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Abstract: This paper sets out a method for improving the resolution of resonant microwave sen-
sors. Usually, the frequency response of these devices is associated with a low quality factor, and
consequently with a low resolution in terms of tracking capacity of the resonance frequency shift.
Furthermore, since only a finite number of samples can be acquired during the measurement process,
the “true” resonance frequency may not be included in the set of acquired data. In order to have an
accurate estimate of the resonance frequency, high performance systems with very fine frequency
sampling are thus required. To limit these drawbacks, an iterative algorithm is presented which
aims to refine the response of resonant microwave sensors by means of a suitable post-processing.
The algorithm evaluation is first carried out on synthetic data, and then applied on experimental
data referring to a practical scenario, which is inherent to return loss measurements performed by a
microwave patch antenna immersed in a water-glucose solution with different concentrations.

Keywords: microwaves resonant sensors; blood glucose monitoring; signal processing

1. Introduction

Nowadays, microwave sensors are found in a variety of contexts, as their field of
application is extremely broad. They have very interesting peculiarities, and among them
microwave (resonant) sensors based on resonant devices are particularly attractive, as their
frequency response is highly sensitive to the characteristics of the investigated medium in
which they are inserted [1]. For example, referring to biomedical applications, in [2], the
design of a resonant microwave sensor for applications related to blood glucose monitoring
is proposed, showing that, in order to obtain a sensor suitable to provide an accurate esti-
mation of the glucose concentration level, it is necessary to take into account the variations
of both the real and the imaginary part of the complex permittivity of the medium under
investigation as a function of frequency, yet discussed in [3]. In [4], still considering the
problem of blood glucose monitoring, a portable prototype of a planar microwave sensor is
shown, consisting of four distinct hexagonal-shaped complementary split ring resonators.
Instead, in [5], microwave and millimeter wave dielectric spectroscopy performed at the
cellular and molecular level is discussed, in the context of early cancer diagnostics.

In [6], a planar two-dimensional inductor–capacitor circuit is instead used as a reso-
nant sensor for monitoring of temperature, humidity, and pressure. In [7], a chain of com-
plementary split-ring resonators is used both for the measurement of dielectric constants
as well as for faults detection. Resonant sensors are also used for angular displacement
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and velocity measurements in satellite applications [8], for detection of acetone vapour [9],
and for the characterisation of aqueous solutions [10].

An important class of microwave resonant sensors are the frequency-variation sensors,
for which the behavior of the frequency response depends on the variations of the measur-
and [1]. Typically, such sensors can have a low quality factor, which results in a relatively
much wider than ideal frequency response pattern. This in turn results in a low resolution,
and therefore in a low tracking ability of the resonance frequency shift [11]. This problem
can be addressed from the circuit point of view, by means of some active microwave
device which allows an increase in the quality factor of sensors [11,12]. However, another
important aspect to be considered is related to the fact that the frequency response samples,
acquired by the measurement instrumentation, represent a discrete set with finite extension,
so there is a very high probability that the sample associated with the resonance frequency
will not be captured correctly.

In order to limit the above drawbacks, an iterative algorithm is proposed in this work
which leads to post-process the acquired samples of the frequency response, in order to
significantly increase the quality factor and therefore achieve a more accurate estimate
of the resonance frequency. This algorithm has high performance even starting from a
relatively very low number of acquired samples of the sensor response within a frequency
band with a high extension. In this way, even unsophisticated measuring equipment can
be exploited.

An appropriate performance analysis of this algorithm is first carried out using syn-
thetic data; then, the proposed method is tested on measured data collected by a microstrip
patch antenna immersed in a water-glucose solution, which represents a simplified case in
the context of a blood glucose monitoring problem.

2. Iterative Method to Improve the Resolution of Resonant Sensors

The algorithm presented in this section is based on an iterative procedure inspired by
the Papoulis–Gerchberg algorithm [13,14]. However, while the objective of the Papoulis–
Gerchberg algorithm is to estimate the Fourier transform of a signal starting from its
truncated version, the aim of the proposed method is to progressively narrow the sensor
response in such a way to reach, from the starting signal, a sinc function with a very narrow
main lobe, whose point of maxima coincides with the resonance frequency.

