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Abstract: Thyroid disease is characterized by abnormal development of glandular tissue on the
periphery of the thyroid gland. Thyroid disease occurs when this gland produces an abnormally
high or low level of hormones, with hyperthyroidism (active thyroid gland) and hypothyroidism
(inactive thyroid gland) being the two most common types. The purpose of this work was to create
an efficient homogeneous ensemble of ensembles in conjunction with numerous feature-selection
methodologies for the improved detection of thyroid disorder. The dataset employed is based on
real-time thyroid information obtained from the District Head Quarter (DHQ) teaching hospital, Dera
Ghazi (DG) Khan, Pakistan. Following the necessary preprocessing steps, three types of attribute-
selection strategies; Select From Model (SFM), Select K-Best (SKB), and Recursive Feature Elimination
(RFE) were used. Decision Tree (DT), Gradient Boosting (GB), Logistic Regression (LR), and Random
Forest (RF) classifiers were used as promising feature estimators. The homogeneous ensembling
activated the bagging- and boosting-based classifiers, which were then classified by the Voting
ensemble using both soft and hard voting. Accuracy, sensitivity, mean square error, hamming loss,
and other performance assessment metrics have been adopted. The experimental results indicate the
optimum applicability of the proposed strategy for improved thyroid ailment identification. All of
the employed approaches achieved 100% accuracy with a small feature set. In terms of accuracy and
computational cost, the presented findings outperformed similar benchmark models in its domain.

Keywords: thyroid disorder; ensemble; voting; attribute selection; machine learning; intelligent healthcare

1. Introduction

The thyroid gland is located near the base of the neck and is responsible for secreting
thyroid hormones, which play an important role in human metabolism [1]. When this
gland is active, it secretes an excessive amount of hormone, which is referred to as hyper-
thyroidism. In contrast, insufficient thyroid hormone secretion results in hypothyroidism.
The thyroid gland creates the thyroid hormones levothyroxine also known as T4 and
triiodothyronine, also referred to as T3 in [2,3].

Hyperthyroidism is characterized by an abnormally high level of secretion. The
human body’s metabolism is quick, and a person may have symptoms such as rapid
weight loss, irregular heartbeat, high blood pressure, and so on [4,5]. On the contrary,
hypothyroidism is caused by a lack of hormone secretion, which may cause a person to
experience sluggishness in metabolism, abrupt weight gain, slow heartbeat with a low pulse
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rate. Another very common sign is low blood pressure. All these are the main symptoms
of hypothyroidism [6,7]. For early prediction and diagnosis of thyroid disease, a blood
test is usually performed by most medical experts. T4, T3, and TSH hormone levels are
measured [8]. It is very important and the need of the hour to raise public awareness related
to the symptoms, kinds, and diagnostic methods of this disease. Thyroid function testing is
the most commonly used diagnostic test in the endocrine system. It is used as a screening
tool to confirm the proper diagnosis of hyperthyroidism and hypothyroidism, to evaluate
the effectiveness of medicinal treatment, and to monitor patients with differentiated thyroid
cancer [9]. However, these methods are complex, time taking, and have low diagnosis
efficiency, with soreness and bruising effects on the human body [10].

In the last few years, artificial intelligence has been widely used in various aspects
for the better classification of thyroid disease. Aside from clinical examination, machine
learning (ML) algorithms have been used effectively to achieve proper interpretation of
thyroid data and early diagnosis of thyroid illness. Several studies have been conducted to
determine the efficacy of these approaches. For example, Singh in [11] used thyroid nodule
ultrasound images to apply the K-nearest neighbors (KNN), support vector machines
(SVM), and Bayesian classification. Erol et al. [12] used a multilayer perceptron and radial
basis function neural (MLPRBFN) network to classify thyroid disease structurally. Aside
from these research findings, there are others (stated in Section 1.2) that use a wide range
of learning methodologies to discover some significant insights about thyroid illness.

The goal of this study was to develop an efficient, homogeneous ensemble of en-
sembles that could be utilized, in conjunction with some attribute-selection strategies,
to improve thyroid illness detection. Two thyroid datasets were examined in this study.
After completing the necessary preprocessing stages, the Select From Model (SFM), Re-
cursive Feature Elimination (RFE), and Select K-best (SKB) feature-selection techniques
were deployed. The Logistic Regression (LR), Random Forest (RF), Decision Trees (DT),
and Gradient Boosting (GB) were used for attribute estimation. The homogeneous en-
semble was used to activate the bagging- and boosting-based classifiers, which were then
further graded by voting ensemble (soft and hard) voting. Accuracy, mean square error
(MSE), hamming loss, and various other performance evaluation measures have been
implemented. This is the order in which the rest of the manuscript is structured: classifi-
cation of thyroid disease by using ML methodologies is discussed in detail in Section 1,
which includes a review of the relevant literature. Section 2 illustrates how the tests will
be carried out according to the planned process or methodology. A detailed description
of the used datasets is also included in this part. Section 3 summarizes the findings and
results with discussions. Lastly, concluding notes are included in the final section to wrap
off this research.

1.1. Research Contribution

Aside from the clinical and necessary examination, correct interpretation of thyroid
illness is also necessary for better diagnosis. Therefore, this work contributed the following
findings for the efficient and effective treatment of thyroid disorder.

