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Abstract: Beam hopping technology is considered to provide a high level of flexible resource alloca-
tion to manage uneven traffic requests in multi-beam high throughput satellite systems. Conventional
beam hopping resource allocation methods assume constant rainfall attenuation. Different from
conventional methods, by employing genetic algorithm this paper studies dynamic beam hopping
time slots allocation under the effect of time-varying rain attenuation. Firstly, a beam hopping system
model as well as rain attenuation time series based on Dirac lognormal distribution are provided.
On this basis, the dynamic allocation method by employing genetic algorithm is proposed to obtain
both quantity and arrangement of time slots allocated for each beam. Simulation results show that,
compared with conventional methods, the proposed algorithm can dynamically adjust time slots
allocation to meet the non-uniform traffic requirements of each beam under the effect of time-varying
rain attenuation and effectively improve system performance.

Keywords: beam hopping; satellite communication; resource allocation; genetic algorithm; rain at-
tenuation

1. Introduction

Through a large number of beams and frequency-reuse, high-throughput satellites
(HTS) have been improving in their system performance. This has attracted considerable
research interests. However, a large number of beams would increase the mass of on-board
payloads as well as the DC power consumption [1]. At the same time, due to the diversity
of users’ requirement services, the demand traffic is non-uniform among beams. It means
that the demand in some beams greatly exceeds the available capacity of beams, while in
other beams the situation is the opposite [2]. However, in conventional multi-beam HTS
communication systems, only part of total satellite resources can be utilized and fixedly
allocated to each beam. This raises a paradoxical scenario that is “excessive idle or busy”
for different beams. Consequently, it results in a huge waste of system resource (e.g., about
50 percent waste of system resource in [3]), which makes it difficult to achieve efficient
transmission and on-demand coverage of hot areas.

In this context, beam hopping (BH) for satellite systems has emerged as a promising
technology to provide a high level of flexibility to manage uneven traffic requests in the
satellite coverage area [4]. With flexible payloads, beam hopping avoids the situation
that the complexity of on-board payloads increases with larger number of beams. More
importantly, all the available satellite resources can be shared and employed to provide
service to a certain subset of beams, which is active for some portion of time, dwelling just
long enough to match the traffic demand of each beam [2]. It means not all beams work, but
only a portion of the beams are activated on demand. The set of activated beams changes
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in every time slot according to a well-designed time–space transmission plan [5]. Moreover,
each working beam can share the total satellite resources, which means it achieves resource
pooling of on-board frequency and power resources. Thus, beam hopping provides a
foundation for the flexible allocation and efficient utilization of satellite resources to match
the uneven traffic demand.

Many scholars have conducted beam hopping in satellite communication systems.
By employing optimization methods such as iterative and heuristic algorithms, previ-
ous works respectively proposed preliminary mathematical models of resource allocation
in beam hopping systems [6–9]. The work of [3] assessed the performance comparison
between beam hopping systems and the non-hopped systems in Ka-band, which demon-
strated that beam hopping can improve the utilization rate of system resources. The work
of [10] intended to dynamically schedule the time slot number of each beam to realize the
long-term delay fairness in a beam hopping system. The work [11–15] proposed a frame-
work based on deep reinforcement learning (DRL) for dynamic resource allocation in beam
hopping satellite systems with complicated calculation methods. Moreover, European
Telecommunications Standards Institute (ETSI) published DVB-S2X standards [16] to sup-
port beam hopping. The work of [17,18] introduced the super-frame structure in Appendix
E of DVB-S2X, and also discussed the feasibility of engineering realization. The work
of [19] investigated potential synergies of non-orthogonal multiple access (NOMA) and
beam hopping for multi-beam satellite systems. Moreover, the work of [20–22] employed
precoding to suppress co-channel interference in a beam hopping system.

However, most of these previous works assumed constant channel quality during
beam hopping transmission, which is too idealistic in a real satellite communication system.
An HTS usually employs Ka or Q/V frequency band to obtain more spectrum resource and
achieve broadband transmission. Therefore, channel attenuation especially time-varying
rain attenuation in such high frequency band becomes a major factor that dynamically
affects channel quality, which should not be ignored [23,24].