Let us consider a signal as that depicted in Figure 1a, which is representative of the
sensor return loss measured between the frequencies fmin and fMAX , namely [15]:

RL( f ) = −20 log10 |Γ( f )|. (1)

The function Γ( f ) into Equation (1) represents the reflection coefficient at the mi-
crowave sensor input. An interesting aspect to be remarked is that here we are going to
work with values expressed in dB for the magnitude of the reflection coefficients (regardless
of the presence of the minus sign in the definition), and thence the computation of the
Fourier transform of the return loss is as equivalent to a “sort” of complex cepstrum [16] of
the inverse Fourier transformation of |Γ( f )|.

A brief consideration is relative to the presence of noise. In this paper, we assume the
signal is smooth enough so that the noise can be considered almost full negligible. However,
in practice this cannot always be ensured, and thence the size of the signal-to-noise ratio
(SNR) must be taken into account in order to be able to adequately process the return loss.
However, one solution is to carry out more acquisitions of the return loss, and then to
perform a sample average of these acquisitions, in order to significantly improve the SNR,
without distorting the “true” signal.

Now, let us move on to introduce the various steps that make up the algorithm we
intend to propose. Assume that RL( fmin) < RL( fMAX) (similar arguments hold true when
RL( fmin) > RL( fMAX)) and that the curve has a single maximum in [ fmin, fMAX ]. The
algorithm consists of the following steps:

1. Determine the frequency value f̃ , such that RL( f̃ ) = RL( fMAX) (refer to Figure 1b).
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2. Define (refer to Figure 1c):

R̃L( f ) =

{
RL( f̃ ) fmin ≤ f ≤ f̃
RL( f ), f̃ ≤ f ≤ fMAX .

(2)

3. Shift R̃L( f ) down by a quantity equal to RL( f̃ ) = RL( fMAX), so that now the “new”
return loss, RL( f ), is as shown in Figure 1d, i.e., it is bereft of end points.

4. Set up a threshold 0 < α < 1 for RL( f )/ max{RL( f )} in order to identify the two
values f min and f MAX such that (Figure 1d):

RL( f min)

max{RL( f )}
=

RL( f MAX)

max{RL( f )}
= α (3)

thus obtaining the narrower frequency observation interval [ f min, f MAX ].
5. Compute the inverse Fourier transform of RL( f ) (for ν ∈ [νmin, νMAX ]):

rl(ν) =
∫ fMAX

fmin

RL( f ) ej2πν f d f (4)

in order to obtain the complex function of Figure 2a. As seen, rl(ν) exhibits an almost
linear unwrapped phase φ(ν) = ∠rl(ν) (bottom panel of Figure 2a) in correspondence
of the main lobe (top panel of Figure 2a), which actually encodes information about
the peak of the resonance frequency.

6. Set up a threshold 0 < β < 1.
7. Determine the two values ν̃min and ν̃MAX for |rl(ν)|/ max{|rl(ν)|} in such a way

(Figure 2a):

|rl(ν̃min)|
max{|rl(ν)|} =

|rl(ν̃MAX)|
max{|rl(ν)|} = β (5)

in order to pick out the interval [ν̃min, ν̃MAX ] inside of which there is a greater reliability
of the phase information.

8. Replace |rl(ν)| with a unitary rectangular window supported over [ν̃min, ν̃MAX ],
whereas the actual phase is instead retained. Consequently, the new signal
r̂l(ν) = ejφ(ν) ∀ ν ∈ [ν̃min, ν̃MAX ] (and equal to zero elsewhere) is given by the curves
in Figure 2b.

9. Determine the magnitude of the Fourier transform of r̂l(ν) (for f ∈ [ f min, f MAX ]):

R̂L( f ) =
∣∣∣∣∫ ν̃MAX

ν̃min

ejφ(ν) e−j2πν f dν

∣∣∣∣ (6)

which returns a new return loss (blue curve of Figure 3) that is narrower than the
original one (of Figure 1a). By calculating the new return loss only in the interval
[ f min, f MAX ], we are doing a sort of magnification in the region in which the resonance
frequency is assumed to be.