• Researchers achieved a lot of success in detecting thyroid illnesses, however, it is
advised to utilize several parameters to diagnose thyroid problems. More criteria
would necessitate more clinical testing for patients, which would be both costly and
time-demanding. As a result, predictive models must be constructed which use as few
parameters as feasible in detecting the illnesses while preserving both money and time
for patients. When compared to prior studies, the dataset of this research contributes
fewer, but very crucial and effective characteristics for better diagnosis of the disease;

• It is critical to clean the sample data before modeling to assure that the data best
reflect the situation. A dataset may comprise the missing and extreme values that
are outside of the anticipated range and differ from the rest of the data. These are
known as outliers, while the understanding and elimination of these outlier values
may frequently enhance the performance of the machine-learning models. Therefore,
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in this study, the early preprocessing includes the detection and replacement of the
missing values and the outliers with the mean values of the used features;

• The feature-selection process uses feature significance ratings with the help of esti-
mated feature importance from the used dataset. The training dataset is used to choose
features, and then the model is trained using the selected features and evaluated on
the test set. Both datasets were subjected to the XGBoost (XGB) feature importance to
acquire a clear picture of the attribute relevance before selection;

• Feature selection is a procedure in which you automatically pick those characteristics
in your dataset that contribute the most to the output variables. The presence of
irrelevant characteristics in your data might reduce the performance of many models.
Feature selection before modeling not only improves accuracy but also reduces training
time and the likelihood of overfitting. In this study, we implemented three popular
attribute-selection techniques which are; SFM, RFE, and SKB;

• The concept of a multilevel ensemble is introduced in this experimental work where
the predictions of the bagging and boosting ensemble classifiers further undergo the
voting ensemble with soft and hard voting. This methodology obtained state-of-the-
art results on both proposed and open source datasets. For performance evaluation,
multiple metrics such as recall, hamming loss, precision, etc., have been used.

1.2. Literature Review

In the healthcare industry, data-mining techniques such as classification, segmentation,
correlation, clustering, and regression may be used to detect diseases [13]. Every year, a sig-
nificant number of people are hospitalized with thyroid disorders. As a result, obtaining an
early and accurate diagnosis is becoming increasingly challenging for healthcare facilities.
The mentioned literature review will highlight several machine-learning techniques used
to classify thyroid illness in various research. Nowadays, early detection and indications
play a very crucial part in the effective diagnosis of various diseases. This requires the use
of ML algorithms for accurate prediction. Mushtaq et al. [14] used the KNN algorithm for
breast cancer classification. It provides a method for determining the distance between
two sets of data. The performance of KNN is dependent on the K value, which is the
number of adjacent entities. To discover an effective KNN, this research investigates KNN
performance employing multiple distance functions and K values. There are multiple
research domains in which researchers used different ML techniques for the better and
more efficient detection and diagnosis of diseases.

The research in [15] employs two ML methods to identify thyroid conditions by using
SVM and RF. The Thyroid Dataset from the University of California Irvine (UCI) was used
for the investigation. Both methods were evaluated in terms of accuracy, recall, F-score, and
precision. The SVM and RF models scored 91%, and 89% accuracies, respectively. Studies
showed that SVM outperforms RF in the identification of thyroid issues. ML classifiers
were used to predict thyroid issues in [16]. Data preparation techniques were adopted to
make the data more basic so that algorithms could detect the risk of patients acquiring this
disease. Machine learning is widely used for disease prediction. SVM, DT, LR, artificial
neural network (ANN), and KNN are some of the approaches that scientists employ to
predict if a patient may acquire thyroid illness. A website has been built to collect user
input to provide educated estimations regarding type of illness. Sonuc et al. in [17] divided
thyroid illness into three different groups based on data from Iraqi citizens, where some of
them had an overactive thyroid and others had hypothyroidism. The SVM, DT, RF, NB, LR,
KNN, and linear discriminant analysis (LDA), in addition to multilayer perceptron (MLP),
was implemented to classify thyroid issues. The most accurate classifiers in descending
order were RF, DT, NB, LR, KNN, and LDA, followed by MLP with 89 and 88% accuracy,
respectively. The supervised learning approach was selected for inclusion in the study [18].
Anaconda and python platforms were used to create these algorithms for identifying the
type of thyroid illness. The authors employed a variety of methods, including SVM, KNN,
DT, naïve Bayes (NB), RF, and LR, among others. The results were plotted to evaluate how
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well LR matches up to RF in terms of accuracy. A low-cost thyroid diagnostic report is
now available to patients using this technique. To identify thyroid texture, researchers in
this study [19] offer three machine-learning-based methods known as the SVM, RF, and
ANN. The researchers generated 30 spectral energy-based attributes for these classifiers
during training via autoregressive modeling on a signal variant of 2D thyroid US pictures.
Instead of using text-based descriptors, they employed image-based characteristics to
illustrate thyroid tissues. When all three methods were used collectively, accuracy hovered
around 90%.

