Design, Application, and Verification of the Novel SEU Tolerant Abacus-Type Layouts
Abstract
:1. Introduction
2. Circuits Design
3. Experimental Setup
4. Irradiation Results and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leroux, P. Radiation Tolerant Electronics. Electronics 2019, 8, 730. [Google Scholar] [CrossRef] [Green Version]
- Gaspard, N.J.; Jagannathan, S.; Diggins, Z.J. Technology Scaling Comparison of Flip-Flop Heavy-Ion Single-Event Upset Cross Sections. IEEE Trans. Nucl. Sci. 2013, 60, 4368–4373. [Google Scholar] [CrossRef]
- Cai, C.; Fan, X.; Liu, J. Heavy-Ion Induced Single Event Upsets in Advanced 65 nm Radiation Hardened FPGAs. Electronics 2019, 8, 323. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Cai, C.; Liu, T. Design and verification of universal evaluation system for single event effect sensitivity measurement in very-large-scale integrated circuits. IEICE Electron Express 2019, 16, 20190196. [Google Scholar] [CrossRef]
- Roche, P.; Autran, J.L.; Gasiot, G. Technology downscaling worsening radiation effects in bulk: SOI to the rescue. In Proceedings of the 2013 Technical Digest—International Electron Devices Meeting (IEDM), Washington, DC, USA, 9–11 December 2013. [Google Scholar]
- Ahlbin, J.R.; Gadlage, M.J.; Ball, D.R. The Effect of Layout Topology on Single-Event Transient Pulse Quenching in a 65 nm Bulk CMOS Process. IEEE Trans. Nucl. Sci. 2010, 57, 3380–3385. [Google Scholar] [CrossRef]
- Glorieux, M.; Evans, A.; Ferlet-Cavrois, V. Detailed SET Measurement and Characterization of a 65nm Bulk Technology. IEEE Trans. Nucl. Sci. 2017, 64, 81–88. [Google Scholar] [CrossRef]
- Chatterjee, I.; Narasimham, B.; Mahatme, N.N. Impact of Technology Scaling on SRAM Soft Error Rates. IEEE Trans. Nucl. Sci. 2014, 61, 3512–3518. [Google Scholar] [CrossRef]
- Ferlet-Cavrois, V.; Massengill, L.W.; Gouker, P. Single Event Transients in Digital CMOS—A Review. IEEE Trans. Nucl. Sci. 2013, 60, 1767–1790. [Google Scholar] [CrossRef]
- Shu, W.; Chang, C.; Bingxu, N. Measurement and evaluation of the Single Event Effects of high-performance SerDes circuits. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 1012, 165618. [Google Scholar]
- Sarkar, S.; Adak, A.; Singh, V. SEU tolerant SRAM cell. In Proceedings of the 2011 12th International Symposium on Quality Electronic Design, Santa Clara, CA, USA, 14–16 March 2011. [Google Scholar]
- Chang, I.J.; Kim, J.J.; Park, S.P. A 32 kb 10T Sub-Threshold SRAM Array With Bit-Interleaving and Differential Read Scheme in 90 nm CMOS. IEEE J. Solid-State Circuits 2009, 44, 650–658. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Yang, Y.; Zhang, J. A novel SEU hardened SRAM bit-cell design. IEICE Electron. Express 2017, 14, 20170413. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Montoye, R.K.; Nakamura, Y.; Batson, K.A.; Eickemeyer, R.J.; Dennard, R.H.; Haensch, W.; Jamsek, D. An 8T-SRAM for Variability Tolerance and Low-Voltage Operation in High-Performance Caches. IEEE J. Solid-State Circuits 2008, 43, 956–963. [Google Scholar] [CrossRef]
- Dang, L.; Jin, S.K.; Chang, I.J. We-Quatro: Radiation-hardened SRAM Cell with Parametric Process Variation Tolerance. IEEE Trans. Nucl. Sci. 2017, 64, 2489–2496. [Google Scholar] [CrossRef]
- Peng, C.; Huang, J.; Liu, C. Radiation-Hardened 14T SRAM Bitcell with Speed and Power Optimized for Space Application. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 27, 407–415. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, Y.; Zhu, W. Quadruple cross-coupled latch-based 10T and 12T SRAM bit-cell designs for highly reliable terrestrial applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 66, 967–977. [Google Scholar] [CrossRef]
- Malagón, D.; Bota, S.A.; Torrens, G. Soft error rate comparison of 6T and 8T SRAM ICs using mono-energetic proton and neutron irradiation sources. Microelectron. Reliab. 2017, 78, 38–45. [Google Scholar] [CrossRef]
- Guo, J.; Zhu, L.; Sun, Y. Design of area-efficient and highly reliable RHBD 10T memory cell for aerospace applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 991–994. [Google Scholar] [CrossRef]