To overcome these limitations, this paper studies dynamic beam hopping time slots
allocation method under the effect of time-varying rain attenuation. Firstly, a beam hopping
system model as well as rain attenuation time series based on Dirac lognormal distribution
are provided. On this basis, the genetic algorithm (GA) [25] for beam hopping is proposed
by considering uneven traffic demand and changeable spectrum efficiency. Simulation
results show that, compared with conventional methods, the proposed algorithm can
dynamically adjust time slots allocation to meet the non-uniform traffic requirements
of each beam under the effect of time-varying rain attenuation and effectively improve
system performance.

Moreover, the reasons for adopting GA for beam hopping under rain environment are
as follows. It is noticed that some of the current research interest is focused on applying
reinforced learning algorithms for pursuing superior performance. However, except for
the high complexity and long processing delay, the reinforced learning algorithm needs
a mass of sample data to learn for a certain environment. It may not be suitable for
the issue discussed in this paper, since the rain environment is changeable during BH
transmission and different beams may be under different rainfall intensities. This problem
is avoided by adopting GA. Comparing with the complicated reward function of DRL, the
fitness function of GA is easily obtained and suitable for different rainfall environments.
Therefore, GA is employed for beam hopping under the rain environment to achieve both
better performance and lower algorithm complexity.

The main contributions and innovations of this paper are as follows:
(1) Without the assumption of constant rain attenuation, different beams may suf-

fer different rain attenuations which are also time-varying. Consequently, this situation
will bring different and time-varying spectrum efficiency for each beam during the trans-
mission. It makes the design of beam hopping transmission plan become a complicated
two-dimensional time–space optimization problem. In this context, this paper introduces
genetic algorithm to solve the joint optimization problem. Moreover, in order to validate the
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proposed algorithm performance, rain attenuation time series based on Dirac log-normal
distribution are provided to simulate the rainfall environment. The proposed algorithm
conforms to DVB-S2X with a finer gradation and extension number of modulation and
coding modes (MOCODs) to obtain optimal spectrum efficiency for each beam in different
time slots. DVB-S2X also guarantees engineering feasibility of the proposed algorithm.

(2) Most of the conventional beam hopping resource methods employ two-step strate-
gies. Firstly, obtain the time slots number allocated to each beam. Then, arrange these time
slots into beam hopping periods to determine beam illumination order. These two steps
are independent when constant channel condition is assumed during transmission. With
this assumption, different arrangements of time slots may not affect system performance.
However, the effect of time-varying rain attenuation makes the quantity and arrangement
of time slots become coupled. In this paper, the proposed method for BH solves the cou-
pled problem, obtaining both the quantity and arrangement of time slots allocated for
each beam.

(3) With the genetic algorithm, there is no need to perform the derivative or transform-
ing operation on the objective function. Therefore, by adding more constrained conditions,
the proposed system model, objective function, and algorithm flow can be employed to
solve similar problems in beam hopping system such as resource allocation under the effect
of co-channel interference.

The following paper is organized as follows. Section 2 describes the beam hopping
system model. Section 3 introduces the proposed algorithms. Section 4 analyzes the
numerical simulation results. Section 5 presents the conclusions and future works.

2. System Model
2.1. Beam Hopping of Forward Link

This paper considers the forward link of the multi-beam geostationary satellite sys-
tems, where broadband services are transmitted from the gateway station (GW) and
transparently forwarded by the satellite to user terminals, referring to the DVB-S2X stan-
dard. Regarding the beam hopping architecture, the system resource management unit is
within network control center (NCC). It pre-generates the beam hopping time plan (BHTP).
BHTP determines dwell time and illumination order of each beam to match the traffic
demand. The satellite receives the BHTP signaling message via telemetry, tracking, and
command (TT&C) [2,26]. Then, the onboard beam hopping controller resolves BHTP and
activates corresponding beams by employing a switching matrix or beamformer [27,28].

For the sake of spectral efficiency, a beam hopping system usually employs aggressive
frequency reuse scheme. In this paper, it is assumed that all beams share the total frequency
resource of satellite. However, full frequency multiplexing scheme will inevitably bring
co-channel interference [29]. Thus, in order to avoid co-channel inter-beam interference,
in a beam hopping system the downlink beams can be divided into several clusters. In
each cluster, only one beam can be activated at a time. Meanwhile, it avoids simultaneous
illumination of adjacent beams from different clusters. Another optional method is to
employ precoding [30–32] to suppress co-channel interference.

The simplified beam hopping system architecture is shown in Figure 1.