Zhu et al. [20] proposed the use of ANN to develop a model for distinguishing benign
from malignant nodules and for enhancing the accuracy of US-based objective diagno-
sis. Key sonographic markers and statistically significant changes made up the input
layer of the ANN, which was utilized to predict nodule malignancy. The size, structure,
echogenicity, internal composition, nodules, and peripheral halo of ultrasonography ma-
lignant nodules had a substantial association. When used on the training cohort, the
ANN accurately predicted 82.3% of thyroid cancer cases with a value of 0.818 for area
under the curve (AUC) and 84.5% accuracy rate. This method’s findings had an accuracy,
sensitivity, and specificity of 83.1%, 83.8%, and 81.82 %, respectively, in the validation
cohort. The AUC score for this investigation was 0.828. Clinical datasets were used in [21]
and compared SVM, NB, and DT classifiers. The SVM algorithm is most extensively
used in ML. Researchers mixed two feature selection techniques to compare the model’s
performance. The filter technique was used first to pick the features, and the classifier’s
effectiveness was assessed using the wrapper approach. The Fisher Discriminant Ratio
(FDR) value was being used in binary classification to rank features based on significance.
Three performance indicators were used to evaluate the addition of advanced features to
the categorization model. Sequential forward and sequential backward selection are two
well-known systematic attribute selection techniques, utilized in this case analysis [22]. In
nonlinear optimization problems, the evolutionary method is a popular strategy for picking
features. The SVM was used to detect hypothyroidism. Thyroid disease was examined
using two distinct types of data in this study. The first dataset was used from the UCI
repository, while the second dataset featured real data from the Imam Khomeini Hospital
at the K. N. Toosi University of Technology’s Intelligent System Lab. To speed up CH diag-
nosis and therapy selection, a data-mining approach was applied by researchers. As a part
of this cross-sectional study [23], authors deployed the SVM, MLP, Chi-Squared Automatic
Interaction Detector (CHAID), and Iterative Dichotomiser-3 by integrating classification
algorithm. By using the aforementioned classification methods, and bootstrap aggregating
(Bagging), and boosting procedures, the negative impacts of dataset imbalance on classi-
fication outcomes were minimized. When using SVM-Bagging, precision and specificity
were both 100%, the recall was 73.33%, and the F-measure was 84.62%. The investigative
findings by authors in [24] revealed the DT attribute partitioning criteria for thyroid disease
detection. Thyroid nodules may be effectively and efficiently classified using the method
outlined below. In this study, methodologies such as DT, SVM, and NB were used to make a
comparative diagnosis of thyroid illness. The accuracy goal for this classification is 99.89%.
Previous attempts at employing the DT had disappointing results. Data from the UCI
was used by Geetha et al. [25] in their analysis. The Hybrid Differential Evolution (HDE)
kernel-based Naïve algorithm used high dimensionality to limit the existing 21 features to
10 attributes before running the algorithm. The accuracy of the kernel-based NB classifi-
cation method has risen to 92% as a result of this development. As a hybrid model, it is
critical to have a strong knowledge base that can be leveraged to tackle difficult learning
tasks such as clinical diagnosis and prognostication. This research looked at a variety of
ML methods and thyroid disease-prevention diagnostics in [26]. Depending on a patient’s
medical history, algorithms such as SVM, KNN, and DT were employed to assess the risk of
thyroid illness. A three-stage approach for treating thyroid illness was devised by another
team of researchers led by Chen et al. in [27]. The author Fedushko et al. proposed a
big-data- and operational intelligence-based system, including distinct machine-learning
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and preprocessing techniques for effective classification in [28]. The (FS-PSO-SVM) CAD
technique with particle swarm optimization performed better than the current methods
and obtained a precision of 98.59% by utilizing 10-fold cross-validation. Dogantekin et al.
classified thyroid illness with an accuracy of 91.86% using feature extraction, and feature
reduction classification phases with generalized discriminant analysis (GDA), and wavelet
support vector machines (WSVM) [29]. The researchers Keleş et al. developed an expert
system for the detection of thyroid illness termed as an expert system for thyroid disease
diagnosis (ESTDD). The neuro-fuzzy classification (NEFCLASS) method was used to apply
fuzzy rules, and the results showed 95.33% accuracy [30]. According to Ozyilmaz et al.,
using a variety of neural network approaches including back-propagation-based MLP, the
radial-based function, and adaptive conic-section function in neural networks, thyroid
diagnostic accuracy was shown to be 88% [31].

2. Materials and Methods

The research technique is shown in Figure 1. Before beginning the analysis, it is crucial
to display and visualize the data. The purification, cleaning, and reduction of useless data,
as well as missing values, can be accomplished by data preprocessing to improve the data
representation and accuracy of the model. Next, we used XGBoost classifier to visually
represent the importance of attributes based on the F-score [32]. Furthermore, the three
used feature-selection techniques, SFM, SKB and RFE, are presented with their estimators
in Figure 1.
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Figure 1. General block diagram of the proposed methodology for the diagnosis of thyroid illness.

The next step was the detection and removal of the outliers. It is very essential to
detect and locate the outliers after attributes selection, hence the absence and presence of
the outliers are proportional to the total number of selected features. The next step is to
normalize the data from the selected features by using the scaling approach.

For this purpose, both standard and min–max scaling were implemented. Feature
scaling is used to make the data more regular. Finally, the homogenous ensemble bagging
(RF and Bagging Meta Estimator (BME)) and boosting (AdaBoost (AB) and XGB) are
performed. After the classification, the predictions undergo the voting ensemble again,
involving both soft and hard voting. The performance evaluation measures are further
used for the clear assessment of implemented methodologies.
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2.1. Dataset Description

This experimental research work focused on the dataset related to thyroid disease.
The dataset was collected and gathered from a popular district headquarter hospital of the
Punjab province, the city Dera Ghazi Khan, Pakistan. The dataset is carefully evaluated
and verified by two expert endocrinologists from a well-known and famous hospital in
Karachi, Pakistan [33]. The dataset contains 309 entities directly associated with the total
number of subjects. Each person undergoes ten different screening tests that are further
represented as features and one target variable represented as ‘Class’. This outcome variable
is further categorized into three distinct classes expressed as ‘Hypo’ for Hypothyroidism,
Normal, and Hyperthyroidism is denoted as ‘Hyper’. There is a total of 13 missing values
represented as ‘?’ in a ‘T3’ feature. Table 1 shows the details of this dataset. The descriptions
of the output variable and categories have been illustrated in Figure 2.

