A Carrier-Based Discontinuous PWM Strategy of NPC Three-Level Inverter for Common-Mode Voltage and Switching Loss Reduction
Abstract
:1. Introduction
2. NPC Three-Level Inverter and CBPWM
2.1. Topology of the NPC Three-Level Inverter
2.2. CBPWM of the Three-Level Inverter
3. Analysis of CMV and Switching Frequency of the Three-Level Inverter
3.1. Common-Mode Voltage
3.2. Switching Frequency
4. Proposed Carrier-Based Discontinuous PWM Strategy
4.1. Switching Sequence Design
- In region RI, V0M: OOO, V7: PON and V13L: POO are used to synthesize the switching sequence;
- In region RII, V0M: OOO, V7: PON and V14L: OON are used to synthesize the switching sequence;
- In region RIII, V1: PNN, V7: PON and V13L: POO are used to synthesize the switching sequence;
- In region RIV, V2: PPN, V7: PON and V14L: OON are used to synthesize the switching sequence.
4.2. Carrier-Based Implementation
4.3. NPV Balance Control
- STEP 1: the zero-sequence voltage vZ1 is injected into the reference voltage vx;
- STEP 2: the sector and region are determined by the three-phase reference voltage;
- STEP 3: the zero-sequence voltage vZ2 is injected into the reference voltage v′x;
- STEP 4: the compensation voltage vos is generated and injected into the reference voltage v″x;
- STEP 5: the pulse signal of each power switch is generated by the comparison of the reference voltage v*x and the carriers.
5. Experimental Verification
5.1. Common-Mode Voltage
5.2. Switching Loss
5.3. Harmonic Distortion
5.4. Neutral Point Voltage
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rodriguez, J.; Bernet, S.; Steimer, P.K.; Lizama, I.E. A Survey on Neutral-Point-Clamped Inverters. IEEE Trans. Ind. Electron. 2010, 57, 2219–2230. [Google Scholar] [CrossRef]
- Kouro, S.; Malinowski, M.; Gopakumar, K.; Pou, J.; Franquelo, L.G.; Wu, B.; Rodriguez, J.; Perez, M.A.; Leon, J.I. Recent ad-vances and industrial applications of multilevel converters. IEEE Trans. Ind. Electron. 2010, 57, 2553–2580. [Google Scholar] [CrossRef]
- Abu-Rub, H.; Holtz, J.; Rodriguez, J.; Ge, B. Medium-voltage multilevel converters-state of the art, challenges, and requirements in industrial applications. IEEE Trans. Ind. Electron. 2010, 57, 2581–2596. [Google Scholar] [CrossRef]
- Yang, Y.; Wen, H.; Fan, M.; Xie, M.; Peng, S.; Norambuena, M.; Rodriguez, J. Computation-Efficient Model Predictive Control with Common-Mode Voltage Elimination for Five-Level ANPC Converters. IEEE Trans. Transp. Electrif. 2020, 6, 970–984. [Google Scholar] [CrossRef]
- Yu, B.; Song, W.; Guo, Y. Virtual Voltage Vectors Based Model Predictive Current Control for Five-Phase VSIs with Common-Mode Voltage Reduction. IEEE Trans. Transport. Electrif. 2021, 7, 706–717. [Google Scholar] [CrossRef]
- Guo, X.; Yang, Y.; Wang, B. Leakage Current Reduction of Three-Phase Z-Source Three-Level Four-Leg Inverter for Transformerless PV System. IEEE Trans. Power Electron. 2019, 34, 6299–6308. [Google Scholar] [CrossRef]
- Li, X.; Xing, X.; Zhang, C.; Chen, A.; Qin, C.; Zhang, G. Simultaneous Common-Mode Resonance Circulating Current and Leakage Current Suppression for Transformerless Three-Level T-Type PV Inverter System. IEEE Trans. Ind. Electron. 2019, 66, 4457–4467. [Google Scholar] [CrossRef]
- Dagan, K.J.; Zuckerberger, A.; Rabinovici, R. Fourth-Arm Common-Mode Voltage Mitigation. IEEE Trans. Power Electron. 2016, 31, 1401–1407. [Google Scholar] [CrossRef]
