
electronics

Article

Adaptive Decrease Window for BALIA (ADW-BALIA):
Congestion Control Algorithm for Throughput Improvement
in Nonshared Bottlenecks

Geon-Hwan Kim , Yeong-Jun Song , Imtiaz Mahmud and You-Ze Cho *

����������
�������

Citation: Kim, G.-H.; Song, Y.-J.;

Mahmud, I.; Cho, Y.-Z. Adaptive

Decrease Window for BALIA

(ADW-BALIA): Congestion Control

Algorithm for Throughput

Improvement in Nonshared

Bottlenecks. Electronics 2021, 10, 294.

https://doi.org/10.3390/

electronics10030294

Academic Editor: Jaime Lloret Mauri

Received: 10 November 2020

Accepted: 20 January 2021

Published: 26 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea;
kgh76@ee.knu.ac.kr (G.-H.K.); syj5385@knu.ac.kr (Y.-J.S.); imtiaz.tee@gmail.com (I.M.)
* Correspondence: yzcho@ee.knu.ac.kr

Abstract: The main design goals of the multipath transmission control protocol (MPTCP) are to
improve the throughput and share a common bottleneck link fairly with a single-path transmission
control protocol (TCP). The existing MPTCP congestion control algorithms achieve the goal of
fairness with single-path TCP flows in a shared bottleneck, but they cannot maximize the throughput
in nonshared bottlenecks, where multiple subflows traverse different bottleneck links. This is
because the MPTCP is designed not to exceed the throughput of a single-path TCP competing in the
bottleneck. Therefore, we believe that MPTCP congestion control should have different congestion
window control mechanisms, depending on the bottleneck type. In this paper, we propose an
adaptive decrease window (ADW) balanced linked adaptation (BALIA) congestion control algorithm
that adaptively adjusts the congestion window decrease in order to achieve better throughput
in nonshared bottlenecks while maintaining fairness with the single-path TCP flows in shared
bottlenecks. The ADW-BALIA algorithm detects shared and nonshared bottlenecks based on delay
fluctuations and it uses different congestion window decrease methods for the two types of bottleneck.
When the delay fluctuations of the MPTCP subflows are similar, the ADW-BALIA algorithm behaves
the same as the existing BALIA congestion control algorithm. If the delay fluctuations are dissimilar,
then the ADW-BALIA algorithm adaptively modulates the congestion window reduction. We
implement the ADW-BALIA algorithm in the Linux kernel and perform an emulation experiment
that is based on various topologies. ADW-BALIA improves the aggregate MPTCP throughput by
20% in the nonshared bottleneck scenario, while maintaining fairness with the single-path TCP in
the shared bottleneck scenario. Even in a triple bottleneck topology, where both types of bottlenecks
exist together, the throughput increases significantly. We confirmed that the ADW-BALIA algorithm
works stably for different delay paths, in competition with CUBIC flows, and with lossy links.

Keywords: multipath transmission control protocol (MPTCP); congestion control; nonshared
bottleneck; fairness; throughput

1. Introduction

The transport layer protocol provides an end-to-end connection over the Internet. The
most widely used transport protocol is the transmission control protocol (TCP), which is
designed to offer reliable data transfer [1]. In an end-to-end connection, TCP congestion
control has a direct effect on network performance and it increases or decreases the conges-
tion window (cwnd) in order to control the sending rate at the source host [2]. TCP Reno is
the most typical and basic congestion control algorithm [2,3], which uses the packet loss as
an indicator of network congestion [4].

Recently, cellular networks have presented new challenges for TCP, which are re-
lated to the concurrent use of multiple interfaces, such as Wi-Fi and 4G/5G in mobile
devices [5,6]. The simultaneous use of multiple interfaces of multi-homed devices can meet
the increasing demand for communications [7]. However, the traditional TCP does not

Electronics 2021, 10, 294. https://doi.org/10.3390/electronics10030294 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2739-8939
https://orcid.org/0000-0001-7586-5795
https://orcid.org/0000-0002-3390-2698
https://doi.org/10.3390/electronics10030294
https://doi.org/10.3390/electronics10030294
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10030294
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/3/294?type=check_update&version=1

Electronics 2021, 10, 294 2 of 20

support the use of multiple available interfaces and it only uses one path for an end-to-end
connection [8]. Therefore, the Internet Engineering Task Force created the multipath TCP
(MPTCP) working group, and MPTCP was introduced [9,10].

MPTCP is a set of regular TCP extensions for providing a multipath TCP service,
allowing the transport connection to simultaneously operate on multiple paths [10]. A
sequence of TCP segments transmitting on individual paths that form part of an MPTCP
connection is defined as a subflow [9]. MPTCP allows for a single data stream to be sent
over multiple paths [11]. Dividing the data stream by subflows between the hosts [12]
can maximize resource utilization and increase the end-to-end throughput. Moreover,
MPTCP provides better robustness and resilience against network/link failures and the
performance degradation of some paths. Multi-homed devices using MPTCP can support
continuous connections while changing the network interface.

The three design goals of MPTCP that must be met in order to ensure better perfor-
mance and fairness are as follows [13]:

• Goal 1 (Throughput improvement): the total throughput of an MPTCP connection
should be higher than that of a single TCP using the best path.

• Goal 2 (Fairness to TCP): when multiple subflows share a common bottleneck link
with a single-path TCP flow, the aggregate throughput of an MPTCP connection
should be equal to that of a single-path TCP.

• Goal 3 (Load balancing): MPTCP should prefer the best paths, and more traffic should
be sent to less-congested paths.

The first goal is the reason multiple paths are used [9], whereas the second goal is
essential in order to coexist with the single-path TCP in a common bottleneck link. The third
goal must be considered in order to improve the performance of MPTCP after achieving
the first two goals [14]. Therefore, Goals 1 and 2 must be achieved first, primarily by
the MPTCP congestion control algorithm that allocates network resources between flows
passing through the link. MPTCP congestion control, which adjusts the congestion window
of several subflows, plays a more important role than traditional TCP congestion control,
because MPTCP is an extension of TCP.

In order to achieve these goals, additive increase/multiplicative decrease (AIMD)-
based [15,16] MPTCP congestion control algorithms, such as coupled [17], linked increase
adaptation (LIA) [18], optimized linked increase adaptation (OLIA) [11], and balanced
linked adaptation (BALIA) [19], were proposed. The coupled congestion control algorithm
focused on TCP friendliness [20], whereas the subsequent algorithms improved respon-
siveness and load balancing. The MPTCP congestion control algorithm that is currently
implemented on Linux was designed to achieve fairness with TCP, which means that the
aggregate throughput of the MPTCP connection should not be higher than that of the
single-path TCP passing through the best path. While this fairness goal ensures that all of
the connections take up the same bandwidth, it is unfair for the MPTCP connection.

The bottleneck link determines the end-to-end throughput of a TCP session. Because
the traditional TCP uses a single path, only one bottleneck link exists. However, the
aggregate throughput of an MPTCP connection is not always determined by just one
bottleneck link. When all of the subflows pass through different links, there can be as many
bottleneck links as the number of subflows. Nevertheless, the BALIA congestion control
algorithm (and the LIA and OLIA algorithms) limits the throughput of each subflow when
it passes through different bottleneck links, while assuming that the subflows pass through
the same bottleneck link [21].