10. Compute the inverse Fourier transform of the squared current return loss (i.e., of the
square of the blue curve of Figure 3):

rl(ν) =
∫ f MAX

f min

R̂L
2
( f ) ej2πν f d f (7)

so that the magnitude and the unwrapped phase of rl(ν) are now like the blue curves
sketched in the top and bottom panels of Figure 4a, respectively. It should be noted
that here we are implicitly assuming that R̂L( f ) is nonzero only in [ f min, f MAX ]. By
comparing the previous and the current version of rl(ν), now the magnitude main lobe
is wider (this is due to squaring R̂L( f ) in (7)) and the region where the instantaneous
phase is linear wider. In fact, in correspondence with the threshold β, two new values
of ν are identified, i.e., |rl(ν̂min)|/ max{rl(ν)} = |rl(ν̂MAX)|/ max{rl(ν)} = β such
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that ν̂min < ν̃min and ν̂MAX > ν̃MAX . By way of example, if from this step one returned
to step 7 and the same step 7 were performed together with steps 8 and 9, the new
return loss would be given by the red curve of Figure 5.

11. Repeat points 7 to 10 until the function rl(ν) is such that |rl(ν)|/ max{|rl(ν)|} ≥
β ∀ ν ∈ [νmin, νMAX ] and, in the end, compute the final return loss by Equation (6),
whose point of maxima gives the estimated resonance frequency. For greater clarity, it
is worth remembering that νmin and νMAX are the extremes of the whole observation
interval of the function rl(ν).

For a better understanding of the algorithm process, a flowchart description is reported
in Figure 6.

It is worthwhile to remark that the different Fourier transformations involved in the
previous steps are actually achieved by the discrete time Fourier transform (DTFT) proce-
dure, which allows to control in a very flexible way both the number and the positioning
(e.g., periodic or aperiodic) of the observation points of the various transformations in spe-
cific intervals. This entails that even starting with N f number of points, which correspond
to the frequencies actually collected by the sensor, the number of points in the ν-domain,
Nν, and subsequently in the f -domain, N̂ f , can be chosen on the basis of convenience. This
implies a very advantageous practical aspect, since it may happen that the frequency step
allowed by the acquisition system is not sufficiently fine for the actual resonance peak
to be captured well. The proposed method, on the other hand, allows one to reduce the
difference between the frequencies of adjacent samples, and therefore a better estimate of
the resonance frequency is expected.

(a) (b)

(c) (d)

Figure 1. Illustrating steps 1 to 4. (a) Signal mimicking the return loss of a resonant sensor. (b) Identification of the frequency
value f̃ . (c) Removing all values of the return loss below RL( f̃ ). (d) Identification of the frequency values f min and f MAX .
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(a) (b)

Figure 2. Illustrating steps 5 to 8. (a) magnitude and phase of rl(ν); (b) magnitude and phase of r̂l(ν).

Figure 3. After step 9, RL( f ), computed only in [ f min, f MAX ], is narrowed (blue curve) as compared
to the initial one (black curve).

(a) (b)

Figure 4. Step 10. (a) comparing the obtained rl(ν) (blue lines) and the previous one (black line).
(b) Next windowing step over the corresponding larger interval in the ν-domain.
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Figure 5. Comparison between the new return loss (red curve) obtained from the function r̂l(ν) of
Figure 4b with the previous ones.

Figure 6. Flowchart describing the proposed algorithm.

Now, before moving on to the assessment of the algorithm under consideration, it is
worth investigating further some practical aspects in relation to how α is determined and
the implementation aspects of the Fourier transforms related to the functions rl(ν) and
R̂L( f ). In particular, Equation (3) would require that, strictly speaking, α be determined
with respect to the maximum value of the return loss, which however is actually unknown
in real scenarios. However, from a practical point of view, in reality α is calculated with
respect to the maximum value of the acquired return loss, that is, max{RL( f )} is the
highest value among those acquired during the measurement process. As for computation
of rl(ν) and R̂L( f ), Equation (4) is implemented by sampling in Nν points of the interval
[νmin, νMAX ] the inverse DTFT of the acquired N f points in [ fmin, fMAX ] of the initial return
loss; Equation (6) is implemented by sampling in N̂ f points of the interval [ f min, f MAX ] the
DTFT of the rl(ν) samples (of the total Nν samples) that fall in [ν̃min, ν̃MAX ]. Obviously, it
is possible to change parameters Nν, N̂ f , the positioning of the samples of rl(ν) and R̂L( f )
and also the thresholds α and β even during the execution of the algorithm, in order to
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perform a kind of “dynamic” performance control. Furthermore, we choose to keep the
extension of the temporal observation interval constant, thus fixing ab initio in the way
that is explained below the values of νmin and νMAX , even if, in general, the value of these
parameters could also be changed while running the algorithm.

