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Abstract: In the field of meteorology, radiosonde data and observation data are critical for analyzing
regional meteorological characteristics. Because of the high false alarm rate, severe convection
forecasting is still challenging. In addition, the existing methods are difficult to use to capture the
interaction of meteorological factors at the same time. In this research, a cascade of extreme gradient
boosting (XGBoost) for feature transformation and a factorization machine (FM) for second-order
feature interaction to capture the nonlinear interaction—XGB+FM—is proposed. An attention-based
bidirectional long short-term memory (Att-Bi-LSTM) network is proposed to impute the missing
data of meteorological observation stations. The problem of class imbalance is resolved by the
support vector machines–synthetic minority oversampling technique (SVM-SMOTE), in which two
oversampling strategies based on the support vector discrimination mechanism are proposed. It
is proven that the method is effective, and the threat score (TS) is 7.27~14.28% higher than other
methods. Moreover, we propose the meteorological factor selection method based on XGB+FM and
improve the forecast accuracy, which is one of our contributions, as well as the forecast system.

Keywords: severe convection forecast; XGBoost; FM; Att-Bi-LSTM; SVM-SMOTE; Bayesian opti-
mization; feature importance; factor selection

1. Introduction

Severe convective weather, such as hail and heavy precipitation, belongs to the cate-
gory of small- and medium-scale weather forecasts. It is the result of a series of mutual in-
terference of atmospheric systems, including complex nonlinear physical quantity changes
and unpredictable randomness. The formation of heavy precipitation requires that the
depression of the dew point near the ground and the pseudo-equivalent temperature in
the middle and upper air meet certain conditions, while the hail trigger depends more on
the height of the thermal inversion layer, 0 ◦C layer and 20 ◦C layer. China is one of the
most hail-prone regions in the world, and heavy precipitation is the most frequent severe
convective weather in China [1]. Heavy precipitation and hail have caused great harm
to China, including its industry, electricity and even safety [2]. For example, the heavy
rain in the Hanzhong area once led to economic losses of about 400 million RMB in three
days [3]. Rainfall is also an important guide for crop planting. Moura et al. [4] studied
the relationship between agricultural time series and extreme precipitation behavior, and
they pointed out that climatic conditions that affect crop yields are of great significance for
improving agricultural harvests.

Heavy precipitation and hail are common types of severe convective weather in the
meteorological field. The difficulties of severe convective weather forecasting include the
high false alarm rate caused by its rarity, the triggering mechanism of severe convection
being poorly understood, the climate changing immeasurably with seasons, time and space
and the meteorological data used being complex in type and high in attribute correlation
and data redundancy.

In meteorology, hail is generally forecast by meteorological factor analysis and at-
mospheric evolution law [5]. Manzato et al. [6] conducted diagnostic analysis on 52
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meteorological factors, and the results revealed that five sounding factors had good cor-
relation with local hail events. In another paper [7], he pointed out that the development
of nonlinear methods, including machine learning, was more conducive to the forecast of
complex weather such as hail. Gagne et al. [8] used a variety of machine learning models to
forecast hail weather in the United States, and the results showed that random forests (RFs)
performed best in the test and were not easily overfitted. Czernecki et al. [9] conducted
a number of experiments, proving that a combination of parameters such as dynamics
and thermodynamics with remote sensing data was superior to the two individual data
types for forecasting hail. Yao et al. [10] established a balanced random forest (BRF) to
forecast hail events in a 0–6 h timespan in Shandong and used hail cases to interpret the
feasibility of the model and the potential role of forecast factors which were consistent with
the forecast. Shi et al. [11] proposed three weak echo region identification algorithms to
study hail events in Tianjin and pointed out that 85% of the convective cells would evolve
into hail, which could be used as an auxiliary parameter of a multiparameter model.

In recent years, deep learning has achieved favorable results in quite a few fields, and
there are also some preliminary attempts in the field of meteorology, which has benefited
from the massive growth of meteorological data in recent years. Melinda et al. [12] extracted
a functional feature related to storms—infrared brightness temperature reduction—using a
convolutional neural network under multi-source data, which further proved the ability
of deep learning to explore weather phenomena. Bipasha et al. [13] showed through
satellite image analysis that the cloud top cooling rate could more accurately evaluate
extreme rainfall events in the Himalayas than the cloud top temperature and established
a near-forecast model for extreme topographical rainfall events based on certain features.
Fahimy et al. [14] used the balanced random subspace (BRS) algorithm to forecast the
monthly rainfall of the eastern station in Malaysia and carried out a large number of
experiments with this model in the other two stations, obtaining exciting results for multiple
indicators. Experiments by Zhang et al. [15] suggested that deep learning technology could
better forecast the generation, development and extinction of convective weather than the
optical flow method when multiple source data were available.