In this study, we propose a modified BALIA congestion control algorithm that can min-
imize the throughput degradation that occurs due to the fairness goal of MPTCP. We call
this algorithm the adaptive decrease window (ADW) for BALIA congestion control algo-
rithm, which adjusts the amount of congestion window reduction when congestion occurs.
It continuously tracks the delay fluctuations of each subflow and, if the delay fluctuations
are similar, then ADW-BALIA behaves the same as the existing BALIA algorithm to coexist
fairly with the single-path TCP. If the delay fluctuations are dissimilar, the ADW-BALIA

Electronics 2021, 10, 294 3 of 20

algorithm improves the throughput by adapting the congestion window reduction, so that
surplus resources that are available at nonshared links are not left unused.

The main contribution of the ADW-BALIA algorithm are as follows:

• The ADW-BALIA algorithm improves the aggregate MPTCP throughput by approxi-
mately 20% when traversing nonshared bottleneck links. This algorithm also main-
tains fairness with the TCP congestion control algorithm on the shared bottleneck
link.

• In designing the ADW-BALIA algorithm, a major modification of the BALIA algorithm
is the congestion window decrease mechanism. ADW-BALIA adaptively adjusts the
congestion window reduction based on the round-trip time (RTT) fluctuation of
the subflow.

• The ADW method designed in this paper was applied to the BALIA algorithm to
implement the ADW-BALIA algorithm. This method can also be applied to both the
LIA and OLIA algorithms.

The remainder of the paper is organized, as follows. In Section 2, we investigate the existing
MPTCP congestion control algorithms and present a bottleneck type of MPTCP. We introduce
the details of the ADW-BALIA congestion control algorithm in Section 3. Subsequently, we
evaluate the ADW-BALIA algorithm with various topologies by conducting an emulation
experiment in Section 4. Finally, Section 5 concludes the paper.

2. Related Work
2.1. Multipath Transmission Control Protocol Congestion Control Algorithm

TCP Reno was the first congestion control algorithm to be broadly deployed, but
today the default algorithm in both Linux and Windows 10 operating systems is TCP
CUBIC [22]. With the gradual development of transmission technology and network
devices, the transmission capacity of the network significantly increased; however, the TCP
congestion control algorithm did not fully use the capacity. Therefore, a new congestion
control algorithm, called bottleneck bandwidth round-trip propagation time (BBR) [23],
was recently proposed, which attempts to address the need for an optimal TCP congestion
control algorithm that is suitable for the current network characteristics.

Similarly, a new congestion control algorithm that is suitable for MPTCP is required to
use MPTCP with multiple subflows efficiently. If every subflow of an MPTCP connection
operated as an independent TCP Reno connection, then the TCP fairness goal of MPTCP
would be violated in the shared bottleneck case. Thus, MPTCP congestion control algo-
rithms, such as EWTCP [24], LIA [18], OLIA [11], BALIA [19], and wVegas [25], have been
proposed to use multiple subflows effectively while being fair to the traditional TCP. Most
of these algorithms are based on TCP Reno and they retain the same decrease mechanism
as TCP Reno, only modifying the increase mechanism of the congestion window.

The default congestion control algorithm in the Linux MPTCP, LIA, adjusts the cwnd
on multiple routes, as follows:

• For each ACK received on subflow r, wr = wr+ min(α
wtotal

, 1
wr
),

• For each packet loss on subflow r, wr = wr − wr
2 ,

where wr is the cwnd of subflow r, α is a multipath aggressiveness factor, and wtotal is the
sum of wr for all subflows. Therefore, the subflow of the default MPTCP connection uses
not only its own cwnd, wr, but also the cwnd of other subflows to adjust the cwnd. The
modification of the increase mechanism causes the increase rate of the aggregate cwnd
of all subflows to be equal to that of the single-path TCP, thus ensuring fairness to the
single-path TCP. However, the decrease mechanism is retained as for TCP Reno.

Moreover, the strategy of increasing and decreasing the cwnd of the BALIA algorithm,
which is the basis of the proposed algorithm in this paper, is as follows:

• For each ACK received on subflow r, wr = wr + [xr
τr xk
· (1+αr

2) · (4+αr
5)],

• For each packet loss on subflow r, wr = wr − [xr
2 ·min(αr, 3

2)],

Electronics 2021, 10, 294 4 of 20

where αr is a multipath aggressiveness factor of subflow r, and τr is the round-trip time that
is observed on r. Each variable is defined, as follows: αr = max{x}/xr, where xr = wr/τr,
and x = |∑k∈P (wk/τk)|2. The BALIA algorithm allows for wr oscillation up to an ideal
level to provide a good balance between TCP friendliness and responsiveness. When the
subflow r passes through the best path, or the MPTCP connection uses a single path, αr is
set to 1, which makes both the increase and decrease of wr reduce to the same values with
TCP Reno [26].

The fairness goal of MPTCP can also be described by the fluid model for MPTCP [19].
Equations (1) and (2) describe the fluid model, as follows:

ẋr = kr(xs)(φr(xs)− qr/2)+xr (1)

ṗl = γl(yl − cl)
+
pl

(2)

where the MPTCP session source s associates a set of paths, and each path r ∈ s has the
sending rate xr. In addition, qr represents the approximate packet loss probability on path r.
Moreover, each link l ∈ r has the capacity cl , loss probability pl , and aggregate traffic
rate yl .

The authors also provide the following TCP friendliness design condition for the gain
γl in the MPTCP fluid model.

• Condition of fairness with TCP: for any path r of MPTCP session source s, the function
φr(xs) in Equation (1) satisfies φr(xs) ≤ (xrτr)−2.

This condition ensures that the cwnd of the MPTCP subflow increases no more
aggressively than that of a single-path TCP flow [8,19].

A new MPTCP congestion control has recently been proposed, which deviates from the
traditional AIMD-based TCP Reno mechanism [27–31]. Several studies have been conducted
as a typical example, which applied the BBR congestion control to MPTCP [28–31]. However,
numerous problems have been encountered in the early version of the BBR congestion
control, and the proposed multipath BBR congestion control based on the early version
inherits related problems and may cause additional issues [32–34]. In addition, BBRv2 is
being developed for solving the inherent problem of TCP BBR, and the multipath BBR
must be entirely revised according to the change in TCP BBR.

2.2. Bottleneck Links in Multipath Transmission Control Protocol

MPTCP can have different bottleneck types, depending on the number of subflows.
As depicted in Figure 1, MPTCP subflows can pass through either a different link (Figure 1b)
or the same link (Figure 1a). The case in which two subflows pass through the same bottle-
neck link is a shared bottleneck, and the other case is a nonshared bottleneck [35]. When the
MPTCP subflows compete with single-path TCP flows on a shared bottleneck link, MPTCP
must meet its fairness goal to coexist with the traditional TCP. If this goal is not achieved,
single-path TCP hosts cannot occupy adequate bandwidth, which results in fairness issues.
Therefore, the MPTCP congestion control algorithms currently implemented in Linux [36]
demonstrate sufficient fairness with the single-path TCP. However, the efforts of MPTCP
to maintain fairness for the traditional TCP may cause unintended performance degrada-
tion [19]. Thus, the MPTCP throughput may be limited on a nonshared bottleneck, due to
the fairness goal of MPTCP. When each subflow passes through a nonshared bottleneck
link, the throughput can be maximized by not considering the fairness goal of MPTCP.
However, the existing MPTCP congestion control algorithm in Linux does not achieve the
maximum throughput in a nonshared bottleneck.

