Estimation. IEEE Signal Process. Lett. 2012, 19, 491–494. [Google Scholar] [CrossRef]
- Ma, W.; Chen, B.; Duan, J.; Zhao, H. Diffusion maximum correntropy criterion algorithms for robust distributed estimation. Digital Signal Process. 2016, 58, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Ma, B.; Li, Y. A Kernel-Width Adaption Diffusion Maximum Correntropy Algorithm. IEEE Access 2020, 8, 33574–33587. [Google Scholar] [CrossRef]
- Guo, Y.; Li, J.; Li, Y. Diffusion Correntropy Subband Adaptive Filtering (SAF) Algorithm over Distributed Smart Dust Networks. Symmetry 2019, 11, 1335. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Zhao, H.; Li, P.; Shi, L. Diffusion affine projection maximum correntropy criterion algorithm and its performance analysis. Singal Process. 2021, 181, 1078918. [Google Scholar] [CrossRef]
- Chen, B.; Xing, L.; Zhao, H.; Zheng, N.; Principe, J.C. Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 2016, 64, 3376–3387. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhang, H. Kernel Recursive Generalized Maximum Correntropy. IEEE Signal Process. Lett. 2017, 24, 1832–1836. [Google Scholar] [CrossRef]
- Hakimi, S.; Hodtani, G.A. Generalized maximum correntropy detector for non-Gaussian environments. Int. J. Adapt. Control Signal Process. 2018, 32, 83–97. [Google Scholar] [CrossRef]
- Zhang, T.; Wan, S. Nystrom Kernel under Generalized Maximum Correntropy Criterion. IEEE Signal Process. Lett. 2020, 27, 1535–1539. [Google Scholar] [CrossRef]
- Luo, X.; Sun, J.; Wang, L.; Wang, W.; Zhao, W.; Wu, J.; Wang, J.-H.; Zhang, Z. Short-Term Wind Speed Forecasting via Stacked Extreme Learning Machine with Generalized Correntropy. IEEE Trans. Indust. Inform. 2018, 14, 4963–4971. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Qiu, J.; Liu, X.; Xiao, G.; Duan, J.; Chen, B. Unscented Kalman Filter with Generalized Correntropy Loss for Robust Power System Forecasting-Aided State Estimation. IEEE Trans. Indust. Inform. 2019, 15, 6091–6100. [Google Scholar] [CrossRef]
- Chen, F.; Li, X.; Wang, L.; Wu, J. Diffusion generalized maximum correntropy criterion algorithm for distributed estimation over multitask network. Digital Signal Process. 2018, 81, 16–25. [Google Scholar] [CrossRef]
- Mial, D.; Jia, L.; Zhang, J. Robust diffusion affine projection generalized maximum correntropy criterion algorithm over networks. In Proceedings of the 2021 40th Chinese Control Conference, Shanghai, China, 26–28 July 2021. [Google Scholar]
- Chen, B.; Wang, X.; Li, Y.; Principe, J.C. Maximum Correntropy Criterion with Variable Center. IEEE Signal Process. Lett. 2019, 26, 1212–1216. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Song, C.; Pan, L.; Li, J. Adaptive filtering under the maximum correntropy criterion with variable center. IEEE Access. 2019, 7, 105902–105908. [Google Scholar] [CrossRef]
- Liu, X.; Song, C.; Pang, Z. Kernel recursive maximum correntropy with variable center. Signal Process. 2021, 191, 108364. [Google Scholar] [CrossRef]
- Yang, J.; Cao, J.; Xue, A. Robust Maximum Mixture Correntropy Criterion-Based Semi-Supervised ELM with Variable Center. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3572–3576. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, H.; Wang, X.; Ma, W.; Chen, B. Sparsity Constrained Recursive Generalized Maximum Correntropy Criterion with Variable Center Algorithm. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3517–3521. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Cai, P.; Sun, F.; Kou, X.; Wang, X.; Yin, J. Diffusion Generalized MCC with a Variable Center Algorithm for Robust Distributed Estimation. Electronics 2021, 10, 2807. https://doi.org/10.3390/electronics10222807
Ma W, Cai P, Sun F, Kou X, Wang X, Yin J. Diffusion Generalized MCC with a Variable Center Algorithm for Robust Distributed Estimation. Electronics. 2021; 10(22):2807. https://doi.org/10.3390/electronics10222807
Chicago/Turabian StyleMa, Wentao, Panfei Cai, Fengyuan Sun, Xiao Kou, Xiaofei Wang, and Jianning Yin. 2021. "Diffusion Generalized MCC with a Variable Center Algorithm for Robust Distributed Estimation" Electronics 10, no. 22: 2807. https://doi.org/10.3390/electronics10222807
APA StyleMa, W., Cai, P., Sun, F., Kou, X., Wang, X., & Yin, J. (2021). Diffusion Generalized MCC with a Variable Center Algorithm for Robust Distributed Estimation. Electronics, 10(22), 2807. https://doi.org/10.3390/electronics10222807