2.2. Beam Hopping Time Plan

As stated above, the beam hopping time plan (BHTP) [33], which is also named as the
beam hopping illumination pattern [2], determines dwell time and illumination order of
each beam. Obviously, it is the most important system configuration since beam hopping
technique is mainly based on time slicing. Figure 2 demonstrates an example of the beam
hopping time plan for seven beams in a cluster.
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Figure 1. Beam hopping system.

Figure 2. Beam hopping time plan.

As shown in Figure 2, the BHTP consists of multiple beam hopping periods Tw, which
are periodically repeated. The duration of one time slot is Ts, which is the smallest time
resource scale. Thus, Tw = W× Ts, where W represents the number of time slot in one
beam hopping period. Moreover, dwell time represents the length of continuous time slots
allocated to a beam.

2.3. Rain Attenuation Time Series

This subsection introduces the Dirac log-normal distribution model, which is proved
to be able to accurately characterize rain attenuation [34]. The rain attenuation time series
obey Dirac-lognormal distribution, which means the rain attenuation PDF (probability
distribution function) P(A|A> 0) is a lognormal distribution function with mean µ and
variance δ:

P(A|A > 0) =
e−

1
2 (

lnA−µ
δ )

Aδ
√

2π
(1)

Consequently, the CCDF (complementary cumulative probability distribution func-
tion) of rain attenuation can be expressed as mixture Dirac-lognormal distribution:

P(A ≥ A0) = p0

∫ +∞

A0

P(A|A > 0)dAC =
p0

2

(
lnA0 − µ√

2δ

)
(2)

where p0 is the rainfall probability of communication link, and the mathematical statistical
model of p0 can be found in ITU-R P.618 [35].

By employing the method in [34], a stationary Gaussian process G(t) with zero mean,
one variance and correlation function cG(4t) should be generated as follows:

(a) Generate N/2+ 1 uncorrelated random complex numbers (ek)k=0...N/2, whose real
part and imaginary part are normally distributed with zero mean and one variance. When
k = 0 or k = N/2, set the imaginary part of ek to 0;
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(b) Define eN−k = e∗k , with k = {0, . . . , N/2};

(c) Define hk =

{
1 k = 0, k = N/2
1
2 else

;

(d) Compute Fourier transform according to correlation function
cG: F

(
Gj
)
= 1

N ∑N−1
j=0 Gje−

i2π
N kj;

(e) Define ak =
√

hkF (cG)× ek;
(f) Then G(t) = F−1(ak) = ∑N−1

k=0 ake
i2π
N kj.

Finally, the desired rain attenuation time series A(t) is: A(t) = exp

{
δ
√

2er f c−1

[
er f c

(
G(t)√

2

)
p0

]
+ µ

}
A(t) = 0, otherwise

, G(t) > G0 (3)

where G0 =
√

2er f c−1(2× p0).
Obviously, it is better to use messured rain attenuation data from a real satellite com-

munication channel. However, the public data we can obtain are not detailed enough
for beam hopping research. More importantly, the motivation of this paper is to pro-
vide a beam hopping algorithm under rainfall environment. Thus, a reasonable and
accurate rain attenuation time series model is sufficient to validate the proposed beam
hopping algorithm.

3. Dynamic Time Slots Allocation Based on Genetic Algorithm
3.1. Beam Hopping Time Slots Allocation

As stated above, the motivation of beam hopping technology is utilizing system
resources efficiently to meet the user’s traffic demand as much as possible. Thus, this paper
intends to build an N-order difference objective function [36] as follows.

For K beams, supposing R̂i and Ri are the request traffic capacity and system offered
capacity in one beam hopping period, respectively, (measured by bit), W is the beam
hopping period (time window) and Ni is the number of time slots allocated to beam i.
Tij ∈ [0, 1] is the element of beam hopping time slot allocation matrix T. Tij = 1 means j-th
time slot is allocated to i-th beam, which means i-th beam is working in j-th time slot. Thus,
∑W

j=1 Tij = Ni.
N-order difference objective function:

min
K

∑
i=1
|Ri − R̂i|n (4)

s.t Ri ≤ R̂i, ∀i (5)

Usually, n = 2, which makes it a second order objective function. Supposing Gaussian
coding is used, the offered capacity in one beam hopping period W of the i-th beam is:

Ri = NiBwlog2(1 + SNRi) (6)

SNRi is signal-to-noise ration the i-th beam. It can be represented by

SNRi =
Pi
N0

GTGR
LSLLRA

(7)

Pi is the transmitter power. GT and GR are the transmitter and receiver antenna gain,
respectively. LSL is the propagation loss. LRA is the rain attenuation of communication
link. Different from previous works, in this paper, rain attenuation is not constant but
time-varying and different among beams.