Two experiments were conducted to observe the throughput of MPTCP, according to
the bottleneck type. Section 4 describes the detailed experimental environment and setup.
Figure 2a illustrates the throughput of MPTCP and TCP when all flows share the same
bottleneck link set to 120 Mbps in bandwidth. One single-path TCP flow competes with
the MPTCP connection with two subflows; thus, the fair share is 60 Mbps. Fluctuations
exist between MPTCP and TCP, but, on average, they compete fairly. In the nonshared

Electronics 2021, 10, 294 5 of 20

bottleneck scenario, each subflow of MPTCP competes with a single-path TCP flow at
each bottleneck link set to a 60 Mbps bandwidth. In Figure 2b, we present the sum of
the throughput of two single-path TCP flows and the aggregate MPTCP throughput. The
maximum aggregate throughput that MPTCP can achieve is 60 Mbps, but it averages a
throughput of 40 Mbps, which is approximately 30% lower.

Figure 1. Two types of bottlenecks in the multipath transmission control protocol with two subflows.

Figure 2. Throughput comparison by bottleneck type.

2.3. Shared Bottleneck Detection Algorithm

Because TCP is an end-to-end transport protocol, it cannot explicitly determine
which link it passes through or the efficiency of the path. Therefore, the packet loss
and delay information can typically be used to detect which flow shares the bottle-
neck. To detect a shared bottleneck, several studies have used various types of network
information [21,22,37–41]. The first algorithm that was proposed to determine whether
MPTCP shares a common bottleneck link is the dynamic window coupling algorithm by
Hassayoun et al. [22]. It detects the shared bottleneck while using the increase in the delay
or packet loss over a certain period. In addition, Ferlin et al. [21] proposed the shared
bottleneck detection algorithm for MPTCP based on three key statistics of a one-way delay:
skewness, variability, and key frequency. Unlike the above papers using delay information,
Wei et al. [41] proposed a congestion control algorithm and packet scheduler for MPTCP
based on the bottleneck detection mechanism using explicit congestion notification [42].

These shared bottleneck detection studies exhibited relatively high detection accuracy.
However, in the network, multiple bottlenecks can occur, and shared and nonshared
bottlenecks may coexist. Therefore, in this study, we provide a customized solution for the
BALIA algorithm that adapts and operates on changes of bottleneck, rather than simply
categorizing the bottleneck as shared or nonshared. The proposed algorithm does not harm
the single-path TCP on a shared bottleneck link. In addition, it improves the aggregate
MPTCP throughput on a nonshared bottleneck. Moreover, the ADW-BALIA algorithm
exhibits sufficient throughput improvement in complex scenarios, in which shared and
nonshared bottlenecks are combined.

3. Adaptive Decrease Window for BALIA Congestion Control Algorithm

In this section, we introduce our proposed congestion control algorithm to improve
the MPTCP throughput without harming the traditional TCP flows. First, we examine

Electronics 2021, 10, 294 6 of 20

the characteristics of the delay fluctuation, according to the type of bottleneck through
which the MPTCP connection passes. Subsequently, based on the difference in the delay
fluctuation, we estimate the similarity between the subflows. The proposed ADW-BALIA
congestion control algorithm adaptively adjusts the cwnd decrease mechanism while using
the estimated similarity.

3.1. Similarity of the Round-Trip-Time Fluctuations between Subflows

The TCP throughput is determined by the bandwidth of the bottleneck link and the
RTT between the end-to-end hosts. In order to achieve the maximum throughput, the
available capacity of the link must be used as much as possible, and the maximum amount
of data that can be transferred during one RTT period, the bandwidth-delay product (BDP),
is calculated as the product of the bottleneck bandwidth and round-trip propagation time.
A queue is created on multiple links along the data path of a TCP flow when the amount
of inflight data exceeds the BDP. The existing loss-based congestion control algorithm
continues to transmit until the bottleneck buffer is full, and the congestion control reduces
the amount of transmission when a buffer overflow occurs, which causes end-to-end RTT
fluctuations. The bottleneck link capacity can be estimated from the RTT fluctuations in a
stable network with no random packet loss.

If the network resources of the two paths are different, the RTT fluctuations of the
flows passing through each path are also different. We confirmed the pattern of RTT
fluctuations through actual emulation experiments while applying this assumption to the
MPTCP subflow. The experiments were configured, so that MPTCP with two subflows
passes through two types of bottleneck links. Figure 3 presents the smoothed RTT of each
subflow for the shared and nonshared bottlenecks that are presented in Figure 1. In both
scenarios, a single-path TCP flow passes through the bottleneck link and, in the nonshared
bottleneck scenario, both subflows have the same RTT.

Figure 3. Round-trip-time (RTT) fluctuations according to the types of bottleneck: (a) both subflows
coexist in the same bottleneck; (b) the two subflows pass through disjointed bottlenecks.

When two subflows compete on a shared bottleneck link, the RTT fluctuations between
the two subflows are similar, because they fill the same bottleneck buffer. Subflows 1 (SF1)
and 2 (SF2) exhibit a similar increase and decrease at 10 to 25 s, as presented in Figure 3a.
The RTT difference in SF1 between the previous packet loss event and recent packet loss
event is calculated while using the following equation:

Electronics 2021, 10, 294 7 of 20

∆RTTSF1 = RTTSF1,max − RTTSF1,min. (3)

∆RTTSF1 is similar to that of SF2. In addition, the subsequent RTT fluctuation also
coincides with the pattern of SF2. Instead, if two subflows pass through separate bottleneck
links, the RTT fluctuations are distinct, due to their different network resources. Although
the bandwidth of each bottleneck link and the RTT of both subflows were the same,
∆RTTSF1 and ∆RTTSF2 were slightly different (Figure 3b). However, the difference in the
RTT fluctuations according to the scenario that is presented in Figure 3 is not completely
reliable information. Even if the environment of each link is completely different, then
the same RTT pattern may temporarily occur. Moreover, the RTT fluctuation can be
different, even in the same environment. Therefore, the modified BALIA congestion control
algorithm proposed in this paper judges that a shared bottleneck link is passed through
when the RTT fluctuation similarity for each subflow is high. If the similarity is low, the
cwnd decrease phase is adaptively adjusted.

The total average value of ∆RTTr is calculated to observe the similarity of the fluc-
tuations for each subflow. The minimum and maximum RTT are tracked by comparing
the current measured RTT to the previous RTT each time that an ACK is received. The
measured minimum and maximum RTT are initialized after performing the ADW algo-
rithm when congestion occurs due to packet loss. The RTT difference between the previous
packet loss event and the most recent packet loss event is calculated. All of these vari-
ables are calculated separately for each subflow. The smoothed total average value is
computed while using the exponential weighted moving average (EWMA) of the running
total average sample:

Averages(i) = (1− β)× Averages(i− 1) + β× Average(i), (4)

where β is a weighting factor set to 5/8. Average(i) is the latest calculated total average
sample. This value is always located between max{RTTr∈R} and min{RTTr∈R}, denoting
the maximum and minimum RTT of the subflow r of the MPTCP connection R. Figure 4
presents three regions for the adaptive cwnd decrease phase. If the average value that is
calculated using Equation (4) is located within the 10% boundary of the highest RTTmax and
lowest RTTmin of the subflows, it is determined that the RTT fluctuations of all subflows
are similar. If the Averages(i) value exceeds the 10% boundary and is located within twice
the range, the cwnd decrease is reduced when compared to the original cwnd decrease,
as presented in Figure 4b. Figure 4c presents the case in which the Averages(i) value is
not within twice the range. In this case, the similarity of the RTT fluctuation between
subflows is judged to be significantly different; thus, the cwnd decrease is further reduced
compared with that presented in Figure 4b. The introduced boundaries were established
based on experiments in shared and nonshared environments and they were tuned to the
values that maintain TCP fairness in shared bottlenecks and lead to the best performance
improvements in nonshared bottlenecks.

Electronics 2021, 10, 294 8 of 20

Figure 4. Three regions for the adaptive window decrease.