Nevertheless, the occurrence of heavy precipitation and hail events depends on
differences in topography and climate, and the main contributor is the nonlinear motion of
atmospheric physical quantity. Therefore, the study of atmospheric physical quantity is
helpful to understand the triggering mechanism of rainstorms and hail and, thus, it can be
used as an important feature of an actual forecast. Combined with the proven significant
advantages of machine learning methods in the field of meteorological big data [16], this
paper constructed a machine learning model to improve the accuracy of severe convection
forecasts. In summary, we characterize the novelty and contributions below:

1. A cascading model is proposed for the prediction of severe convection;
2. For the first time, a novel sample discrimination strategy is proposed for the oversam-

pling algorithm;
3. A method of feature selection based on a cascading model is proposed.

The paper is organized as follows. In Section 2, a cascade model is proposed for
severe convection forecasting, where extreme gradient boosting (XGBoost) automatically
selects and combines features, and the transformed new features are fed into a factorization
machine (FM) for forecasting. The depth and number of decision trees determine the
dimensions of the new features. In Section 3, we propose attention-based bidirectional
long short-term memory (Att-Bi-LSTM) to deal with data that are missing values and the
support vector machines–synthetic minority oversampling technique (SVM-SMOTE) to
resolve the class imbalance. In Section 4, firstly, the hyperparameters of the model are
optimized by Bayesian optimization. Secondly, an attempt to explain the influence of
features on the model is made using various methods. Finally, the results show that the
XGB+FM interaction with feature selection is superior to other factor selection methods
and the forecast model without factor selection.
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2. Methods

The strong convection prediction method proposed in this paper was inspired by quite
a few fields of recommender systems [17], in which a prediction algorithm is proposed by
combining a gradient boosting decision tree (GBDT) algorithm and logistic regression (LR).
In 2014, Dr. Chen proposed an improvement on GBDT, and XGBoost was born. A year
later, in the Knowledge Discovery and Data Mining (KDD) Cup, the top ten teams all used
this algorithm. An FM models the interaction between features on the basis of LR and
proposes the feature latent vector to estimate the model.

2.1. XGBoost Component

A boosting method is a powerful machine learning model which does not need feature
preprocessing methods similar to standardization [18]. In addition, a boosting ensemble
strategy also has the evaluation module of feature importance, which helps the model
achieve feature selection and improve the prediction results. XGBoost is a member of the
boosting family [19], whose basic theory is to fit the difference between the estimated value
and the true value of all samples (residuals) in the existing model, so as to establish a new
basic learner in the direction of reducing residuals.

Boosting ensemble learning is achieved by the additive model [20]

ŷi = ∑K
k=1 fk(xi) fk ∈ F (1)

where ŷi is the predicted value corresponding to sample xi, K is the number of basic learners
and F is the function space constituted by all basic learners.

Generally, the forward stage-wise algorithm [21] is used to solve the additive model.
The algorithm learns a basic learner iteratively in each step, so as to achieve the termination
condition or the maximum number of iterations of the optimization goal. Accordingly, the
optimization goal L(t) of step t can be rewritten as

L(t) = ∑M
i=1 `

(
yi, ŷi

t−1 + ft(xi)
)
+ Ω( ft) + C (2)

where `
(
yi, ŷi

t−1 + ft(xi)
)

is the residual of xi, Ω( ft) is a regular term and C is a constant.
According to the Taylor formula, the objective function is further simplified as follows:

L(t) ≈∑M
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (3)

gi =
∂`
(
yi, ŷi

t−1)
∂ŷi

t−1 , hi =
∂2`
(
yi, ŷi

t−1)
∂ŷi

t−1 (4)

where gi and hi are the first and second derivatives of the residual, respectively. The
minimization formula in (3) can obtain the learned function in each step and, subsequently,
the complete learning model can be obtained from the additive model.