Another important consideration concerns the setting of the acquisition band, i.e., the
choice of fmin and fMAX. Due to the algorithm structure, in order to obtain an accurate
estimate of the resonance frequency, it is required that fmin and fMAX must be such that the
“acquired” return loss has an increasing trend up to the point of maxima (or to the points of
maxima in case of multiple acquired maximum values), inside [ fmin, fMAX ], and then after
the same point is decreasing. Thence, during the acquisition stage, a simple procedure for
analysing the trend of the initial return loss could also be set up in order to verify whether
the above condition is satisfied.

Finally, the frequency and time steps should be also considered. In fact, if the various
functions are sampled uniformly (which we assume below), then there is an initial fre-
quency step given by ∆ f = ( fMAX − fmin)/(N f − 1) (assuming that any sampling errors
on the part of the measurement system are negligible), a subsequent frequency step given
by ∆̂ f = ( f MAX − f min)/(N̂ f − 1), and a time step given by ∆t = (νMAX − νmin)/(Nν − 1),
with νmin = −νMAX = −0.5/∆ f .

In the following, the proposed algorithm is applied both to synthetic and experimental
signals by resorting to the environment for numerical computation MATLAB [17].

3. Iterative Algorithm Application to Synthetic Data

In this section, we turn to check the presented algorithm by employing a simple
signal that mimics the response of a resonant sensor. The main aim is to better clarify
the key features of the method. To this end, we initially consider the following values
for parameters: N f = 1001, Nν = 212 = 4096, N̂ f = 4096, fmin = − fMAX = −0.5 GHz.
From the values of the these parameters, it follows that the initial frequency step is equal
to ∆ f = ( fMAX − fmin)/(N f − 1) = 1 MHz and νmin = −νMAX = −0.5/∆ f = −0.5µs.
Note that, considering a frequency observation band centred with respect to f = 0, it
means addressing the problem in base-band and thence, in general, it entails to estimate
the frequency shift, fshi f t, with respect to the midpoint frequency of a generic observation
band. Consequently, the resonance frequency is simply given by the sum of the central
frequency of the original band (of the band-pass signal) plus the frequency shift.

Now, let us consider a return loss in [ fmin, fMAX ] = [−0.5 GHz, 0.5 GHz] given by the
following relationship:

RL( f ) =


10× e

− ( f + 200.5×106)2

2 (0.07×109)
2

+ 5 aaa fmin ≤ f ≤ −200.5× 106

10× e
− ( f + 200.5×106)2

2 (0.10×109)
2

+ 5 aaa− 200.5× 106 ≤ f ≤ fmin

(8)

i.e., the combination of two “half” Gaussian functions, both with maximum values equal
to 15 and mean (point of maxima) equal to −200.5 MHz. However, the first one has a
standard deviation of 70 MHz while the second one of 100 MHz. A curve of this type can
be close to the actual frequency response of a resonant sensor. It is worth pointing out
that, for how the values of the above parameters are set, the frequency −200.5 MHz is not
included in the set of initial return loss points. Therefore, here we propose both to tighten
the initial return loss and to more accurately identify the frequency shift.

Figure 7 shows the behavior of the percentage error, PE = |( fshi f t − fshi f t)/ fshi f t| ×
100%, as a function of the two thresholds α and β, with fshi f t and fshi f t being the estimated
and actual frequency shift (i.e., fshi f t = −200.50 MHz), respectively. As can be seen, these
thresholds have a relatively strong impact on PE values, being able to notice that they are
non-linearly related to PE. In particular, it can be observed that for the considered cases,
the minimum percentage error value is for (α, β) = (0.85, 0.05).
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Figure 8 shows the results of applying the algorithm specifically in the case in which
(α, β) = (0.85, 0.05). Figure 8a shows both the (normalised) initial return loss (blue curve),
given by Equation (8), and the normalised one (red curve) obtained by applying steps
1 to 3 of the algorithm, which has no end points. The magnitudes of the (normalised)
inverse DTFTs of these signals are reported in Figure 8b, which shows that they differ
significantly from zero over a much smaller interval than the entire observation one
[νmin, νMAX ] = [−0.5, 0.5]µs. These are actually the parts that must be retained. Indeed,
it is clear from Figure 8c that in this smaller interval the phase of rl(ν) shows a different
slope as compared to the regions where the magnitude of rl(ν)/ max{|rl(ν)|} is negligible.
Therefore, this justifies why we focus on the main lobe of rl(ν)/ max{|rl(ν)|}. Furthermore,
it should be noted that if the end points are removed, the function rl(ν) has a different
behaviour than that relating to the case in which this removal is not performed, as can be
clearly recognised by observing the blue and red curves of Figure 8b,c. In particular, by
looking at the inset of Figure 8b, it can be seen that removing the end points allows for a
larger interval [ν̃min, ν̃MAX ] (which is positive for narrowing the RL). In the end, Figure 8d
shows the comparison between the initial return loss and the final return losses obtained
at the end of the full application of the algorithm, although it must be taken into account
that the blue dot sinc-like curve is relative to the case in which steps 1 to 3 are not applied
to the initial return loss (blue curve of Figure 8a). In fact, although the final curves turns
out to be much tighter than the initial ones; to the blue dot curve corresponds PE ≈ 9.23%
while to the red one corresponds PE ≈ 0.09%. Therefore, this shows that the removal of
the end points turns out to be beneficial from a performance point of view.