3.2. Adaptive Decrease Window for Throughput Improvement in a Nonshared Bottleneck

We proposed a congestion control algorithm that adaptively selects the cwnd decrease
for the packet loss event to improve the aggregate MPTCP throughput in a nonshared bot-
tleneck link while maintaining fairness to the single-path TCP in a shared bottleneck link.
Before designing the new algorithm, we evaluated which MPTCP congestion control algo-
rithm exhibits the best fairness to the traditional TCP. Among them, the BALIA algorithm
demonstrated better throughput for both bottleneck types. Therefore, we implemented
the ADW algorithm by modifying the BALIA congestion control algorithm. However, we
found that not all of the existing MPTCP algorithms have ideal throughput and coexist
with a single-path TCP in a shared bottleneck link. Therefore, rather than focusing on
detecting bottleneck types very accurately, the ADW algorithm aims to enable MPTCP to
have the best throughput while competing fairly with the single-path TCP.

The BALIA algorithm balances the tradeoff between responsiveness and TCP friendli-
ness of MPTCP. Peng et al. [19], who proposed BALIA, mentioned that no best parameter
setting exists, because there is a tradeoff between all of the performance metrics. After
identifying the design criteria for MPTCP algorithm, they experimentally tuned and chose
parameters that have a good balance between responsiveness, TCP friendliness, and win-
dow oscillation. However, because the BALIA algorithm is also designed in consideration
of TCP friendliness on a shared bottleneck link, it does not exhibit sufficient performance in
a nonshared bottleneck. Therefore, in order to satisfy TCP friendliness, the cwnd increase
phase was left as is, and only the decrease phase was changed. The cwnd increase phase of
the ADW-BALIA algorithm is the same as the BALIA algorithm to be fair for the single-path
TCP on a shared bottleneck. However, in the decrease phase, the reduction of the cwnd
can be smaller than the original BALIA algorithm, and the ADW-BALIA algorithm can
occupy the surplus resources of the link, inducing improved throughput on a nonshared
bottleneck link.

Electronics 2021, 10, 294 9 of 20

If the RTT fluctuations of each subflow are similar, then each subflow is judged to be
passing through the same bottleneck link and it behaves the same as in the cwnd decrease
phase of the existing BALIA algorithm. Conversely, if the RTT fluctuations are not similar,
then it is assumed that the subflow does not traverse the shared bottleneck link, and the
cwnd reduction is attenuated to improve the aggregate throughput. This improvement
comes from compensating for link underutilization, due to the excessive cwnd reduc-
tion upon congestion, which is a disadvantage of the AIMD-based congestion control.
In Figure 5, the flowchart presents a detailed operation of the ADW-BALIA congestion
control algorithm, and the Compensation part is a major modification to improve the
throughput.

Figure 5. Flowchart of the adaptive decrease window (ADW) congestion control algorithm.

The BALIA algorithm reduces the cwnd to a minimum when 1.5 is selected in the min()
function, which is 1/4 less than the previous cwnd. Based on this value, Compensation
1 sets a decreasing constant of 0.75, which is further reduced by 1/4 from the minimum
reduction of the BALIA algorithm. The max() function is defined to ensure the stable
operation of the ADW-BALIA algorithm in environments with a small bottleneck buffer. In
the same way, Compensation 2 is further reduced by an additional 1/4 in order to obtain
more surplus resources.

As the proposed ADW-BALIA uses the RTT fluctuation, the operation of algorithm
mainly depends on the queueing delay at the bottleneck buffer. Moreover, ADW-BALIA is
designed by assuming the tail-drop queue management as the active queue management
(AQM) algorithm at the buffer of the routers. There is a possibility that the application of
different AQM algorithms might affect ADW-BALIA’s operation. Therefore, the effect of

Electronics 2021, 10, 294 10 of 20

various AQM algorithms on the MPTCP congestion control algorithm will be investigated
and ADW-BALIA will be upgraded further in future work.

4. Experiments and Evaluations

In this section, the performance of the ADW-BALIA congestion control algorithm is
evaluated. We conducted an emulation experiment that is based on the Mininet emula-
tor [43]. The Mininet environment was constructed on Ubuntu using the Linux Kernel v.
4.04 with MPTCP v. 0.90.3. For the setting of the detailed experiment, Netem [44] was used
to configure the RTT, bandwidth, loss rate, and bottleneck buffer size for each link. Each
client host used Iperf3 [45] to send data to the MPTCP server host. The bottleneck buffer
size in all scenarios was set to 1 BDP in order to lead to periodic congestion events.

4.1. Topologies for the Experiment

Various topologies, as presented in Figure 6, were constructed to evaluate the fairness
for TCP Reno while using the existing MPTCP congestion control algorithms and the pro-
posed ADW-BALIA algorithms and to compare the throughput in nonshared bottlenecks.
First, Scenario 1 is an experiment to check whether the second design goal of MPTCP is
satisfied. The MPTCP connection with two subflows shares a bottleneck link with two
single-path TCP flows (Figure 6a). In Scenario 1, the throughput of one single-path TCP
and the aggregate MPTCP throughput should be the same, so that the fairness goal of the
MPTCP can be achieved. Figure 6b presents the ideal throughput that each flow should
have in this experiment, and it illustrates a simplified topology. In addition, Scenario 2 in
Figure 6c was constructed in order to check the performance on a nonshared bottleneck
link, where the existing MPTCP congestion control algorithms do not achieve the ideal
throughput. Likewise, Scenario 2 is simply presented again in Figure 6d, it and is ideal
when all subflows have the same throughput.

The previous two topologies are the most common experimental scenarios for the per-
formance evaluation of the MPTCP congestion control algorithm. Thus far, in the MPTCP
congestion control evaluation experiments, each subflow has been limited to two cases,
either sharing a bottleneck link or not. For the experiment in more diverse topologies,
Scenarios 3, 4, and 5 were constructed by combining the two previous scenarios. Scenarios
3, 4, and 5 are not expected to significantly differ from the previous experiments, because
the end-to-end throughput of the TCP is determined by the most congested bottleneck links
in the network. However, the throughput in the situation of passing through consecutive
bottleneck links was not the same as that in a simple scenario. Therefore, we evaluated the
performance of the MPTCP congestion control algorithm in an environment combining
two simple topologies.

Figure 6e presents a scenario in which MPTCP competes with a single-path TCP flow
in a nonshared link at first, but then competes all together in a subsequent shared bottleneck
link. In other words, it is an experiment in which a larger load is applied to the shared
bottleneck link in the downstream (i.e., the left side of the shared bottleneck in Figure 6e.
All of the bottleneck links have a bandwidth of 60 Mbps; however, the shared bottleneck
link in the downstream is more congested due to the competition of four flows. Figure 6g
presents the same topology as before, but the nonshared bottleneck link is more congested,
and it is expected to yield results similar to Scenario 2, because the bottleneck link is
upstream. The last scenario, Figure 6i, depicts a situation where two types of bottleneck
links exist simultaneously. Table 1 presents the setting values of the network parameters
that were used in the experiment.

Electronics 2021, 10, 294 11 of 20

Figure 6. Experiment topologies and simple diagrams.

Electronics 2021, 10, 294 12 of 20

Table 1. Experimental parameters for each scenario.