2.2. FM Component

In recent years, deep learning has achieved great success. Compared with generalized
linear models, their generalization ability and performance are improved due to their
consideration of higher-order interactions between features. An FM (See Figure 1) is an
concept that was proposed in 2010 to address the trouble of feature combination of high-
dimensional sparse data [22]. In the study of Qiang et al. [23], an FM acted on the feature
extractor to solve the dilemma that high-order features in sparse data were difficult to
learn while ensuring the diversity of extracted features and reducing the complexity of the
algorithm.

This is similar to matrix decomposition in collaborative filtering, and the expression
of an FM is
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ŷ(x) = σ

(
w0 +

N

∑
i=1

wixi +
N−1

∑
i=1

N

∑
j=i+1

< vi, vj > xixj

)
(5)

where vi represents the latent vector of feature component xi, whose length is K (K ∈
N+, K << N); < ·, · > represents the dot product; N is the number of features; w0 ∈ R,
and w = {w1 , w2, · · ·, wn} ∈ RN . The sigmoid function is set on the output of the FM so
the model output will be converted between 0 and 1.
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All feature interactions containing feature xi have the opportunity to learn the latent
vector vi. This advantage enables the FM to cope well with high-dimensional sparse
data and less-relative samples. According to the perfect square trinomial, Equation (5) is
transformed as follows:

ŷ(x) = σ

w0 +
N

∑
i=1

wixi +
1
2

K

∑
k=1

( N

∑
i=1

vi,kxi

)2

−
N

∑
i=1

v2
i,kxi

2

 (6)

The time complexity of the model changed from O
(
KN2) to O(KN). Based on logistic

regression, the FM models the interaction between features and proposes the latent vector
to estimate the model. Thus, it can be seen that an FM can complete the target task in linear
time. The stochastic gradient descent (SGD) method was used to learn the FM parameters,
as shown in Algorithm 1.

Algorithm 1: SGD optimizes FM.

Input: dataset D= {xm, ym}M
m=1, x ∈ RN , y ∈ R

Output: model parameters θ∗ = {w0, w, V}
Initialize: α = 0.1, w0 = 0, w = 0, V → N(0, 1)
for m = 1 · · ·M do

ŷ(xm) = σ

(
w0 +

N
∑

i=1
wixi +

N−1
∑

i=1

N
∑

j=i+1
< vi, vj > xixj

)
w0 ← w0 − α ∂

∂w0
loss(ŷm(xm|θ∗), ym)

for i = 1 · · · N do
wi ← wi − α ∂

∂wi
loss(ŷm(xm|θ∗), ym)

for k = 1 · · · K do
vik ← vik − α ∂

∂vik
loss(ŷm(xm|θ∗), ym)

end
end
end
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2.3. Cascade Model

The training process of XGBoost can be regarded as the combination of the single
feature of each decision tree. Generally, the combined features are better than the original
features; hence, the new features transformed by XGBoost also have strong information
capacities.

Assuming that the feature set of the dataset is C = {c1, c2, · · · cN}, a sample can be
expressed as xi = {x1, x2, · · · xN}, xi ∈ RN . The function of XGBoost is to map a sample to
the leaf node of each subtree to obtain the index vector corresponding to the sample:

XGBoost : xi → ωi (7)

where ωi = {ωi1, ωi2, · · ·ωiT} and T is the number of decision trees. Equation (7) is the key
to feature transformation. Element ωik in ωi encodes the node, where sample xi maps to the
kth subtree. Vector ωi is regarded as the feature vector of the original sample transformed
by XGBoost. ωi is a new feature vector of the implicit information of the original sample
xi, and the result of its one-hot encoding is ω̃i. At this time, element ω̃ik in ω̃i is a sparse
vector of length lk. The position element corresponding to ωik in ω̃ik is 1, and the other
position elements are 0. Therefore, the dimension of the new vector ω̃i transformed by
XGBoost is the sum of the leaf nodes of all subtrees N′ = ∑T

k=1 lk.
Although N′ >> N, transformed high-dimensional sparse vectors do not increase the

computational cost of FM model training but make the interaction part of the model easier
to carry out.