- Ohn, S.; Yu, J.; Burgos, R. Reduced Common-Mode Voltage PWM Scheme for Full-SiC Three-level Uninterruptible Power Supply with Small DC-link Capacitors. IEEE Trans. Power Electron. 2020, 35, 8638–8651. [Google Scholar] [CrossRef]
- Xiao, H.; Xie, S. Transformerless Split-Inductor Neutral Point Clamped Three-Level PV Grid-Connected Inverter. IEEE Trans. Power Electron. 2011, 27, 1799–1808. [Google Scholar] [CrossRef]
- Hizarci, H.; Pekperlak, U.; Arifoglu, U. Conducted Emission Suppression Using an EMI Filter for Grid-Tied Three-Phase/Level T-Type Solar Inverter. IEEE Access 2021, 9, 67417–67431. [Google Scholar] [CrossRef]
- Jung, J.-H.; Hwang, S.-I.; Kim, J.-M. A Common-Mode Voltage Reduction Method Using an Active Power Filter for a Three-Phase Three-Level NPC PWM Converter. IEEE Trans. Ind. Appl. 2021, 57, 3787–3800. [Google Scholar] [CrossRef]
- Wu, K.; Xia, C.L.; Zhang, Y. Common-Mode Voltage Suppression for Neutral Point Clamped Three Level Inverter. Trans. China Electrotech. Soc. 2015, 30, 110–117. [Google Scholar]
- Nguyen, T.T.; Nguyen, N. An Efficient Four-State Zero Common-Mode Voltage PWM Scheme with Reduced Current Distortion for a Three-Level Inverter. IEEE Trans. Ind. Electron. 2018, 65, 1021–1030. [Google Scholar] [CrossRef]
- Liu, P.; Duan, S.; Yao, C.; Chen, C. A Double Modulation Wave CBPWM Strategy Providing Neutral-Point Voltage Oscillation Elimination and CMV Reduction for Three-Level NPC Inverters. IEEE Trans. Ind. Electron. 2017, 65, 16–26. [Google Scholar] [CrossRef]
- Xing, X.; Li, X.; Gao, F.; Qin, C.; Zhang, C. Improved Space Vector Modulation Technique for Neutral-Point Voltage Oscillation and Common-Mode Voltage Reduction in Three-Level Inverter. IEEE Trans. Power Electron. 2019, 34, 8697–8714. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, P.; Ma, M.; Wang, J.; Li, J.; Li, L.; Chen, K. A Novel Virtual Space Vector Modulation with Reduced Common-Mode Voltage and Eliminated Neutral Point Voltage Oscillation for Neutral Point Clamped Three-Level Inverter. IEEE Trans. Ind. Electron. 2020, 67, 884–894. [Google Scholar] [CrossRef]
- Gao, Z.; Li, Y.; Ge, Q. Improved Phase Opposition Disposition Pulse Width Modulation Strategy for Three Level Neutral Point Clamped Converter. Trans. China Electrotech. Soc. 2020, 35, 884–894. [Google Scholar]
- Scognamillo, C.; Catalano, A.; Riccio, M.; D’Alessandro, V.; Codecasa, L.; Borghese, A.; Tripathi, R.; Castellazzi, A.; Breglio, G.; Irace, A. Compact Modeling of a 3.3 kV SiC MOSFET Power Module for Detailed Circuit-Level Electrothermal Simulations Including Parasitics. Energies 2021, 14, 4683. [Google Scholar] [CrossRef]
- Catalano, A.P.; Scognamillo, C.; D’Alessandro, V.; Castellazzi, A. Numerical Simulation and Analytical Modeling of the Thermal Behavior of Single- and Double-Sided Cooled Power Modules. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 1446–1453. [Google Scholar] [CrossRef]
- Riccio, J.; Odhano, S.A.; Zanchetta, P. Sensorless and Modulated Model-Predictive Control for a Doubly Fed Induction Machine. In Proceedings of the 2019 21st European Conference on Power Electronics and Applications (EPE ’19 ECCE Europe), Genova, Italy, 3–5 September 2019. [Google Scholar]