RTT Bandwidth Bottleneck
Buffer Size

Bottleneck
Bandwidth

Ideal Aggregate
Throughput of

MPTCP

Ideal Throughput of
Single-Path TCP

Scenario 1
10 ms 100 Mbps

1 BDP

60 Mbps 20 Mbps 20 Mbps for each

Scenario 2 60 Mbps for each 60 Mbps 30 Mbps for each

Scenario 3
20 ms

100 Mbps 60 Mbps for each
20 Mbps 20 Mbps for each

Scenario 4 150 Mbps 40 Mbps for NSB
150 Mbps for SB

Scenario 5 10 ms 120 Mbps 40 Mbps for NSB
120 Mbps for SB

40 Mbps 20 Mbps for h3, h5
40 Mbps for h7, h9

Notes: BDP: bandwidth-delay product; RTT: round-trip time; TCP: transmission control protocol; MPTCP: multipath TCP; NSB:
nonshared bottleneck; SB: shared bottleneck.

4.2. Experimental Results
4.2.1. Comparison of the Throughput Ratio

Figure 7a–f present the throughput ratio for a fair bandwidth when the proposed
ADW-BALIA and existing MPTCP congestion control algorithms compete with a single-
path TCP in a shared bottleneck link. Although all of the sexisting MPTCP congestion
control algorithms do not harm the single-path TCP, they are located between 0.8 and 0.9
and have a slightly lower throughput ratio (Figure 7a–c). However, the ADW-BALIA that
is proposed by modifying the BALIA algorithm occupies more bandwidth and exhibits
higher throughput when compared to the other algorithms. This is a false negative of
the ADW algorithm’s misjudgment, and it has no negative influence and increases the
throughput in a shared bottleneck. Moreover, the two single-path TCP flows are close to
their fair share when competing with the ADW-BALIA flows; thus, the fairness goal of
MPTCP is sufficiently guaranteed. Figure 7e shows the results of three single-path TCP
flows in a shared bottleneck with large deviations, but distributed near the fair number
of 1.0. Here, the independent Reno represents MPTCP capable devices with the MPTCP
option disabled, i.e., the MPTCP client host operates as a single path TCP and only uses
one path to transfer data. We designed the independent Reno experiment in order to
observe how the MPTCP capable communicating devices perform in the shared bottleneck
when they use only one of their paths. However, we only performed this experiment in
Scenario 1 because it has no significance in the nonshared bottleneck. Figure 7f illustrates
that the aggregate MPTCP throughput ratio 1.5 times higher than the ideal ratio, taking up
to twice as much bandwidth as each single TCP flow, results in an unfair outcome when
two MPTCP subflows operate as the uncoupled Reno.

If each MPTCP subflow passes through a different path, it is ideal to occupy the same
bandwidth as the single-path TCP flow at each link. Figure 8a–e present the throughput
ratio for each flow divided by the maximum throughput when each subflow coexists with
a single-path TCP flow in a nonshared bottleneck link. When MPTCP operates as the
LIA algorithm, the throughput is about 25% lower than the maximum throughput due
to the competing single-path TCP flow, as presented in Figure 8a. Figure 8b presents
a significantly large deviation for OLIA and, in the worst case, nearly half of the fair
throughput ratio is achieved. The BALIA algorithm has the best performance among the
existing MPTCP congestion control algorithms. The proposed ADW-BALIA algorithm
exhibits more improved fairness than the BALIA algorithm by mitigating the cwnd reduc-
tion based on the dissimilarity of the RTT fluctuations that may appear in the nonshared
bottleneck link. Figure 8d illustrates that the first subflow exhibits some variation in the
throughput ratio when compared to the second flow. However, the aggregate throughput
of the ADW-BALIA algorithm is almost fair. In the case of the uncoupled congestion

Electronics 2021, 10, 294 13 of 20

control algorithm operating both subflows as the general TCP Reno, MPTCP occupies
approximately 1.2 times more bandwidth than the single-path TCP.

Figure 7. Evaluation results of Scenario 1: (a) linked increase adaptation (LIA); (b) optimized LIA (OLIA); (c) balanced LIA
(BALIA); (d) adaptive decrease window (ADW); (e) independent Reno; and (f) uncoupled Reno.

Figure 8. Evaluation results of Scenario 2: (a) linked increase adaptation (LIA); (b) optimized LIA (OLIA); (c) balanced LIA
(BALIA); (d) adaptive decrease window (ADW); and, (e) uncoupled Reno.

Scenario 3 considers a situation where three links coexist; however, a larger load is
applied to the shared bottleneck link, which is located in the downstream. The shared
bottleneck link at the downstream becomes the main bottleneck, as determining the end-to-
end throughput in the network is one bottleneck link, which is most congested.

Overall, the throughput ratio is reduced as compared to Scenario 1, where only
one shared bottleneck exists (Figure 9a–c). When compared to other MPTCP congestion
control algorithms with throughput ratios of 0.7 to 0.8, the ADW-BALIA algorithm is
located between 0.8 and 0.9, showing improved throughput. The uncoupled Reno occupies
considerable bandwidth, which results in unfairness with the single-path TCP because the
MPTCP fairness goal is not considered when MPTCP operates as an uncoupled congestion
control algorithm. Therefore, an MPTCP that does not consider the fairness to the single-
path TCP can cause serious throughput degradation to TCP.

Electronics 2021, 10, 294 14 of 20

Figure 9. Evaluation results of Scenario 3: (a) linked increase adaptation (LIA); (b) optimized LIA (OLIA); (c) balanced LIA
(BALIA); (d) adaptive decrease window (ADW); and, (e) uncoupled Reno.

Scenario 4 has the same topology as Scenario 3, but the bottleneck is changed to a
nonshared bottleneck link. The bandwidth of each bottleneck link was changed to place
a larger load on the nonshared bottleneck link that is located at the front. The LIA and
OLIA algorithms exhibit similar results, but the BALIA algorithm demonstrates a reduced
throughput ratio when compared to that of Scenario 2 (Figure 10a–c). Conversely, in
Figure 10e, the uncoupled Reno takes up more bandwidth in Scenario 4. The proposed
ADW-BALIA algorithm not only exhibits the best fairness, but also significantly improves
the throughput when compared to the existing MPTCP algorithms.

Figure 10. Evaluation results of Scenario 4: (a) linked increase adaptation (LIA); (b) optimized LIA (OLIA); (c) balanced LIA
(BALIA); (d) adaptive decrease window (ADW); and, (e) uncoupled Reno.

Scenario 5 assumes a combination of Scenarios 3 and 4, where three bottleneck links
exist simultaneously. New single-path TCP hosts are connected to a shared bottleneck that
is located at the downstream, and the same load is applied to the three bottleneck links.
Figure 11 presents the throughput ratio for Scenario 5. The existing MPTCP algorithms
shown in Figure 11a–c have a low throughput ratio of 0.7 or less due to competition on
consecutive bottleneck links. Although the ADW-BALIA algorithm does not reach the
ideal throughput ratio, it accounts for about 80% of the ideal bandwidth, which results in

Electronics 2021, 10, 294 15 of 20

improved throughput (Figure 11d). For the uncoupled Reno, the single-path TCP flows are
overpowered, resulting in very unfair results.

Figure 11. Evaluation results of Scenario 5: (a) linked increase adaptation (LIA); (b) optimized LIA (OLIA); (c) balanced LIA
(BALIA); (d) adaptive decrease window (ADW); and, (e) uncoupled Reno.

4.2.2. Fairness Index

Figures 7–11 demonstrate how close each flow is to the ideal throughput, and Figure 12
presents a fairness index between the competing flows. The fairness between the MPTCP
flows and TCP flows is calculated whlie using Jain’s fairness index [46]:

Jain’s Fairness Index =
(∑n

i=1 xi)
2

n ∑n
i=1 xi

2 , (5)

where n denotes the number of flows and x denotes the throughput of each flow.

Figure 12. Comparison of Jain’s fairness index for all scenarios.