Table 1. Details about the dataset related to thyroid disorders from the registered hospital.

Thyroid Dataset

Attributes Names Range of Features

Serial Numbers 1 to 309

Hospital Reference IDs Unique Number

Pregnancy Yes, No

Body Mass Index (BMI)
Overweight

Optimal
Underweight

Blood Pressure (BP)
Low

Healthy
High

Pulse Rate (PR) 50 to 110

T3 0.15 TO 3.7
(Having 13 Missing values denoted by ‘?’)

TSH 0.05 to 100

T4 0.015 to 30

Gender Female
Male

Age 6 to 62

Class
‘0’ as Hypo
‘1’ as Hyper

‘2’ as Normal

2.2. Data Preprocessing

The dataset used in this research study is in the form of a CSV file. Therefore, there is
a chance of the missing values, and it had few useless columns such as the ‘Sr. No.’ and
‘Reference IDs’ of the patients. These attributes should be removed from the dataset as they
do not have any specific impact on the outcome variable ‘Class’, and severely affect the
performance of the models. This dataset also contains very few integer and real values, and
most of the attribute details are in the form of strings and characters. Hence, it is difficult
for the libraries to perform operations on these values directly. We convert these characters
or strings into real numbers or integer values, for example, in ‘Pregnancy’ the value ‘Yes’
represented as 1 and ‘No’ is denoted as 0. All the remaining features have been changed in
a similar aspect. The 13 missing values present in the ‘T3’ represented by ‘?’ were assigned
with the mean values to obtain better performance. All the data cleaning process has been
conducted in the preprocessing step.
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2.3. XGBoost-Based Feature Importance by Using F-Score

Strategies that allocate a score to input features depending on how valuable they are at
forecasting an outcome variable are known as feature importance. In a predictive modeling
project, feature relevance scores play a significant role in providing information about the
attributes and insight into the model. It lays the foundation of dimensionality reduction for
high-dimensional data and attribute selection, which can increase the efficiency and efficacy
of a forecasting model on the problem. Statistical correlation scores, coefficients generated
as part of linear and regression models, RF and DT oriented attributes scores, permutation-
based scores, and F-score-based attribute importance are some of the most commonly used
methods [32]. Using the SFM class, the XGB-based feature importance is implemented [34],
which takes a model and transforms it into a subset with chosen characteristics. It is
possible to use a model that has already been trained using the complete training dataset
with this method. When a threshold is reached, it can choose which attributes to use.
SFM’s convert() function uses this threshold to ensure that features selected for training
and testing are the same. The following example shows how to use XGB to first train
and then test a model on a proposed dataset. The model is then wrapped in an SFM
instance based on the feature importance determined from the training data. The training
dataset is used to choose features, and the model is trained using the subset of features that
have been selected. Finally, the model is evaluated on the test dataset and uses the same
feature-selection methods as before. This technique is very helpful for a better diagnosis of
thyroid disorder. Figure 3 illustrates the feature importance with the highest F-scores for
the selected features by each attribute-selection technique.
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2.4. Attribute Selection Approaches

The process of identifying the most reliable, nonredundant, most relevant character-
istics for use in model development is known as feature selection. As the number and
diversity of datasets expand, it is critical to reduce their size methodically. The primary
objective of feature selection is to boost the effectiveness of a predictive model while lower-
ing the modeling computational cost. The details of each feature-selection method have
been discussed in Table 2.
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Table 2. Details of the attributes selected by the feature-selection approach with the execution time.

Features Selection
Techniques

Estimators or
Functions Used

Total Features in the
Dataset after Cleaning Selected Features Time Required for

Features Selection (s)

Select From Model
(SFM)

LR 09 02 0.010

RF 09 03 0.135

DT 09 01 0.032

GB 09 04 0.154

Select K Best
(SKB)

Chi2 09 05 0.014

FCI 09 03 0.006

Recursive Feature
Elimination

(RFE)

LR 09 05 0.092

RF 09 02 0.235

DT 09 01 0.010

GB 09 03 1.172

2.4.1. Selection from Model (SFM)

The SFM is a meta-transformer that may be used in conjunction with any estimator that
gives significance to each feature via a particular property (such as coef function, feature
importance) or by an importance extractor. If the matching relevance of the attribute values
is less than the specified threshold parameter, the characteristics are considered irrelevant
and deleted. There are established mechanisms for calculating a threshold using a text
input in addition to providing the threshold numerically. For example, "median", ”mean”
and fractional multiples of these, such as “0.1*mean” are available heuristics. In conjunction
with the qualifying criteria, the max features option may be used to restrict the number of
selected features. The implementation of SFM has been performed by using the sklearn
package [35]. The estimators used in this approach are LR [36], RF [37], DT [38], GB [39].

2.4.2. Recursive Feature Elimination (RFE)

RFE is a feature-selection algorithm with a wrapper framework. This indicates that
a distinct classification algorithm is provided and utilized in the method’s core, which is
wrapped by RFE, and further used to assist in the feature selection process. This method
contrasts with the filter-oriented attribute selection where each feature is selected based
on the highest and lowest score. RFE is a wrapper-based method that internally employs
filter-based characteristics selection. RFE finds a set of attributes by starting with all
the features in the training sample and successfully eliminating features until the target
number is reached. The whole attribute-selection procedure is achieved by fitting the
provided ML algorithm employed in the model’s core, ranking features by significance,
removing the least essential features, and refitting the model. This process is continued
until only a certain number of characteristics remain. Features are rated using either the
supplied ML model (e.g., some algorithms such as DT provide importance ratings) or
a statistical technique. RFE is implemented in the sklearn ML package [35]. To obtain
effective utilization of the RFE transformation, we first set up the class with the algorithm
of choice provided by the “estimator” parameter and the number of attributes to pick
via the “n features to select” function. In this experimental study, the used core model is
DT and the estimators are the same as discussed in Section 2.4.1, which are, LR, RF, DT,
and GB.