- McGrath, B.; Holmes, D.; Lipo, T. Optimized space vector switching sequences for multilevel inverters. IEEE Trans. Power Electron. 2003, 18, 1293–1301. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, G.; Yan, Y.; Gu, X.; Shi, T.; He, X. Discontinuous Space Vector PWM Strategy of Neutral-Point-Clamped Three-Level Inverters for Output Current Ripple Reduction. IEEE Trans. Power Electron. 2016, 32, 5109–5121. [Google Scholar] [CrossRef]
Status of Switches | Switching State | Output Voltage | |||
---|---|---|---|---|---|
Sx1 | Sx2 | Sx3 | Sx4 | ||
1 | 1 | 0 | 0 | P | Vdc/2 |
0 | 1 | 1 | 0 | O | 0 |
0 | 0 | 1 | 1 | N | −Vdc/2 |
Basic Vector | Amplitude of CMV | ||
---|---|---|---|
V1: PNN | V3: NPN | V5: NNP | −Vdc/6 |
V2: PPN | V4: NPP | V16: PNP | Vdc/6 |
V7: PON | V8: OPN | V9: NPO | 0 |
V10: NOP | V11: ONP | V12: PNO | |
V13U: ONN | V15U: NON | V17U: NNO | −Vdc/3 |
V14U: PPO | V16U: OPP | V18U: POP | Vdc/3 |
V13L: POO | V15L: OPO | V17L: OOP | Vdc/6 |
V14L: OON | V16L: NOO | V18L: ONO | −Vdc/6 |
V0U: PPP | Vdc/2 | ||
V0M: OOO | 0 | ||
V0L: NNN | −Vdc/2 |
Sector | v′max | v′mid | v′min |
---|---|---|---|
SI | v′A | v′B | v′C |
SII | v′B | v′A | v′C |
SIII | v′B | v′C | v′A |
SVI | v′C | v′B | v′A |
SV | v′C | v′A | v′B |
SVI | v′A | v′C | v′B |
Sector | Region | ||
---|---|---|---|
RI | RII | RIII & RIV | |
SI | V13L: PPO (−iA) | V14L: OON (−iC) | V7: PON (iB) |
SII | V14L: OON (−iC) | V15L: OPO (−iB) | V8: ONP (iA) |
SIII | V15L: OPO (−iB) | V16L: PPO (−iA) | V9: NPO (iC) |
SIV | V16L: NOO (−iA) | V17L: OOP (−iC) | V10: NOP (iB) |
SV | V17L: OOP (−iC) | V18L: ONO (−iB) | V11: ONP (iA) |
SVI | V18L: ONO (−iB) | V13L: PPO (−iA) | V12: PNO (iC) |
Sector | Region | ||
---|---|---|---|
RI | RII | RIII & RIV | |
SI & SIV | v*A = v″A + vos | v*A = v″A | v*A = v″A |
v*B = v″B | v*B = v″B | v*B = v″B + vos | |
v*C = v″C | v*C = v″C + vos | v*C = v″C | |
SII & SV | v*A = v″A | v*A = v″A | v*A = v″A + vos |
v*B = v″B | v*B = v″B + vos | v*B = v″B | |
v*C = v″C + vos | v*C = v″C | v*C = v″C | |
SIII & SVI | v*A = v″A | v*A = v″A + vos | v*A = v″A |
v*B = v″B + vos | v*B = v″B | v*B = v″B | |
v*C = v″C | v*C = v″C | v*C = v″C + vos |
Parameter | Unit | Value |
---|---|---|
DC-link capacitor C1, C2 | μF | 1551 |
DC-link voltage Vdc | V | 100 |
Load Resistance R | Ω | 10 |
Load inductance L | mH | 10, 30 |
Fundamental frequency f | Hz | 50 |
Carrier frequency fc | kHz | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Su, Y.; Zhou, Z.; Geng, Q. A Carrier-Based Discontinuous PWM Strategy of NPC Three-Level Inverter for Common-Mode Voltage and Switching Loss Reduction. Electronics 2021, 10, 3041. https://doi.org/10.3390/electronics10233041
Zhang G, Su Y, Zhou Z, Geng Q. A Carrier-Based Discontinuous PWM Strategy of NPC Three-Level Inverter for Common-Mode Voltage and Switching Loss Reduction. Electronics. 2021; 10(23):3041. https://doi.org/10.3390/electronics10233041
Chicago/Turabian StyleZhang, Guozheng, Yingjie Su, Zhanqing Zhou, and Qiang Geng. 2021. "A Carrier-Based Discontinuous PWM Strategy of NPC Three-Level Inverter for Common-Mode Voltage and Switching Loss Reduction" Electronics 10, no. 23: 3041. https://doi.org/10.3390/electronics10233041
APA StyleZhang, G., Su, Y., Zhou, Z., & Geng, Q. (2021). A Carrier-Based Discontinuous PWM Strategy of NPC Three-Level Inverter for Common-Mode Voltage and Switching Loss Reduction. Electronics, 10(23), 3041. https://doi.org/10.3390/electronics10233041