In the shared bottleneck scenario, the fairness for each throughput of two single-path
TCP flows and the aggregate MPTCP throughput was compared, whereas the fairness
between one MPTCP subflow and a single-path TCP flow in each nonshared bottleneck
link was compared in the nonshared bottleneck scenario.

Electronics 2021, 10, 294 16 of 20

The uncoupled Reno algorithm exhibits a sufficient fairness index of 0.9 in Scenarios 2
and 4; however, in the shared bottleneck-related scenario, it overwhelms the single-path
TCP flow, and the fairness index is reduced to approximately 0.9. In Scenarios 1 and 3,
all of the congestion control algorithms, except the uncoupled Reno algorithm, exhibit an
excellent fairness index and a small deviation. However, the fairness index of all MPTCP
algorithms except the proposed ADW-BALIA algorithm decreases in Scenario 2 and 4,
and the decrease in the OLIA algorithm is most noticeable. Moreover, their deviation
also substantially increases. In the last scenario, the fairness index of all existing coupled
congestion control algorithms is greatly reduced, which results in a throughput imbalance
between the MPTCP flows and single-path TCP flows. Conversely, the ADW-BALIA
algorithm uses the bandwidth quite fairly when each flow competes on the bottleneck link,
showing the best fairness index with a small deviation.

4.2.3. Different Round-Trip Times

Because the ADW-BALIA algorithm proposed in this paper observes the RTT fluctua-
tion of each subflow, the operation must be checked in situations in which the subflows
have different delays. Figure 13 displays the throughput ratio when two MPTCP subflows
have the same RTT and different RTTs in the topology of Scenarios 1 and 2.

In the shared bottleneck scenario result shown in Figure 13a, all of the MPTCP algo-
rithms guarantee the fairness goal of MPTCP, regardless of whether the RTT of the path is
different. In particular, the ADW algorithm has improved throughput when compared to
the existing MPTCP algorithm without damaging the TCP flow. Figure 13b demonstrates
the results of dividing the aggregate MPTCP throughput by two single TCP throughputs
when the two paths have different delays in a nonshared bottleneck scenario. Unlike the
shared bottleneck scenario, the throughput changes slightly, due to differences in delays
between paths. The throughput of all MPTCP algorithms, except OLIA, is reduced due to
the difference in the RTT of the two paths. The ADW algorithm that is designed based on
the BALIA algorithm also exhibits a decrease in throughput, but has the highest throughput
among the MPTCP algorithms.

Figure 13. Throughput ratio for Scenarios 1 and 2 according to RTT difference.

4.2.4. Competition with the CUBIC Congestion Control Algorithm

All of the MPTCP congestion control algorithms implemented in Linux are designed
based on TCP Reno, but, currently, the default TCP congestion control algorithm in Linux
is CUBIC [22]. The CUBIC was implemented based on the proposed binary increment
congestion (BIC) control algorithm to improve Reno’s slow congestion window increase
mechanism [47]. However, the BIC was difficult to analyze due to its complex design, and
there was a problem of RTT fairness, in which flows with a short RTT occupied considerable
bandwidth. Therefore, CUBIC was proposed to solve the above problems, and it has been
designated as the default TCP congestion control algorithm in Linux since 2006.

Electronics 2021, 10, 294 17 of 20

Therefore, we performed an experiment in which the proposed ADW algorithm
competes with the CUBIC flows. In the basic topologies of Figure 6a,c, the aggregate
MPTCP throughput ratio was calculated when competing with the CUBIC flows, divided
by its fair share. For comparison, Figure 14 presents the competition results with TCP
Reno flows in each scenario. The CUBIC flows occupy more bottleneck bandwidth than
the Reno flows in both scenarios. Therefore, all of the MPTCP algorithms show a lower
throughput ratio when competing with CUBIC flows than when competing with Reno
flows. In a nonshared bottleneck scenario, the ADW algorithm has a 20% higher average
throughput ratio than the BALIA and LIA algorithms and it takes up sufficient bandwidth,
even if it competes with the CUBIC flows.

Figure 14. Throughput ratio to fair share when MPTCP competes with the CUBIC.

In a shared bottleneck scenario, the existing MPTCP congestion control algorithm
has a throughput ratio of higher than 0.8 when competing with the Reno flow, but it
exhibits a throughput ratio of lower than 0.8 in competition with the CUBIC flows. This
outcome indicates that the MPTCP connection cannot guarantee enough throughput when
competing with a single-path CUBIC flow on a shared bottleneck link. In contrast, the
ADW algorithm occupies sufficient bandwidth with a throughput ratio of 0.8 or more in a
shared bottleneck scenario.

4.2.5. Lossy Environment

All of the introduced experiments were conducted in a lossless environment. The
MPTCP congestion control algorithm, which inherits the loss-based TCP congestion control
that performs congestion control using packet loss as a congestion signal, may experience
performance degradation in a lossy link. Moreover, the RTT fluctuation measurement may
not be accurate in a link with frequent loss because the proposed ADW-BALIA algorithm
considers the RTT fluctuation of each subflow. Therefore, we evaluated the proposed ADW
algorithm performance in an environment, where additional loss exists besides the packet
loss due to congestion events.

Figure 15 illustrates the change in the average throughput with increasing random
loss rates for shared and nonshared bottleneck links. The throughput sum of two single-
path Reno flows and the aggregate MPTCP throughput are plotted together. In a shared
bottleneck scenario presented in Figure 15a, as the loss rate increases (≤0.1%), the average
throughput of the MPTCP connection gradually increases, and the total throughput of
the single-path TCP gradually decreases. At a loss rate of 0.1%, the MPTCP congestion
control slightly exceeds its fair share ('20 Mbps in lossless), but it does not significantly
impair fairness. At a high loss rate of 0.5%, the throughput reduction of the single-path

Electronics 2021, 10, 294 18 of 20

TCP is noticeable, significantly reducing the overall throughput (MPTCP and two TCP
flows). The proposed ADW-BALIA algorithm has a higher throughput than the existing
MPTCP algorithm for all loss rates, and the gap is wider, especially at a loss rate of 0.5%.
Moreover, at a 0.5% loss rate, the ADW-BALIA algorithm occupies excess bandwidth
without harming the single-path TCP, leading to increased throughput. The nonshared
bottleneck experiment presented in Figure 15b also reveals results that are similar to the
shared bottleneck experiment. In both scenarios, the ADW-BALIA algorithm maintains
adequate fairness with the single-path TCP and improves the throughput.

Figure 15. Average throughput by loss rate in Scenarios 1 and 2.

5. Conclusions

In this paper, we proposed the ADW for BALIA congestion control algorithm in order
to improve the throughput in a nonshared bottleneck while maintaining TCP friendliness in
a shared bottleneck. The existing MPTCP congestion control algorithms fairly compete with
the single-path TCP in a shared bottleneck, but have not achieved the maximum throughput
in a nonshared bottleneck. The congestion window decrease mechanism of the ADW
algorithm is adjusted based on the similarity between the subflows estimated through the
delay information to achieve the maximum throughput. If the delay fluctuations between
subflows are similar, then the algorithm operates like the existing BALIA congestion
control algorithms and it attenuates the reduction in the cwnd according to the difference
in delay fluctuations. The proposed ADW-BALIA algorithm was evaluated by conducting
Mininet-based emulation experiments. The experimental results reveal that the proposed
ADW-BALIA algorithm coexists well with the single-path TCP in a shared bottleneck and
that the throughput increases by 20% as compared to the default congestion control of the
Linux MPTCP. In addition, we revealed that the proposed algorithm effectively works in
both simple and complex topologies with two or more bottlenecks. In all scenarios, the
ADW-BALIA algorithm had the highest and most stable fairness index. The experiments
on different RTT paths, the competition with CUBIC flows, and the lossy links confirm
that the ADW-BALIA algorithm improved the throughput when compared to the existing
MPTCP congestion control algorithms. In future work, we will investigate the performance
of ADW-BALIA on buffers while using different active queue management algorithms.