Moreover, as known, DVB standard is the most widely used protocol for high-
throughput broadcast satellites. As stated above, ETSI published DVB-S2X standards [16]
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to support beam hopping. DVB-S2X offers smaller roll-off options, and a finer gradation
and extension number of MOCODs, which provide foundation for potentially employing
ACM to improve spectral efficiency. Note that this paper is focused on beam hopping
under rainfall environment referring to DVB-S2X, rather than studying ACM schemes.

Thus, Equation (4) can be transformed as:

min
K

∑
i
|Ri − R̂i|2 (8)

s.t. Ri ≤ R̂i, ∀i (9)

Ri =
W

∑
j

Bw · ηij · Tij (10)

R̂i = r̂i ·W (11)

where ηij is the spectrum efficiency of i-th beam at j-th time slot. The spectrum efficiency
ηij = fDVB−S2X

(
SNRij

)
is a piecewise function in DVB-S2X, where SNRij represents signal-

to noise ratio of i-th beam at j-th time slot. r̂i represents the request traffic rate (measured
by bps) of i-th beam.

3.2. Genetic Algorithm for Beam Hopping

Genetic algorithm is a stochastic method for solving both constrained and uncon-
strained optimization problems. In genetic algorithm, the set of feasible solutions is
considered as a population. Each individual represents a solution. Through selection,
crossover and mutation in the evolution process, genetic algorithm repeatedly modifies a
population of individual solutions from generation to generation [23]. To be specific, the
evolution usually starts from a population of randomly generated individuals and happens
in generations. In each generation, the fitness of every individual in the population is
evaluated, multiple individuals are stochastically selected from the current population, and
modified based on crossover and possibly randomly mutation to obtain a new generation
population [37]. Usually, the algorithm can be terminated when either a satisfactory fitness
level of the population has been reached, or the maximum number of generations has been
produced [23].

Thus, to solve the nonlinear optimization problem of beam hopping under time
varying rain attenuation, this paper proposes genetic algorithm. As a global optimization
algorithm for BHTP, it mainly includes the chromosome encoding, fitness function, and the
design of the genetic operations [23].

(1) Chromosome encoding:
For BHTP design under time-varying rain attenuation, this paper assumes K beams

are in one cluster, and one beam hopping period contains W time slots. Consequently,
there will be

(
C1

K
)W

= KW possible solutions, which will be a tragedy for searching space
dimensions. As stated above, in this paper, only one beam can be activated at a time slot
in each cluster. Thus, inspired by [13], multi-action selection method can be employed
to simply make the actions select one beam from K beams for illumination and repeat W
times. When using a binary encoding manner, the chromosome for BH method should
contain at least log2K genes for both feasibility and low complexity.

(2) Fitness function:
The fitness function is used to evaluate the goodness of the chromosomes. That is

to say, it measures the adaptability of individuals to the living. Individuals are selected
according to their fitness value: individuals with higher fitness value are more likely to
survive and reproduce the next generation. Generally, for maximization optimization
problem fitness function is directly proportional to object function while minimization
optimization problem fitness function is inversely proportional to object function [38]. Since
the beam hopping object function of this paper is a minimization problem (to meet the
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user’s traffic demand as much as possible with second order manner), the fitness function
can be designed as:

Fit(X) =
1

f (X)
=

1
min ∑K

i |Ri − R̂i|2
(12)

where Ri = ∑W
j Bw · fDVB−S2X

(
SNRij

)
· Tij, as previously stated.

Note that, for beam hopping under rain environment, due to time-varying rain at-
tenuation, the SNR of each beam is also time-varying, which can be obtained by bringing
Equation (3) into Equation (7).

(3) Genetic operations:
With an initial population of individuals and evaluated through their fitness function,

the operators of genetic algorithm begin to generate a new and improve population from
the parent generation [38]. Genetic algorithm usually consists of three classical operations:
selection, crossover, and mutation. For selection, this paper uses the roulette method,
which is the most common selection method, to make the individuals with higher fitness
get larger probability of survival. It means that better BHTP solutions are selected as the
generation. Moreover, crossover and mutation operators employ single-point exchange
and uniform mutation methods respectively [23].

The process chart of proposed method is shown in Figure 3.