For a trained XGBoost model (See Figure 2), suppose that the leaf nodes of the kth tree
are coded from left to right according to natural numbers, which are recorded as

Lk = {1, 2, · · · lk}, k ∈ T (8)

where lk is the number of leaf nodes in the current subtree. Assume Ck(Ck ⊂ C) is the
feature set used to build the kth tree, which is equivalent to selecting a feature set for the
current subtree. Due to the limitation of the decision tree depth, XGBoost only uses a small
part of the features when constructing a subtree, so lk and Ck are generally small, which is
helpful for accelerating model training and preventing overfitting.
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Figure 2. Extreme gradient boosting (XGBoost) and factorization machine (XGB+FM) cascade model.

3. Data

Two data sources were used in this study. The time resolution of the first part of the
data was 1 h, which was used to capture ground information. Att-Bi-LSTM was proposed
to solve the missing values of the data. The time resolution of the second part of the
data was 8 h, which was used to capture high-altitude information. In order to forecast
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the severe convective weather in Tianjin, the latest data of the two datasets before the
occurrence of the target weather were integrated. In view of the imbalance of hail and
rainstorm samples, a new oversampling algorithm was proposed to synthesize the hail
samples.

3.1. Dataset

The dataset came from the automatic meteorological station of Tianjin and its surround-
ing weather system moving path radiosonde station, and its geographical distribution is
shown in Figure 3.
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As shown in Figure 3a, there are 13 automatic meteorological observation stations
in Tianjin, and the observation data records 20 meteorological physical quantities with
a temporal resolution of 1 h, which can be found in Appendix A. According to the geo-
graphical location of Tianjin City in Figure 3b, Beijing Station and Zhangjiakou Station on
Northwest Road, Chifeng Station on Northeast Road, Xingtai Station on Southwest Road
and Zhangqiu Station on Southeast Road were selected as the auxiliary for the forecast of
heavy rain and hail in the Tianjin area. Each radiosonde station calculated 33 convection pa-
rameters based on the physical quantity. Detailed information can be found in Appendix B.
Table 1 is the individual station information in Figure 3b.

Table 1. Radiosonde station information.

Station Station Number Longitude Latitude Altitude

Beijing 54451 116.4667 39.8 31.3
Xingtai 53798 114.3589 37.1808 183

Zhangqiu 54727 117.55 36.6833 121.8
Chifeng 54218 118.8344 42.3075 668.6

Zhangjiakou 54401 119.9194 40.7694 772.8

3.2. Missing Data Imputation

The data recorded by the automatic station (Appendix A) was collected on an hourly
basis, and we selected the measured data from 2006 to 2018. However, there were missing
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values in the data of the automatic observation station, which occurred only in the first
through the tenth physical quantities. Statistics show that about 40 data values were not
recorded each year on average. Missing meteorological values is the most common issue
in statistical analysis and the most important way to improve the reliability of analysis
results, mainly caused by extreme weather conditions and various mechanical failures [24].
Meteorological data has strict spatial and temporal correlation, and a method that can not
only guarantee the accuracy of meteorological data, but also impute the missing values of
data in real time, must be used. We used a Bi-LSTM model that introduced an attention
mechanism to impute missing values. The input of Att-Bi-LSTM was ten physical quantities
in the first three hours, and the prediction was ten physical quantities in the next moment,
which could be used for estimating the missing data values.

Compared with Recurrent Neural Network (RNN), LSTM introduces a new memory
cell ct ∈ RD to store the experience learned from historical information and retain the
captured information for a longer time interval. Memory cell ct is calculated by the
following formula:

ct = ft � ct−1 + it � c̃t (9)

ht = ot � tanh(ct) (10)

where ft ∈ [0, 1]D, it ∈ [0, 1]D and ot ∈ [0, 1]D are the three gates that control the informa-
tion transmission path; � is the product of the vector elements; ct−1 is the memory unit
at time t− 1; and c̃t ∈ RD is the current candidate state, obtained through the following
nonlinear function:

c̃t = tanh(Wcxt + Ucht−1 + bc) (11)

where xt is the input data at the current moment and ht−1 is the external input of the
previous moment.