Author Contributions: G.-H.K. proposed the idea, conducted the experiments, and wrote the
manuscript. Y.-J.S. contributed by setting up the additional experiment environment. I.M. con-
tributed by providing the feedback for the evaluation results. Y.-Z.C. supervised the entire research.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Education, 2018R1A6A1A03025109, and was
funded by the Korea government (MSIT), 2019R1A2C1006249.

Acknowledgments: This research was supported in part by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-
2018R1A6A1A03025109), and by the NRF grant funded by the Korea government (MSIT) (No. NRF-
2019R1A2C1006249).

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2021, 10, 294 19 of 20

Abbreviations
The following abbreviations are used in this manuscript:

TCP Transmission control protocol
MPTCP Multipath TCP
ADW Adaptive decrease window
cwnd Congestion window
AIMD Additive increase/multiplicative decrease
LIA Linked increase adaptation
OLIA Optimized LIA
BALIA Balanced LIA
BBR Bottleneck bandwidth and round-trip time
RTT Round-trip time
SF Subflow
SB Shared bottleneck
NSB Nonshared bottleneck
BIC Binary increment congestion
AQM Active queue management

References
1. Postel, J. Transmission Control Protocol. 1981. Available online: https://tools.ietf.org/html/rfc793 (accessed on 25 January 2021).
2. Floyd, S.; Henderson, T. The New Reno Modification to TCP’s Fast Recovery Algorithm. 1999. Available online: https:

//tools.ietf.org/html/rfc2582 (accessed on 25 January 2021).
3. Allman, M.; Paxson, V.; Blanton, E. TCP Congestion Control. 2009. Available online: https://tools.ietf.org/html/rfc5681 (accessed

on 25 January 2021).
4. Jacobson, V. Congestion avoidance and control. ACM SIGCOMM Comput. Commun. Rev. 1988, 18, 314–329. [CrossRef]
5. Long Term Evolution (LTE): A Technical Overview. 2010. Available online: https://www.3g4g.co.uk/Lte/LTE_WP_0706

_Motorola.pdf (accessed on 25 January 2021).
6. Agiwal, M.; Roy, A.; Saxena, N. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor.

2016, 18, 1617–1655. [CrossRef]
7. Chen, Y.-C.; Lim, Y.; Gibbens, R.; Nahum, E.; Khalili, R.; Towsley, D. A Measurement-based Study of Multipath TCP Performance

over Wireless Networks. In Proceedings of the Internet Measurement Conference (IMC), Barcelona, Spain, 23–25 October 2013;
pp. 455–468.

8. Xu, C.; Zhao, J.; Muntean, G.-M. Congestion control design for multipath transport protocols: A survey. IEEE Commun. Surv. Tutor.
2016, 18, 2948–2969. [CrossRef]

9. Ford, A.; Raiciu, C.; Handley, M.; Barre, S.; Iyengar, J. Architectural Guidelines for Multipath TCP Development. 2011. Available
online: https://tools.ietf.org/html/rfc6182 (accessed on 25 January 2021).

10. Ford, A.; Raiciu, C.; Handley, M.; Bonaventure, O. TCP Extensions for Multipath Operation with Multiple Addresses. 2013.
Available online: https://tools.ietf.org/html/rfc6824 (accessed on 25 January 2021).

11. Khalili, R.; Gast, N.; Popovic, M.; Le Boudec, J. MPTCP is not Pareto-Optimal: Performance Issues and a Possible Solution.
IEEE/ACM Trans. Netw. 2013, 21, 1651–1654. [CrossRef]

12. Scharf, M.; Ford, A. Multipath TCP (MPTCP) Application Interface Considerations. 2013. Available online: https://tools.ietf.org/
html/rfc6897 (accessed on 25 January 2021).

13. Raiciu, C.; Wischik, D.; Handley, M. Practical Congestion Control for Multipath Transport Protocols; Technical Report; University
College London: London, UK, 2009.

14. Wischik, D.; Handley, M.; Braun, M.B. The Resource Pooling Principle. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 47–52.
[CrossRef]

15. Handley, M.; Padhye, J.; Floyd, S. TCP Congestion Window Validation. 2000. Available online: https://tools.ietf.org/html/rfc2861
(accessed on 25 January 2021).

16. Chiu, D.; Jain, R. Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Comput. Netw.
ISDN Syst. 1989, 17, 1–14. [CrossRef]

17. Shakkottai, S.; Hollot, C.V.; Srikant, R.; Towsley, D. Overlay TCP for Multi-Path Routing and Congestion Control; Ens-Inria Arc-TCP
Workshop: Paris, France, 5–7 November 2004.

18. Raiciu, C.; Handley, M.; Wischik, D. Coupled Congestion Control for Multipath Transport Protocols. 2011. Available online:
https://tools.ietf.org/html/rfc6356 (accessed on 25 January 2021).

19. Peng, Q.; Walid, A.; Hwang, J.; Low, S.H. Multipath TCP: Analysis, design, and implementation. IEEE/ACM Trans. Netw. 2016, 24,
596–609. [CrossRef]

20. Floyd, S.; Mahdavi, J. TCP-Friendly Unicast Rate-Based Flow Control. Technical Note Sent to end2end-Interest Mailing List. 1997.
Available online: http://www.psc.edu/networking/papers/tcpfriendly.html (accessed on 25 January 2021).

https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc2582
https://tools.ietf.org/html/rfc2582
https://tools.ietf.org/html/rfc5681
http://doi.org/10.1145/52325.52356
https://www.3g4g.co.uk/Lte/LTE_WP_0706_Motorola.pdf
https://www.3g4g.co.uk/Lte/LTE_WP_0706_Motorola.pdf
http://dx.doi.org/10.1109/COMST.2016.2532458
http://dx.doi.org/10.1109/COMST.2016.2558818
https://tools.ietf.org/html/rfc6182
https://tools.ietf.org/html/rfc6824
http://dx.doi.org/10.1109/TNET.2013.2274462
https://tools.ietf.org/html/rfc6897
https://tools.ietf.org/html/rfc6897
http://dx.doi.org/10.1145/1452335.1452342
https://tools.ietf.org/html/rfc2861
http://dx.doi.org/10.1016/0169-7552(89)90019-6
https://tools.ietf.org/html/rfc6356
http://dx.doi.org/10.1109/TNET.2014.2379698
http://www.psc.edu/networking/papers/tcpfriendly.html

Electronics 2021, 10, 294 20 of 20

21. Ferlin, S.; Alay, O.; Dreibholz, T.; Hayes, D.A.; Welzl, M. Revisiting congestion control for multipath TCP with shared bot-
tleneck detection. In Proceedings of the IEEE International Conference on Computer Communications, Chengdu, China,
14–17 October 2016; pp. 1–9.