2.4.3. Univariate Feature Selection Based Select K-Best (SKB)

In this approach, the statistical measures can be used to identify the characteristics
with the strongest link to the output variable. The Select K-Best class in the sklearn package
is used with a series of various statistical tests to pick a particular number of features. This
research work selects the following best characteristics, as detailed in Table 2. The first
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method was based on the chi-squared (chi2) test that used the statistical or t analysis for
non-negative features. The other parameter implemented in SKB is the f-class-if function
denoted as (FCI), which calculates the ANOVA, and F-value for the sample that has
been supplied.

2.5. Automatic Outlier Detection and Removal using Isolation Forest (ISO)

It is critical to purify the data samples before modeling to guarantee that the ob-
servations accurately reflect the situation. A dataset may comprise extreme values that
are beyond the anticipated range and dissimilar to the rest of the data. These extreme
independent values are known as the outliers. These are unique observations that stand
out from the others. Understanding and even eliminating these outlier values can help
enhance ML modeling and model ability in general. Because of the unique characteristics
of each dataset, there is no exact technique to describe and detect outliers in general. The
common practice includes the evaluation of the raw data and determining if a given result
is an anomaly or not. Statistical techniques can be used to detect occurrences that appear
to be unusual or implausible based on the available data. After that, the fit model will
determine which samples in the training sample are outliers and which are inliers. The
model will next be fitted to the remaining instances and assessed on the complete test
dataset once the outliers have been eliminated from the training dataset. The ISO method
is employed in this research, which is a tree-based outlier-detection method. It is based
on modeling regular data in such a way that oddities that are both limited in number and
distinct in feature space are isolated [40]. Table 3 represents the outlier detection in the
dataset for each feature-selection technique with the mean absolute error (MAE).

Table 3. Detail of the detected outliers and MAE values in the selected features.

Feature-
Selection

Technique

Estimator or
Function Used

Total Features
in the Dataset
after Cleaning

Total Entries
Present in the

Dataset

Entities in
75% Training
of the Data

Number of
Selected
Features

Outliers
Detected in
the Selected

Features

MAE
Values

Select From
Model (SFM)

LR 09 309 231 02 23 0.0001

RF 09 309 231 03 23 0.0001

DT 09 309 231 01 0 0.0001

GB 09 309 231 04 23 0.0001

Select K Best
(SKB)

Chi2 09 309 231 05 23 0.0001

FCI 09 309 231 03 22 0.026

Recursive
Feature

Elimination
(RFE)

LR 09 309 231 05 23 0.0001

RF 09 309 231 02 19 0.295

DT 09 309 231 01 0 0.0001

GB 09 309 231 03 23 0.0001

2.6. Homogenous Ensemble

Ensemble techniques in ML and data mining employ several learning algorithms to
achieve higher prediction performance than each of the individual learning algorithms
alone. A homogenous ensemble is a series of classification models of the same type,
where each is constructed on a distinct sample of data [41]. The two crucial types of the
homogenous ensemble are bagging and boosting, which have been implemented in this
research as initial ensembles.

2.6.1. Bagging

To improve accuracy, bagging is a method that significantly decreases the variation.
As a result, overfitting is no longer an issue, which was a major problem with many
prediction models. Homogeneous weak classifiers learn data in parallel, independently
of one another, and then integrate them by averaging the results. Because the weak base
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classifiers are merged to produce a single but powerful classification model, the approach
is more reliable than using single models. The biggest problem with these models is that
they are computationally expensive. When we train a model, we obtain a function that
takes an input, gives an output, and is defined concerning the training dataset, regardless
of whether we are interacting with regression or a classification problem. The fitted model
is also subject to variability due to the theoretical variation of the training dataset.

The concept of bagging is straightforward, where we want to build a model with a
reduced variance by “averaging” the predictions from multiple different models. However,
in practice, we are unable to build entirely independent models due to a large amount
of required data. To fit almost independent models, we rely on the good “approximate
characteristics” of bootstrap samples. This starts with creating several bootstrap samples,
each one acting as a separate and nearly independent dataset taken from the real distribu-
tion. For each of these data, we may then train a weak learner, and eventually combine
them such that their outputs are averaged, resulting in an ensemble classifier with reduced
variation. Approximate independence and identical distribution are characteristics of
bootstrap samples, and this is also true for learned base models. The bagging classifiers
used in this research are as follows.

• Random Forest (RF) [42];
• Base Meta Estimator (BME) [43].

2.6.2. Boosting

This ensemble technique is the most commonly used and powerful. It was developed
for classification issues and was later extended to include regression problems as well.
The combined multiple weak models are no longer fitted separately from each other in
sequential approaches. The aim is to fit models repeatedly so that the training of a model
at each stage is dependent on the models fitted in prior phases. Boosting is the most
well-known of these techniques, and it results in an ensemble model that is less biased
than the weak learners that comprise it. AB, XGB, Gradient Boosting Machine (GBM), and
Light GBM are the available boosting algorithms. In the case of boosting, if two models are
predicted incorrectly then their outcomes are analyzed and combined for extraction of a
better prediction. As a result, boosting demonstrates the ensemble fundamental concepts
of transforming a weak classifier into a better one. The boosting models used in this
research are:

• AdaBoost (AB) [44];
• XGBoost (XGB) [45].