Now, let us focus on the resolution capability of the algorithm under consideration.
Here, we refer to the Rayleigh criterion for the diffraction limit to resolution, therefore
going to verify if it is possible to distinguish two frequency shifts if their distance is at
least equal to half the width of the main lobe of the “correct” final return loss. So, referring
to the red curve of Figure 8d, we have that the width (beamwidth) of its main lobe is
approximately equal to BW = 2.01 MHz. Consequently, for what is said above, let us now
consider the case in which the initial return loss has an actual frequency shift equal to
fshi f t + BW/2 ≈ −199.50 MHz (remember that fshi f t = −200.50 MHz), that is, it is shifted
to the right with respect to the blue curve of Figure 8a of BW/2 (refer to Figure 9a). As
can be seen from Figure 9b, in which now the blue curve coincides with the red curve of
Figure 8d whilst the red-dashed curve with the final return loss of the present case, the
performance in terms of resolution is satisfactory, as the point of maxima of the above
red dashed curve has a high correspondence with −199.50 MHz. In fact, even in this
case the percentage error is PE ≈ 0.09%. Obviously, also in this case, it has been placed
(α, β) = (0.85, 0.05), N f = 1001, Nν = N̂ f = 4096.

Finally, it is worth asking about the performance behaviour of the algorithm in
question when changing the number of initial points, N f . To do this, let us consider
Figure 10, which shows the trend of the percentage error as a function of N f , again for
(α, β) = (0.85, 0.05), Nν = N̂ f = 4096, and fshi f t = −200.50 MHz. Looking at the figure,
it can be seen that the number of samples of the initial return loss also impacts the per-
formance in a non-linear way, even if higher values of N f correspond, in a wide sense, to
smaller values of PE. In fact, this can be confirmed by the negative slope of the linear re-
gression straight line shown in red in the same figure. Furthermore, even if approximately
between 600 and 900 samples the difference between the computed values of PE and the
above linear regression straight line is relatively marked, compared with what is obtained
for the other values of N f , it is also true that the computed values of the percentage error
after 600 samples starts to drop and then remain below 1%. However, it can also be ob-
served that when N f goes from 1001 to 101, the performance degradation is still small, as
the percentage error does not exceed 2%.
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4. Iterative Algorithm Application to Experimental Data

In this section, the algorithm previously discussed is applied to return loss data
captured by the resonant microwave sensor described in [2], in the context of blood glucose
monitoring. This sensor consists of a standard inset-fed microstrip patch antenna working
in the Industrial, Scientific, Medical (ISM) band around the frequency f0 = 2.4 GHz. The
substrate has a relative dielectric constant equal to εr = 10.

The accurate design of a typical microwave sensor able to capture dielectric variations
of human body parameters should be performed by starting from a proper definition
of a multilayer model for the human body portion assumed as the radiation medium.
Specifically, an accurate body stratification should be assumed, by considering the proper
behaviour of complex permittivity versus frequency (i.e., the dispersive behaviour) for
each layer. The effectiveness of the dielectric models assumed for the various layers and
the performance of the methods used to fit those models play a crucial role in the accuracy
of the design process of the microwave sensor [2,3,18,19].