LSTM connects two memory cells through a linear relationship, which is more than
effective for solving the vanishing gradient problem [25]. The gating mechanism in LSTM
is actually a kind of soft threshold gate with a value between 0 and 1, indicating the
proportion of information allowed to pass, as shown in Figure 4.
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The bidirectional LSTM network adds a network layer that transmits information in
reverse order to learn more advanced features, which allows the LSTM network to operate
in two ways: one from the past to the future and the other from the future to the past.
Specifically, the bidirectional LSTM can store information from past and future moments in
two hidden states at any time. Assuming that the hidden states of the LSTM network in
two opposite directions at time t are h1

t and h2
t , then

h1
t = f (W1xt + U1ht−1 + b1) (12)
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h2
t = f (W2xt + U2ht+1 + b2) (13)

ht = h1
t ⊕ h2

t (14)

where ⊕ represents the vector splicing operation and ht is the output at time t.
An attention mechanism is an effective means to tackle information overload [26]. The

purpose of an attention mechanism is to save computing resources, strengthen the capacity
and expression performance of the network and filter the information irrelevant to the task
for the neural network, inspired by the mechanisms of the human brain.

Let H = [h1, h2, · · · , hT ] ∈ RD×T be the output of the bidirectional LSTM network,
where T is the sequence length and D is the dimension of the output vector. In Att-Bi-
LSTM, the query vector q is dynamically generated, and the final state hT learned by each
sequence is defined as q. At this time, the network is considered to have learned the most
beneficial information for the task. The scaled dot product model is regarded as a metric to
indicate the similarity of vectors q and h:

s(h, q) =
hTq√

D
(15)

Equation (15) is called the scoring function of attention. Therefore, when q and h are
given, the probability of the tth input vector being selected is

αt = p(t|H, q)
= softmax(s(ht, q))
=

exp(s(ht ,q))
∑T

i=1 exp(s(hi ,q))

(16)

where αt is the attention distribution of the model, indicating the degree of attention paid
to the tth input vector. As shown in Figure 5, the soft attention mechanism is the weighted
average of the output vectors at all times:

att(H, q) = ∑T
t=1 αtht (17)
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With the help of the attention mechanism, the LSTM network can capture important
semantic information in the data. Therefore, the proposed model can automatically give
priority to the expressions that are beneficial to the prediction results without using external
information. As shown in Figure 6, the model of missing data imputation consisted of five
parts, and we sorted out the data in the preprocessing layer, mainly including normalization.
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Table 2 and Figure 7 show the goodness of fit and partial visualization of Att-Bi-LSTM
to meteorological physical quantities, respectively, which prove that the model used to
estimate missing data is reliable. The best values are indicated in bold in the table. In
practical application, the data of the three moments before the occurrence of missing values
is modeled, and the hourly predictions of multiple features are obtained to estimate the
missing value.
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Table 2. Goodness of fit of the physical quantity.

R2 PRS PRS_Sea TEM DPT RHU VAP WIN_D_2mi WIN_S_2mi WIN_D_10mi WIN_S_10mi

LSTM 0.9766 0.9764 0.9403 0.9564 0.9432 0.9566 0.3317 0.50660 0.3623 0.5970
Bi-LSTM 0.9981 0.9982 0.9964 0.9972 0.9980 0.9987 0.9881 0.9909 0.9870 0.9930

Att-Bi-LSTM 0.9961 0.9963 0.9973 0.9988 0.9985 0.9990 0.9888 0.9942 0.9880 0.9945
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3.3. Data Integration

Meteorological observatory data were recorded hourly in Coordinated Universal Time
(UTC) and converted to Chinese standard time. According to the occurrence of heavy
precipitation and hail in Tianjin, the meteorological physical quantity three hours before
the occurrence time (OT) was obtained, with a total of 60 features. The radiosonde data was
recorded twice a day at 8:00 a.m. and 8:00 p.m. Chinese standard time, respectively. The
data of five radiosonde stations were obtained from the previous detection at the OT with a
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total of 165 features. Finally, the two datasets (Appendices A and B) were merged according
to the OT, and the forecast datasets of heavy precipitation and hail were obtained. Thus,
the final dataset had 225 features, and the labels were based on the heavy precipitation and
hail recorded by the automatic observation stations. In addition, weather categories not
covered in this research were excluded by the Tianjin rainfall forecast system. This paper
integrates the data from the above two sources to build a regional forecast system.

3.4. Class Imbalance

The traditional SMOTE algorithm adopts a random linear interpolation strategy, and
the synthesized sample will attract the hyperplane to move to the minority class. However,
this random strategy cannot influence the distance of the hyperplane movement. When
the dataset is extremely unbalanced, the synthesized samples are likely to overlap with the
original data and even introduce noise samples, which leads to problems such as fuzzy
hyperplanes and the marginalization of data distribution [27].