2.7. Voting Ensemble of Homogenous Ensemble

A voting ensemble (sometimes known as a "majority voting ensemble") is an ML
ensemble model that incorporates predictions from many other models. It is a strategy that
may be used to increase model performance, ideally outperforming any single model in
the ensemble. The predictions from various models are combined in a voting ensemble. It
may be used to classify or predict data. In the task of regression, this entails determining
the average of the models’ predictions. In the event of categorization, the votes for each
label are added together, and the label with the highest number of votes is predicted.

A voting ensemble can be thought of as a metamodel, or a model of models. It may be
used as a metamodel with any collection of already trained ML models, and the existing
models are not aware that they are being utilized in the ensemble. When we have two or
even more models that execute a predictive modeling assignment well, a voting ensemble
is ideal. The ensemble models must generally agree on their forecasts [46]. There are two
ways to predict majority votes for classification, one method is hard voting and the other is
soft voting [47]. Details of both voting techniques are as follows.
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2.7.1. Soft Voting Ensemble

Figure 4a illustrates the soft voting process. Soft voting entails adding up the an-
ticipated probabilities or scores for each target class estimating the class label with the
greatest likelihood. It also predicts the class with the highest summed probability based on
the models. Let us consider that the classifiers from C1, C2, . . . Cn and distribution of the
probabilities for each classifier are Probn

max and Probn
min. Consider if the total number of

classes is ‘two’ then the representation of these classes are Class1 = 0 and Class2 = 1. The
weight assignment for each classifier is denoted as W1, W2, . . . Wn. The calculation of the
probabilities for the target class are as follows:

Prob(Class1) = W1 ∗ Prob1
min + W2 ∗ Prob2

min + . . . + Wn ∗ Probn
min (1)

Prob(Class2) = W1 ∗ Prob1
max + W2 ∗ Prob2

max + . . . + Wn ∗ Probn
max (2)
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The averages of the target variable classes are calculated as:

Avg(Class1) =

(
Prob1

min + Prob2
min + . . . + Probn

min
)

n
(3)

Avg(Class2) =

(
Prob1

max + Prob2
max + . . . + Probn

max
)

n
(4)

2.7.2. Hard Voting Ensemble

Hard voting entails adding up all the guesses for each class label and forecasting
the class value with the most votes. In hard voting, we anticipate the class with the most
votes from models. The mode of all predictions provided by multiple classifiers is used to
classify input data using the hard voting classifier. When the weights associated with the
distinct various algorithms are identical, majority voting is treated differently. In this case,
consider again the total number of classifiers are n, represented as C1, C2, . . . , Cn whereas
their predictions are denoted as P0 and P1. The equation below and Figure 4b express the
phenomena of hard voting classification.

|C1, C2, . . . , Cn| (5)

|P0, P0, . . . , P1| (6)
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2.8. Performance Assessment Metrics

Classification algorithms may be assessed in a variety of ways. Metrics analysis
should be appropriately interpreted while assessing various learning methods. Some of
the metrics generated from the confusion matrix are used to assess a diagnostic test for
the classification of breast cancer [48,49] and human physiological conditions [50,51] using
various ML classifiers. The confusion matrix includes a few key terms, such as A = True
positive (TP), B = True negative (TN), C = False positive (FP), and D = False negative (FN).
TP indicates that the system correctly predicts the outcome, and the outcome is also correct.
The term FP refers to when the system predicts a right value, but the outcome is incorrect.
TN indicates that the system predicts a false value, and the output is also a false value. The
term FN refers to the system’s prediction that the outcome would be a false value when
the outcome is a true value.

2.8.1. Confusion Matrix-Based Metrics

The most significant and often used metric for assessing classifier performance is
accuracy which is calculated by dividing the number of accurate prediction samples by the
total number of observations in the dataset.

Accuracy =
A + B

A + B + C + D
× 100% (7)

The ratio of genuine projected positive samples to the true positive samples is de-
scribed as true positive rate (TPR) or recall.

Sensitivity/Recall/TPR =
A

A + D
× 100% (8)

The F-measure is sometimes referred to as the F1-score. It explained the harmonic
mean of accuracy and memory. A model is regarded as excellent if its score is one or it has
a low false test rate, but a value of 0 indicates poor performance. The F1-score equation:

F1 score =
2A

2A + C + D
× 100% (9)

The Matthews correlation coefficient (MCC) was developed by Brain W. Matthews
in 1975. This coefficient represents the connection between the observed and anticipated
classifications. MCC is determined using the confusion matrix, and a + 1 number reflects
flawless prediction, while a− 1 value indicates a disagreement between forecasting and
true values. MCC is defined below.

MCC =
A× B− C× D√

(A + C)(A + D)(B + C)(B + D)
× 100% (10)

Precision or positive predictive value (PPV) is the percentage of relevant occurrences
among the retrieved events.

Precision/PPV =
A

A + C
× 100% (11)

2.8.2. Statistical Test

Cohen kappa is a statistical measure used to measure the degree of agreement between
two evaluators. It may also be used to gauge how well a categorization model is doing in
the real world.

cohen kappa =
p0− pe
1− pe

× 100% (12)

where p0 represents the overall model accuracy, and pe represents the degree of agreement
between the predicted values of the classes and the actual class values.
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2.8.3. Loss and Error Finding

Mean absolute error (MAE) is a measure of how far off the original and forecasted
values are from each other, and are averaged across the whole data set.

MAE =
1
N

(
N

∑
i=1

∣∣Yi −Y′
∣∣)× 100% (13)

Mean square error (MSE) reflects the difference between the actual and projected
values, calculated by squaring the average difference across the whole dataset.