In this paper, without affecting the conceptual validity of the algorithm under in-
vestigation, we consider a simplified scenario that consists in estimating the resonance
frequency of the sensor immersed in a water-glucose solution as the glucose concentration,
GC, inside it varies. Consequently, consistent with the foregoing, for the design of the
above sensor the properties of a water-glucose solution were first investigated, thus charac-
terising the behaviour of its complex permittivity (the dielectric constant as well as the loss
tangent) as a function of the concentration of glucose levels. Subsequently, data obtained
from the above analysis were used to proceed to the actual design of the sensor through
an optimisation performed using the Ansys software, in such a way as to have optimum
matching conditions at the prescribed frequency f0 = 2.4 GHz. In Figure 11, a photograph
of the fabricated microwave sensor is reported, which is immersed into water-glucose
solutions to perform reflection measurements at the Microwave Laboratory of University
of Calabria.

Figure 12 shows the experimental (normalised) return loss measured for the water-
glucose solution with different values of the glucose concentration where it can be clearly
appreciated how the resonance frequency shifts with GC.

To run the sharpening algorithm, the data measured within the frequency band
[2, 3] GHz are first shifted at the band [−0.5, 0.5] GHz. Accordingly, as mentioned above,
this implies that the resonance frequency estimated by the algorithm returns the frequency
shift, fshi f t, with respect to the middle frequency of the measurement band, i.e., with respect
to 2.5 GHz. For each measured curve, the algorithm is run for different values of threshold
N f and always for (α, β) = (0.85, 0.05) and Nν = N̂ f = 4096. The results are summarised
in Table 1, whilst Figure 13 shows the comparisons between the curves of Figure 12 and the
curves representing the final return loss obtained after applying the algorithm presented
above, for N f = 1001, being able to observe well that the curves relating to the final return
loss are much narrower than the initial ones and the main lobes are clearly distinguish-
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able from each other. As previously ascertained, since the frequency shift estimation is
slightly dependent on N f , assuming the above is also valid in this case, it is appropriate
to assume as the most reliable frequency shift, for each value of the glucose concentration
(that is, for each case), the one corresponding to N f = 1001 and (α, β) = (0.85, 0.05). How-
ever, referring to Figure 14, which shows the behaviour of the sample mean and sample
standard deviation curves as functions of glucose concentration, derived from the values
in Table 1 (e.g., the three values −64.62 MHz, −64.24 MHz, and −65.02 MHz in Table 1,
for GC = 100 mg/dL, have µshi f t ≈ −64.63 MHz and σshi f t ≈ 0.39 MHz, as can be appre-
ciated qualitatively in Figure 14), in this case it is possible to note that the values of the
sample standard deviation are all “sufficiently” much smaller than the respective values
of the sample mean, thence indicating a relatively small dispersion and therefore a high
precision, with respect to the N f variation, for each glucose concentration.

Table 1. Estimated frequency shift, fshi f t, for different values of the glucose concentration, GC. The values of the other
parameters are: Nν = 4096, N̂ f = 4096, fmin = − fMAX = −0.5 GHz, (α, β) = (0.85, 0.05).

GC = 100 mg/dL GC = 150 mg/dL GC = 200 mg/dL GC = 250 mg/dL GC = 300 mg/dL

N f = 1001 −64.60 MHz −56.29 MHz −49.24 MHz −42.90 MHz −38.44 MHz

N f = 501 −64.24 MHz −55.92 MHz −49.07 MHz −42.87 MHz −38.26 MHz

N f = 101 −65.02 MHz −56.14 MHz −48.73 MHz −43.28 MHz −39.01 MHz

Figure 11. Fabricated microwave sensor and measurement setup at the Microwave Laboratory of
University of Calabria.
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different values of the glucose concentration.
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Figure 13. Comparison between the measured normalised return loss (blue curves) and the ones (red curves) returned by
applying the proposed algorithm (a–e). (f) Shows the comparison between the red curves of (a–e). The parameters were set
as follows: N f = 1001, Nν = N̂ f = 4096, (α, β) = (0.85, 0.05).
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5. Conclusions

In this work, an iterative algorithm was presented by which to significantly increase
the resolution of resonant microwave sensors, in such a way as to be able to track the
shift of the resonance frequency with great accuracy. A test procedure was first carried
out on synthetic signals, generated ad hoc, in order to highlight its peculiar characteristics.
Subsequently, the algorithm was successfully applied to a simplified scenario related to the
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problem of blood glucose monitoring. The above algorithm revealed a high flexibility from
the implementation point of view, and the achieved results proved to be satisfactory. More
complex test scenarios will be considered in future works.
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