Figure 3. Process chart of beam hopping time plan optimization based on GA.

Other parameters include the number of individuals in the initial population, the
probability of crossover and mutation. They should be set appropriately to minimize the
complexity while guaranteeing that the optimal solution can be obtained [37]. Finally, the
dynamic time slots allocation based on GA for beam hopping is shown in Algorithm 1.
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Algorithm 1. Dynamic Time Slots Allocation based on GA under time-varying rain attenuation.

(1) Generate beam hopping satellite communication scenario and build the objective function.
(2) Set algorithm parameters, including population size, the max number of generations,
chromosome length, the probability of crossover and mutation.
(3) Generate initial population randomly with individuals as actions: select a beam randomly
from K beams for each time slot.
(4) For i = 1, 2, . . . ,W do:
(5) For j = 1,2, . . . . . . generationmax do:
(6) According to the rain attenuation series of the i-th time slot, calculate SNRij to obtain system
offered capacity.
(7) Calculate objective function of beam hopping, then inverse the results to obtain the fitness
value.
(8) Select better BHTP solutions: choose the better individuals as the parent generation by
employing the roulette selection method.
(9) Mutate and exchange BHTP solutions: uniform mutation and single-point exchange crossover
operation are performed on the selected individuals to produce next generation population.
(10) End For
(11) End For

4. Numerical Simulations and Analysis

The satellite system simulation parameters are listed in Table 1, where the radiation
pattern of the multi-beam antenna refers to ITU-S.672 [39] and other parameters conform
to the DVB-S2X interface specification [16]. Moreover, in order to fully verify the proposed
BH algorithm, the maximum rain attenuations of each beam are chosen as [35.8, 19, 11.65,
6.43, 23] dB to simulate light or heavy rains. The uneven traffic demand of each beam is set
as [70, 530, 550, 600, 320] Mbps.

Table 1. Satellite system simulation parameters.

Parameter Label Value

Transmission standard
Beams number

-
K

DVB-S2X
5

Total bandwith BW 400 Mhz
Beam hopping time slot T 100 ms
Beam hopping period W 256

Transmitter power P 100 W
Carrier frequency F 20 GHz

Roll-off α 0.05
Altitude of satellite orbit H 35,786 km
Transmit antenna gain GT 54 dB
Receive antenna gain GR 38.5 dB

Propagation loss LSL 210 dB
Traffic demand of each beam - [70, 530, 550, 600, 320] Mbps

Maximum rain attenuation of each beam - [35.8, 19, 11.65, 6.43, 23] dB

The genetic algorithm parameters are shown in Table 2. For K = 5 beams in the system,
as previously stated, chromosome length can be set as log2K = 3. Other parameters can be
appropriately set as the classic case of GA [25] to minimize the computation complexity
while guaranteeing that the optimal solution can be found [37].

Table 2. Genetic algorithm parameters.

Parameter Value

Crossover probability 0.6
Mutation probability 0.02
Chromosome length 3

Population 100
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Firstly, long-term rain attenuation time series based on Dirac log-normal distribution
is illustrated in Figure 4. To simplify calculation while ensuring sufficient validation of
algorithm, the duration of one rainfall can be chosen from the long-term rain attenuation
time series. It is shown in top right corner of Figure 4. Applying the above method to
each beam, attenuation time series of one rainfall for each beam can be obtained with
different maximum attenuation values. The rain attenuation time series are changed
every one second. The reason is for both lower computation complexity and to satisfy
beam hopping time slot < 1

the rainy environment changing frequncy < beam hopping period.

Figure 4. Rain attenuation time series.

On the basis of time-varying rain attenuation, SNR of each beam can be obtained by
bringing Equation (3) into Equation (7), which is also time-varying. As previously stated,
the interface specification of BH system conform to DVB-S2X, and the spectrum efficiency
ηij = fDVB−S2X

(
SNRij

)
is a piecewise function defined in [16], where SNRij represents

signal-to-noise ratio of i-th beam at j-th time slot. With this function, time-varying SNR
leads to different spectrum efficiency. Then, spectrum efficiency of each beam is also a
time-varying piecewise curve, as shown in Figure 5.

Due to the finer gradation and extension number of MOCODs in DVB-S2X, when SNR
of each beam changes during transmission under the effect of the time-varying attenuation,
appropriate MOCOD can be chosen to obtain optima spectrum efficiency.