22. Ha, S.; Rhee, I.; Xu, L. CUBIC: A new TCP-friendly high speed TCP variant. ACM SIGOPS Oper. Syst. Rev. 2008, 42, 5. [CrossRef]
23. Cardwell, N.; Cheng, Y.; Gunn, C.S.; Yeganeh, S.H.; Jacobson, V. BBR: Congestion-based congestion control. ACM Queue 2016, 14,

20–53. [CrossRef]
24. Honda, M.; Nishida, Y.; Eggert, L.; Sarolahti, P.; Tokuda, H. Multipath Congestion Control for Shared Bottleneck. 2009. Available

online: https://eggert.org/papers/2009-pfldnet-mpath-cc.pdf (accessed on 25 January 2021).
25. Cao, Y.; Xu, M.; Fu, X. Delay-based congestion control for multipath TCP. In Proceedings of the IEEE International Conference

Network Protocols (ICNP), Austin, TX, USA, 30 October–2 November 2012; pp. 1–10.
26. Kimura, B.Y.L.; Loureiro, A.A.F. MPTCP Linux Kernel Congestion Controls. arXiv 2018, arXiv:1812.03210.
27. Nguyen, K.; Kibria, M.G.; Ishizu, K.; Kojima, F.; Sekiya, H. An Evaluation of Multipath TCP in Lossy Environment. In Proceedings

of the IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kyoto,
Japan, 11–15 March 2019; pp. 573–577.

28. Zhang, S.; Lei, W.; Zhang, W.; Guan, Y.; Li, H. Congestion Control and Packet Scheduling for Multipath Real Time Video
Streaming. IEEE Access 2019, 7, 59758–59770. [CrossRef]

29. Zhu, T.; Qin, X.; Chen, L.; Chen, X.; Wei, G. wBBR: A Bottleneck Estimation-Based Congestion Control for Multipath TCP.
In Proceedings of the IEEE Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–5.

30. Han, J.; Xue, K.; Xing, Y.; Hong, P.; Wei, D.S. Measurement and Redesign of BBR-based MPTCP. In Proceedings of the ACM
SIGCOMM Conference Posters and Demos, Beijing, China, 19–23 August 2019; pp. 75–77.

31. Mahmud, I.; Lubna, T.; Song, Y.-J.; Cho, Y.-Z. Coupled Multipath BBR (C-MPBBR): A Efficient Congestion Control Algorithm for
Multipath TCP. IEEE Access 2020, 8, 165497–165511. [CrossRef]

32. Mahmud, I.; Kim, G.-H.; Lubna, T.; Cho, Y.-Z. BBR-ACD: BBR with Advanced Congestion Detection. Electronics 2020, 9, 136.
[CrossRef]

33. Kim, G.-H.; Cho, Y.-Z. Delay-Aware BBR Congestion Control Algorithm for RTT Fairness Improvement. IEEE Access 2020, 8,
4099–4109. [CrossRef]

34. Song, Y.-J.; Kim, G.-H.; Cho, Y.-Z. BBR-CWS: Improving the Inter-Protocol Fairness of BBR. Electronics 2020, 9, 862. [CrossRef]
35. Hassayoun, S.; Iyengar, J.; Ros, D. Dynamic Window Coupling for Multipath Congestion Control. In Proceedings of the IEEE

International Conference on Network Protocols (ICNP), Vancouver, BC, Canada, 17–20 October 2011; pp. 341–352.
36. Callegari, C.; Giordano, S.; Pagano, M.; Pepe, T. A Survey of Congestion Control Mechanisms in Linux TCP. In Proceedings of the

International Conference on Distributed Computer and Communication Networks (DCCN), Moscow, Russia, 7–10 October 2013;
pp. 28–42.

37. Wei, W.; Wang, Y.; Xue, K.; Wei, D.S.L.; Han, J.; Hong, P. Shared bottleneck detection based on congestion interval variance
measurement. IEEE Commun. Lett. 2018, 22, 2467–2470. [CrossRef]

38. Zhang, M.; Lai, J.; Krishnamurthy, A.; Peterson, L.L.; Wang, R.Y. A transport layer approach for improving end-to-end performance
and robustness using redundant paths. In Proceedings of the USENIX Annual Technical Conference (ATC), Carlsbad, CA, USA,
11–13 July 2004; pp. 99–112.

39. Kim, M.S.; Kim, T.; Shin, Y.; Lam, S.S.; Powers, E.J. A wavelet-based approach to detect shared congestion. IEEE/ACM Trans. Netw.
2008, 16, 763–776.

40. Yousaf, M.M.; Welzl, M. On the accurate identification of network paths having a common bottleneck. In Proceedings of the
ACM SIGCOMM Conference, Seattle, WA, USA, 17–22 August 2008.

41. Wei, W.; Xue, K.; Han, J.; Wei, D.S.L.; Hong, P. Shared Bottleneck-Based Congestion Control and Packet Scheduling for Multipath
TCP. IEEE/ACM Trans. Netw. 2020, 28, 653–666. [CrossRef]

42. Floyd, S.; Ramakrishnan, D.K.K.; Black, D.L. The Addition of Explicit Congestion Notification (ECN) to IP. 2001. Available online:
https://tools.ietf.org/html/rfc3168 (accessed on 25 January 2021).

43. Lantz, B.; Heller, B.; McKeown, N. A network in a laptop: Rapid prototyping for software-defined networks. In Proceedings of
the ACM SIGCOMM Workshop Hot Topics in Networks, Monterey, CA, USA, 20–21 October 2010.

44. Hemminger, S.; Ludovici, F.; Paul, H. NetEm—Network Emulator. Available online: http://manpages.ubuntu.com/manpages/
bionic/man8/tc-netem.8.html/ (accessed on 24 September 2020).

45. Dugan, J. Iperf3—Perform Network Throughput Tests. Available online: http://manpages.ubuntu.com/manpages/bionic/en/
man1/iperf3.1.html/ (accessed on 24 September 2020).

46. Jain, R.; Chiu, D.M.; Hawe, W.R. A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer
System; Tech. Rep. TR-301; Digital Equipment Corporation: Maynard, MA, USA, 1984.

47. Xu, L.; Harfoush, K.; Rhee, I. Binary increase congestion control (BIC) for fast long-distance networks. In Proceedings of the IEEE
INFOCOM, Hong Kong, China, 7–11 March 2004.

http://dx.doi.org/10.1145/1400097.1400105
http://dx.doi.org/10.1145/3012426.3022184
https://eggert.org/papers/2009-pfldnet-mpath-cc.pdf
http://dx.doi.org/10.1109/ACCESS.2019.2913902
http://dx.doi.org/10.1109/ACCESS.2020.3022720
http://dx.doi.org/10.3390/electronics9010136
http://dx.doi.org/10.1109/ACCESS.2019.2962213
http://dx.doi.org/10.3390/electronics9050862
http://dx.doi.org/10.1109/LCOMM.2018.2872977
http://dx.doi.org/10.1109/TNET.2020.2970032
https://tools.ietf.org/html/rfc3168
http://manpages.ubuntu.com/manpages/bionic/man8/tc-netem.8.html/
http://manpages.ubuntu.com/manpages/bionic/man8/tc-netem.8.html/
http://manpages.ubuntu.com/manpages/bionic/en/man1/iperf3.1.html/
http://manpages.ubuntu.com/manpages/bionic/en/man1/iperf3.1.html/

	Introduction
	Related Work
	Multipath Transmission Control Protocol Congestion Control Algorithm
	Bottleneck Links in Multipath Transmission Control Protocol
	Shared Bottleneck Detection Algorithm

	Adaptive Decrease Window for BALIA Congestion Control Algorithm
	Similarity of the Round-Trip-Time Fluctuations between Subflows
	Adaptive Decrease Window for Throughput Improvement in a Nonshared Bottleneck

	Experiments and Evaluations
	Topologies for the Experiment
	Experimental Results
	Comparison of the Throughput Ratio
	Fairness Index
	Different Round-Trip Times
	Competition with the CUBIC Congestion Control Algorithm
	Lossy Environment

	Conclusions
	References