MSE =
1
N

(
N

∑
i=1

(
Yi −Y′

)2
)
× 100% (14)

where Yi is the original value, Y′ represents the predicted value.
In statistics, the Hamming loss (HL) is the percentage of erroneously predicted labels.

Hamming Loss =
1

|N|.|L|

( |L|
∑
j=1

|N|

∑
i=1

(
Yi,j ⊕ Zi,j

))
× 100% (15)

where Yi,j is equal to the target, and Zi,j denotes the forecasted value.

3. Results and Discussion

The proposed methodology of an ensemble of homogenous ensemble hybrids with
three feature-selection approaches and multiple estimators is presented in this section. The
experiment has been performed on the Jupyter notebook with a python platform involving
multiple ML libraries and packages. The splitting method with a ratio of 75% training and
25% testing has been implemented, with hyperparameters tuned for the classifiers.

Table 4 demonstrates the accuracy of the RF and BME including their training and
prediction time for each attribute-selection technique with the used estimator and function.
It is clearly shown that all the classifiers obtained 100% accuracy with all the estimators
in the implemented feature selection approaches. Only LR estimator from SFM attribute
selection obtained 98.71% by using RF base learner. The lowest training and prediction
time with 100% accuracy was attained by the RFE feature selection with DT estimator,
only 01 selected feature, and the BME forecasting bagging model. The performance of the
boosting predictors AB and XGB has been shown in Table 5. All the estimators with their
feature-selection methods attained 100% accuracy. The exception is the FCI function in the
SKB method with XGB classifier, which obtained 97.43% accuracy.

Table 4. Description of the accuracy with training and prediction time for the bagging classifiers.

Homogenous Ensemble (Bagging)

Feature-
Selection

Techniques

Estimators or
Functions

Used

Selected
Features

Bagging
Classifiers Accuracy (%) Training

Time (s)
Prediction
Time (s)

Select From
Model (SFM)

LR 02
RF 98.71 0.2869 0.0029

BME 100.0 0.0149 0.0020

RF 03
RF 100.0 0.0861 0.0079

BME 100.0 0.0139 0.0009

DT 01
RF 100.0 0.3040 0.0029

BME 100.0 0.0269 0.0019

GB 04
RF 100.0 0.0873 0.0079

BME 100.0 0.2844 0.0009
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Table 4. Cont.

Homogenous Ensemble (Bagging)

Feature-
Selection

Techniques

Estimators or
Functions

Used

Selected
Features

Bagging
Classifiers Accuracy (%) Training

Time (s)
Prediction
Time (s)

Select K Best
(SKB)

Chi2 05
RF 100.0 0.0643 0.0039

BME 100.0 0.0108 0.0019

FCI 03
RF 100.0 0.0743 0.0049

BME 100.0 0.0329 0.0050

Recursive
Feature

Elimination
(RFE)

LR 05
RF 100.0 0.0289 0.0030

BME 100.0 0.0089 0.0009

RF 02
RF 100.0 0.0259 0.0029

BME 100.0 0.0129 0.0019

DT 01
RF 100.0 0.0320 0.0039

BME 100.0 0.0129 0.0009

GB 03
RF 100.0 0.0329 0.0049

BME 100.0 0.0129 0.0020

Table 5. Description of the accuracy with training and prediction time for the boosting classifiers.

Homogenous Ensemble (Boosting)

Feature-
Selection

Techniques

Estimators or
Functions

Used

Selected
Features

Boosting
Classifiers Accuracy (%) Training

Time (s)
Prediction
Time (s)

Select From
Model (SFM)

LR 02
AB 100.0 0.1037 0.0049

XGB 100.0 0.9898 0.0009

RF 03
AB 100.0 0.1047 0.0050

XGB 100.0 1.3160 0.0019

DT 01
AB 100.0 0.0490 0.0059

XGB 100.0 1.3354 0.0009

GB 04
AB 100.0 0.1187 0.0049

XGB 100.0 0.9752 0.0008

Select K Best
(SKB)

Chi2 05
AB 100.0 0.0757 0.0049

XGB 100.0 1.0682 0.0216

FCI 03
AB 100.0 0.0678 0.0069

XGB 97.43 1.0034 0.0009

Recursive
Feature

Elimination
(RFE)

LR 05
AB 100.0 0.0594 0.0059

XGB 100.0 1.0484 0.0009

RF 02
AB 100.0 0.0628 0.0059

XGB 100.0 1.0614 0.0009

DT 01
AB 100.0 0.0927 0.0049

XGB 100.0 1.1596 0.0009

GB 03
AB 100.0 0.0638 0.0059

XGB 100.0 1.0472 0.0019
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Table 6 reveals the second stage of the ensemble known as a voting ensemble with
both soft and hard voting strategies. Although the computational cost of this ensemble
stage is slightly higher than the first stage in terms of the accuracy and other implemented
performance assessment measures, the proposed method attained a state-of-the-art result
with zero error and loss and 100% precision, recall, MCC, kappa, etc. The proper imple-
mentation of the voting ensemble of homogenous ensemble refers to a minor delay in
the computational operation due to the process of identifying the calculated or assigned
weights and averages for the bagging and boosting classifiers in soft and hard voting.

Figure 5 represents the confusion matrices for the soft voting ensemble of the bagging
(RF, BME) and boosting (AB, XGB) predictors. Soft voting involves equal weights for
each classifier. Figure 5a–d represents the confusion matrices with SFM feature selection,
whereas Figure 5e,f exhibit the SKB, and RFE is included in Figure 5g–j, illustrating the
performance of each implemented estimator or function.