- Jahinuzzaman, S.M.; Rennie, D.J.; Sachdev, M. A Soft Error Tolerant 10T SRAM Bit-Cell With Differential Read Capability. IEEE Trans. Nucl. Sci. 2009, 56, 3768–3773. [Google Scholar] [CrossRef]
- Hansen, D.L.; Miller, E.J.; Kleinosowski, A. Clock, flip-flop, and combinatorial logic contributions to the SEU cross section in 90 nm ASIC technology. IEEE Trans. Nucl. Sci. 2009, 56, 3542–3550. [Google Scholar] [CrossRef]
- Wang, T.; Chen, L.; Dinh, A. Single-Event Transients Effects on Dynamic Comparators in a 90 nm CMOS Triple-Well and Dual-Well Technology. IEEE Trans. Nucl. Sci. 2009, 56, 3556–3560. [Google Scholar] [CrossRef]
- Zhou, H.G.; Tan, S.B.; Song, Q. A 10T Cell Design without Half Select Problem for Bit-Interleaving Architecture in 65nm CMOS. Appl. Mech. Mater. 2013, 373, 1607–1611. [Google Scholar] [CrossRef]
- Zhang, G.; Shao, J.; Liang, F.; Bao, D. A novel single event upset hardened CMOS SRAM cell. IEICE Electron Express 2012, 9, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Shah, J.S.; Nairn, D.; Sachdev, M. A 32 kb macro with 8T soft error Robust, SRAM cell in 65-nm CMOS. IEEE Trans. Nucl. Sci. 2015, 62, 1367–1374. [Google Scholar] [CrossRef]
- Ding, L.; Gerardin, S.; Bagatin, M.; Bisello, D.; Mattiazzo, S.; Paccagnella, A. Radiation tolerance study of a commercial 65 nm CMOS technology for high energy physics applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 831, 265–268. [Google Scholar] [CrossRef]
- Sierawski, B.D.; Mendenhall, M.H.; Weller, R.A. CRÈME-MC: A physics-based single event effects tool. In Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Knoxville, TN, USA, 30 October–6 November 2010; pp. 1258–1261. [Google Scholar]
- Black, J.D.; Dame, J.A.; Black, D.A. Using MRED to Screen Multiple-Node Charge-Collection Mitigated SOI Layouts. IEEE Trans. Nucl. Sci. 2019, 66, 233–239. [Google Scholar] [CrossRef]
- Cai, H.; Wang, Y.; Naviner, L. Robust Ultra-Low Power Non-Volatile Logic-in-Memory Circuits in FD-SOI Technology. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 847–857. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Liu, R. A Quatro-Based 65 nm Flip-Flop Circuit for Soft-Error Resilience. IEEE Trans. Nucl. Sci. 2017, 64, 1554–1561. [Google Scholar] [CrossRef]
- She, X.; Li, N.; Farwell, W.D. Tunable SEU-Tolerant Latch. IEEE Trans. Nucl. Sci. 2010, 57, 3787–3794. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, J.; Fan, S. Single Event Upset Sensitivity of D-Flip Flop: Comparison of PDSOI with Bulk Si at 130 nm Technology Node. IEEE Trans. Nucl. Sci. 2017, 64, 683–688. [Google Scholar] [CrossRef]
Energies (MeV) | Ranges (µm) | Tilt (°) | Effective LET (MeV·cm2/mg) | Modes |
---|---|---|---|---|
1695.3 | 99.2 | (0, 0) | 78.3 | Dynamic |
1695.3 | 99.2 | (0, 0) | 78.3 | Static |
1623.8 | 95.3 | (0, 45) | 111.7 | Static |
1623.8 | 95.3 | (45, 45) | 158.0 | Static |
1668.8 | 97.8 | (30, 0) | 90.8 | Static |
Node | Striking Position | Critical Charge |
---|---|---|
nm0 or nm1 | off-state PMOS | 5.2 fC |
nm0 or nm1 | off-state NMOS | No Upset |
m0 or m1 | off-state PMOS | No Upset |
m0 or m1 | off-state NMOS | No Upset |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Li, Z.; He, Z.; Chi, Y. Design, Application, and Verification of the Novel SEU Tolerant Abacus-Type Layouts. Electronics 2021, 10, 3017. https://doi.org/10.3390/electronics10233017
Sun Y, Li Z, He Z, Chi Y. Design, Application, and Verification of the Novel SEU Tolerant Abacus-Type Layouts. Electronics. 2021; 10(23):3017. https://doi.org/10.3390/electronics10233017
Chicago/Turabian StyleSun, Yi, Zhi Li, Ze He, and Yaqing Chi. 2021. "Design, Application, and Verification of the Novel SEU Tolerant Abacus-Type Layouts" Electronics 10, no. 23: 3017. https://doi.org/10.3390/electronics10233017
APA StyleSun, Y., Li, Z., He, Z., & Chi, Y. (2021). Design, Application, and Verification of the Novel SEU Tolerant Abacus-Type Layouts. Electronics, 10(23), 3017. https://doi.org/10.3390/electronics10233017