The oversampling algorithm-based support vector was proposed by Wang in 2007 [28],
which performs near-neighbor extensions on minority class support vectors instead of
minority classes. The innovation of this study was to propose two interpolation methods
based on the support vector decision mechanism. First, we used the SVM algorithm to find
the support vector, namely the two types of samples in the dataset located at the decision
boundary. Second, a discrimination strategy for the sample was applied to the support
vectors belonging to a minority class. Finally, two different interpolation methods were
introduced according to the characteristics of support vector: sample interpolation and
sample extrapolation.

The SVM-SMOTE algorithm is as follows:

• SVM is used to find all the support vectors in the minority class;
• For each support vector x of the minority class, the k nearest neighbors are calculated

according to Euclidean distance, assuming that the number of majority classes in k
nearest neighbors is n. If n = k, x is marked as noise; if n > k/2, x is marked as danger;
and if n < k/2, x is marked as safety, as shown in Figure 8;

• For each danger xi, the minority sample xj of the k nearest neighbors is found, and
the sample interpolation method is adopted to synthesize new minority samples
between them:

xnew = xi + rand(0, 1) ∗ (xj − xi) (18)

• For each safety xi, the sample extrapolation method is

xnew = xi − rand(0, 1) ∗ (xj − xi) (19)

where rand(0, 1) is a random number between 0 and 1.

The essence of SVM-SMOTE is to synthesize samples with different discrimination
mechanisms for minority support vectors. This algorithm can extend the minority class
to the sample space with a low majority class density, which is beneficial to subsequent
classification tasks. In the data preprocessing stage, this research used SVM-SMOTE to
synthesize hail samples so as to reduce the class imbalance. Specifically, the number ratio
of heavy precipitation to hail was closer to 7:1. After SVM-SMOTE algorithm processing,
the hail samples in the train set were expanded from 50 to 332, which made the number of
the two classes equal.
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4. Experiment

At the end of data preprocessing, the XGB+FM model proposed in this paper was
formally applied. Because the hyperparameters were difficult to interpret, we adopted
Bayesian optimization to fine-tune the model. In view of many meteorological elements,
the proposed method for selecting factors was proven to be effective.

4.1. Hyperparameter Optimization

The hyperparameter tuning of machine learning models could be regarded as an
optimization process of black box functions [29]. For computational reasons, the cost
of optimizing this function was high, and more importantly, the expression of the opti-
mized function was unknown. Bayesian optimization provided new ideas for the global
optimization of such models.

In this paper, we used the Bayesian optimization algorithm based on a Gaussian
process to achieve the hyperparameter tuning of XGBoost [30]. Assuming that the search
space of the hyperparameters is represented as X, and the black box function can be defined
as f : x→ R , the goal of optimization is to find suitable parameter values to satisfy

x∗ = argmax
x∈X

f (x) (20)

For ease of presentation, the input samples were omitted here, and x represents a set
of hyperparameters to be optimized. Through the Gaussian process, Bayesian optimization
could statistically obtain the mean and variance of all hyperparameters corresponding to
the current iteration number. A larger mean was expected by the model, and variance
represented the uncertainty of the hyperparameters.

In Figure 9, the solid green line represents the empirical error as a function of the
hyperparameters, the orange area represents the variance, the green dashed line represents
the mean and the red dot is the empirical error, calculated based on the three sets of
hyperparameters of the model. In order to find the next set of optimal hyperparameters, the
model should comprehensively consider the mean and variance and define the acquisition
function for

∂(t) = µt−1(x) + β
1
2
t σt−1(x) (21)

where µt−1(x) and σt−1(x) represent the mean and variance of the previous iteration. βt,
according to theoretical analysis, generally increases with the number of iterations.
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The acquisition function was used to calculate the weighted sum of the mean and
the variance, as shown by the purple solid line in Figure 9. The algorithm needed to
find the maximum value and add it to the historical results to recalculate the two param-
eters of the Gaussian process. The details of the implementation can be seen in Algorithm 2.

Algorithm 2: Bayesian optimization.