As shown in Table 7, the method used in this research work has been investigated
alongside other existing studies on the same dataset. The results of the proposed study
were obtained by utilizing a variety of homogenous (bagging, boosting) ensembles with
multiple feature-selection techniques. In this study, the researchers aimed for greater
accuracy, reduced training, and prediction times. The hybrid implementation of the
multiple feature selection, outlier, and anomaly detection with initial ensemble classifiers
is performed by bagging and boosting techniques. The final prediction was conducted by
another second stage of the ensemble process of the voting (soft and hard). The proposed
method used a combination of complex algorithms and distinct strategies. This study
attained the best results with higher accuracy, recall, and F1-score of 100% by utilizing
less training and prediction time compared with existing hybrid models. This comparison
concludes that existing approaches are not only more expensive to implement, but they
also require more time to train and validate results.

Similarly, Figure 6 illustrates the hard voting ensemble. Figure 6a–d represents the
SFM, Figures 6e and 6f denote SKB, and Figure 6g–j illustrates the confusion matrices for
the RFE attribute-selection approach with the estimators.
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Table 6. Performance assessment measures for the soft and hard voting of the homogenous ensemble classifiers.

Ensemble of the Homogenous Ensemble (Voting Classifier)

Feature-
Selection

Techniques

Estimators
or

Functions
used

Selected
Features

Voting
Classifiers

Accuracy
(%)

Training
Time (s)

Prediction
Time (s)

Recall
(%)

Precision
(%)

F1-score
(%)

MCC
(%)

Cohen
Kappa

(%)

MSE
(%)

MAE
(%)

Hamming
Loss (%)

Select From
Model (SFM)

LR 02
Soft 100.0 1.062 0.007 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

Hard 100.0 1.103 0.007 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

RF 03
Soft 100.0 0.176 0.010 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

Hard 100.0 0.152 0.009 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

DT 01
Soft 100.0 1.415 0.010 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

Hard 100.0 1.216 0.014 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

GB 04
Soft 100.0 0.190 0.009 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

Hard 100.0 1.060 0.009 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

Select K Best
(SKB)

Chi2 05
Soft 100.0 0.208 0.015 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

Hard 100.0 0.375 0.008 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

FCI 03
Soft 100.0 0.159 0.013 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

Hard 100.0 0.175 0.022 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

Recursive
Feature

Elimination
(RFE)

LR 05
Soft 100.0 1.095 0.031 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

Hard 100.0 1.138 0.009 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

RF 02
Soft 100.0 1.125 0.009 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

Hard 100.0 1.363 0.011 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

DT 01
Soft 100.0 1.102 0.011 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

Hard 100.0 1.230 0.010 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

GB 03
Soft 100.0 1.087 0.016 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

Hard 100.0 1.073 0.011 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0
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Table 7. The comparison of the performance evaluation metrics and computational cost of the proposed research methodol-
ogy with existing studies.

Ref. Methodology Accuracy
(%)

Recall
(%)

F1-Score
(%)

Training
Time (s)

Prediction
Time (s) Dataset

[52]

KNN + WLSVC (L1) 97.8 96 97 0.53 0.361
DHQ, DG

Khan,
Pakistan

DT + WLSVC (L2) 76.9 67 61 0.681 0.372

SVM + WLSVC (L2) 86.0 79 85 0.511 0.361

[33]

KNN (Euclidean) + WCHI 100 100 100 1.032 0.806

DHQ, DG
Khan,

Pakistan

KNN (Minkowski) + WCHI 99.3 99 99 1.18 0.827

KNN (Chebyshev) + WCHI 98.7 97 98 1.11 0.808

KNN (Manhattan) + WCHI 99.3 99 99 1.01 0.749

KNN (Correlation) + WCHI 77.3 76 76 0.899 0.655

This study

Homogenous ensemble +
Voting (hard) + SFM (RF) 100 100 100 0.152 0.009

DHQ, DG
Khan,

Pakistan

Homogenous ensemble +
Voting (soft) + SKB (FCI) 100 100 100 0.159 0.013

Bagging (BME) + RFE (DT) 100 100 100 0.0129 0.0009

Homogenous ensemble +
Voting (hard) + RFE (GB) 100 100 100 1.073 0.011

4. Conclusions

The early detection and diagnosis of disease are critical for human survival. Recogni-
tion and identification have become more precise and accurate due to the use of machine-
learning algorithms. Thyroid disease is difficult to diagnose because its symptoms can be
mistaken for those of other ailments. New features in the thyroid dataset have a positive
impact on classifier performance, and the results show that it provides better accuracy
than previous studies. This research work focused on the implementation of the voting
ensemble of a homogenous ensemble in combination with three separate attribute-selection
techniques. The necessary preprocessing and detection of the outliers from the selected
features were conducted before the classification process. The bagging and boosting ensem-
bles contribute two algorithms for the initial ensemble. The bagging ensembles focused
on the random forest and bagging meta estimator (BME) algorithms whereas the boosting
ensemble implementation includes AdaBoost and XGBoost. Among all implemented en-
semble techniques, the BME shows better performance by achieving the best accuracy in
less training and prediction time. The consistency in the execution is independent of the
total number of features selected for the datasets. In the second part of the classification, a
voting ensemble with both hard and soft voting was implemented. Results show that all
the feature-selection techniques, in combination with multiple estimators and ensemble
techniques, attained the highest accuracy of 100% with a very low computational cost.
Our proposed approach also obtained 100% results in terms of other used performance
evaluation metrics. In comparison with existing studies, our method achieved the best
results on the thyroid illness dataset.
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