Note that, in this simulation condition, the short-term rain attenuation time series
based on the ‘Event-on-Demand’ model [40] can also be introduced to validate the proposed
beam hopping method. Nevertheless, it is limited to the short term. Thus, without loss of
generality, the Dirac log-normal distribution model is recommended (as in Section 2.3) for
its time series including rain and no rain, long-term and short-term situations.
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Figure 5. Spectrum efficiency of each beam.

Figure 6 illustrates the iteration graph of proposed method based on GA, where
the Y-axis represents the value of objective function min ∑K

i |Ri − R̂i|2. From Figure 6,
it can be seen that after 40 more iterations, the average value of objective function of
population decreases and finally approaches the minimum value of objective function,
which means that the algorithm has good convergence. The reason is that multi-action
selection method can reduce computational complexity and the solution space can be
adjusted adaptively and effectively reduced by GA [37]. As stated above, the design of
BHTP and the corresponding algorithms mainly operate at system resource management
unit of network control center. Therefore, powerful processing capabilities of network
control center can ensure the strong engineering practicability of the genetic algorithm.

Figure 6. GA optimization iteration graph.

As previously stated, time-varying rain attenuation brings changeable spectrum
efficiency for each beam, which makes the quantity and arrangement of beam hopping
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time slots become coupled. By employing GA as a global optimization method, the dynamic
allocation algorithm is proposed to solve the nonlinear problem with multiple constrained
conditions. It can obtain not only the number of time slots allocated to each beam, but
also the arrangement of time slots in the beam hopping period to determine the order in
which the beam is activated. The time slot allocation results of one period for each beam
are shown in Figure 7, where the X-axis represents time slot index and the color-block
represents the time slot allocated to corresponding beam.

Figure 7. Beam hopping time slots allocation results.

Moreover, the following parameters are introduced to evaluate the system perfor-
mance.

System actual throughput or capacity: it is the part of the allocated capacity not
exceeding the requested traffic under the resource-constrained condition

CA =
K

∑
i=1

min
{

R̂i, Ri
}

(13)

where R̂i is the request traffic of each beam and Ri is the system offered.
Traffic matching ratio: it describes the satisfaction degree of the actual capacity with

respect to the total requested traffic. It can be defined as:

ρs =
CA

∑K
i=1 R̂i

(14)

Finally, the traffic matching ratio of the beam hopping system is shown in Figure 8.
Here, BH method with constant rain attenuation represents the conventional beam hopping
time slot allocation method which assumes constant rain attenuation as in [7] and [37].
Multi-beam with ACM represents a traditional fixed multi-beams HTS system employing
ACM referring to DVB-S2X. Multi-beam without ACM represents the same but without
utilizing ACM. BH method based on GA is our proposed algorithm under the effect of
time-varying rain attenuation.

For BH method with constant rain attenuation, it is obvious that the redundant rain
loss margin will cause low efficiency utilization of spectrum resource, which leads to the
unsatisfaction of demand traffic. For Multi-beam with ACM, although ACM is employed
to deal with changeable communication link quality, the fixed resource allocation manner
of multi-beam system could not manage the uneven traffic demand among beams.
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Figure 8. Traffic matching ratio.

Fortunately, compared with conventional algorithms, the proposed BH method still
obtains better performance, because the proposed method introduces GA to solve the
two-dimensional time–space optimization problem of beam hopping under time-varying
rain attenuation. The proposed method flexibly allocates and efficiently utilizes system
resources to meet the traffic demand as much as possible. More importantly, different from
conventional two-step strategy, through the proposed BH method, it obtains not only the
number of time slots allocated to each beam, but also the arrangement of time slots in beam
hopping period, which reduces the computational complexity.

5. Conclusions and Future Works

This paper studies dynamic beam hopping time slots allocation under the effect of
time-varying rain attenuation. To address this issue, rain attenuation time series based on
Dirac and log-normal distribution is first provided. Then, generally considering uneven
traffic demand, changeable communication link conditions, and different spectrum effi-
ciency, the dynamic allocation method by employing the genetic algorithm is proposed.
It can obtain both the quantity and arrangement of time slots allocated for each beam.
Numeric simulation results show that, compared with conventional methods, the proposed
algorithm can dynamically adjust time slots allocation to meet the spatial heterogeneity
traffic requirements of each beam under the effect of time-varying rain attenuation and
effectively improve system performance.

In future work, we will try to obtain the actual measurement data of satellite commu-
nication rain attenuation, although it may be difficult to acquire.
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