Input: dataset D0, Number of iterations T
Output: xmax, ymax
Initialize: α = 0.1, w0 = 0, w = 0, V → N(0, 1)
for t = 1 · · · T do
Fit GP according to data set D0, xt = argmax∂(x)
Evaluate y = f (xt), Dt = Dt−1 ∪ (xt, yt)
end

This paper used Bayesian optimization to tune eight hyperparameters of XGBoost,
and the results are shown in Figure 10. Based on the optimization results, the selected
hyperparameter combinations are shown in Tables 3 and 4.

Table 3. Hyperparameters of XGBoost.

Hyperparameter Explanation Value

alpha L1 regularization 0.01
colsample_bytree Subsample ratio of columns when constructing each tree 0.9

gamma Minimum gain of node split 0.05
learning_rate Boosting learning rate 0.12

max_delta_step Maximum delta step for tree weight change 0
max_depth Maximum tree depth for base learners 6

n_estimators Number of trees 60
subsample Subsample ratio of the training instance 0.6

Table 4. Hyperparameters of the FM.

Hyperparameter Explanation Value

lr L2 regularization 0.15
lambda Regularization 0.04
epoch Number of iterations 30

k Latent vector length 4
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4.2. Evaluation

In this paper, three evaluation indicators commonly used in severe convection fore-
casting and receiver operating characteristic (ROC) curves were used to measure the
performance of different models. The area-under-the-curve (AUC) value was not affected
by the size of the test data, and it was expected for the classifier to find an appropriate
threshold for both the positive and negative classes:

AUC = ∑i∈(P+N)

(TPRi + TPRi−1)(FPRi − FPRi−1)

2
(22)

The commonly used assessment indicators in the meteorological field were the percent
of doom (POD), false alarm rate (FAR) and threat score (TS). With the help of the confusion
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matrix (See Table 5), the above three indicators (with hail as the object of concern) can be
better expressed as

POD =
TP

TP + FN
(23)

FAR =
FP

TP + FP
(24)

TS =
TP

TP + FP + FN
(25)

Table 5. The confusion matrix.

Real Class
Forecast Class

Hail Heavy Precipitation

Hail TP FN

Heavy precipitation FP TN

In this paper, 82 cases of heavy rainfall and hail in Tianjin in the past 12 years were
forecasted, and various ensemble learning strategies and corresponding cascade models
were compared. In view of the unbalanced test set, in order to increase the credibility of
the experimental results, all comparison experiments were tested four times. The average
results are shown in Table 6. The error bars of the four performances of XGB+FM can be
seen in Figure 11a.

Table 6. The results of the experiment.

Mode POD FAR TS

RF 0.5910 0.5336 0.3512
GBDT 0.5455 0.5885 0.3333

XGBoost 0.6364 0.5625 0.3500
RF+LR 0.6591 0.4917 0.4018

GBDT+LR 0.7046 0.5230 0.3974
XGB+LR 0.7500 0.5344 0.4034
XGB+FM 0.9318 0.5054 0.4761Electronics 2021, 10, x FOR PEER REVIEW 16 of 24 
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Figure 11b is an ROC curve of the experimental results. Up to now, this paper proposed
XGBoost as a feature engineering approach which selected important features and tried to
transform them, and an FM was used as the model of the classifier. As shown in Table 6
and Figure 11, compared with other cascading strategies, XGB+ FM had the best AUC
value and the best performance for the POD and TS, the latter of which is more concerned
with severe convection prediction. However, the FAR of our model was slightly behind
RF+LR and ranked second.

4.3. Feature Importance

In analyzing the experimental results of the previous section, although the RF had a
low POD of hail, the POD of heavy rain was relatively high, which made its AUC value
larger. As a bagging ensemble learning method, a RF adopts the strategy of random
selection of feature subsets in tree construction, which can indeed improve the results.
All the features involved in this paper are commonly used forecast factors in the field
of meteorology, and the selection of meteorological factors is a part of the work that
is exceedingly concerned with weather forecasting. Therefore, this section attempts to
illustrate forecast factors based on the above work.

The importance of features is an essential factor affecting the forecast performance
and efficiency, and the most important feature expression model was expected. Another
hidden function of XGBoost is that it can assign a score to each feature based on the set of
established decision trees, which indicates the contribution of the feature to the boosting
tree [31]. Three commonly used feature description methods in boosting ensemble learning
are weight, gain, and cover [32]. Weight is the number of times each feature is used in the
model; gain is the average gain of splits which use the feature; and cover is defined as
the average number of samples affected by the feature splitting. Based on the above three
indicators, the 30 most important features of XGBoost and their quantitative relationships
are shown in Figure 12.
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The number of features was another factor weighing predictive performance against
efficiency. In order to illustrate the features better, we first got a contribution value for
each feature. Secondly, with reference to boosting feature importance [33], the goal was to
get the cumulative contribution degree caused by the features. Finally, after the feature
contributions were arranged in descending order, a factor cumulative contribution diagram
was obtained, as shown in Figure 13.
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Generally speaking, a small number of features dominated the contribution values,
while other features did not provide or rarely provided contributions. In Figure 13, we
see the expected results. The top 50 features were 80% important to the model, and the
top 100 features contributed almost 100% to the importance of the features. Moreover,
the first four features were significantly more explanatory than the other features, while
the last 200 features did not provide any explanatory ability for the model. Therefore, a
more effective method to describe the importance of features was urgently needed for the
selection of meteorological factors.

4.4. Factor Selection

In the field of meteorology, the selection of factors is of great importance to the accuracy
of forecasts. Traditional methods for the selection of meteorological factors include the
variance method and correlation coefficient method [34]. However, many factor selection
methods fail to take into account the influence of correlation information between factors
on the accuracy of forecasts.

It is worth mentioning that the feature interaction of the FM model provides a new
idea for selecting the optimal combination of features. Given that the dimension of the new
sample ω̃i transformed by XGBoost is N′, the second-order FM model of the transformed
sample can be obtained according to Equation (5):

ŷ(ω̃i) = σ

(
λ0 +

N′

∑
j=1

λjω̃i,j +
N′−1

∑
j=1

N′

∑
k=j+1

< vj, vk > ω̃i,jω̃i,k

)
(26)

where ω̃i,j is the jth feature of the ith transformed sample ω̃i and its value is either zero or
one. Different from the above experimental part, when using the interactive characteristics
of the FM model to select the optimal combination feature, attention should be paid to the
second-order polynomial part of the model, according to the following definition:

λjk =< vj, vk > (27)

where λjk is the second-order polynomial coefficient of the model, which represents the
contribution degree of the feature combinations ω̃i,j and ω̃i,k to the model. The factor
threshold ε is set here, and the feature combinations ω̃i,j and ω̃i,k, corresponding to λjk > ε,
are selected; that is, the combined features whose contribution degrees are greater than ε
are considered to be important factors.

Assuming that the set of coefficients satisfying the above conditions is λ= {λjk

∣∣∣λjk > ε
}

,
for λjk, it must correspond to the transformed features ω̃i,j and ω̃i,k of the two subtrees.
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Let the set used by XGBoost to construct these two subtrees be Cj and Ck. Then, the
optimal feature combination can be expressed as Cj ∪ Ck. Take the intersection of all the
feature combinations that meet the above threshold conditions, and the feature with greater
contribution selected by the FM can be expressed as

C̃ = ∪j,k∈λ

(
Cj ∪ Ck

)
(28)

where C̃ is the optimal feature set selected by the FM second-order coefficients. In this
paper, the linear term coefficients of the FM model were also selected.

4.5. Results and Discussion

The feature score endows each feature with a numerical weighted feature importance
(WFI). In this paper, the XGBooost program (See Figure 14) was executed based on the
selected feature subset of the given WFI threshold. The opinion here is that, after the
XGBoost system performed feature selection, we used it to capture higher-order feature
interactions that captured orders one less than the depth of the decision tree. The order in
which the decision tree was built determined the order of feature interactions.
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In this section, 60 decision trees (See Figure 15) established in Section 4.1 were used
to transform features, and a total of 341 dimension features were obtained, which corre-
sponded to 341 feature latent vectors. According to Equations (27) and (28), the optimal
factor combination was calculated and selected. In addition, improvements in the exper-
imental results were compared between the traditional factor selection method and the
XGBoost factor selection method.
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Table 7 shows the thresholds and results corresponding to the three feature selection
methods. This paper did not use a recursive method to find the optimal threshold, which
was not the focus of this work.

Table 7. Feature selection.

Method Threshold Number of Features

Correlation coefficient [34] 0.2 67
XGBoost [31] 0.001 99

XGB+FM 0.02 82

We re-executed the XGB+FM model with the results of feature selection, and the
experimental results and ROC curves of the three feature selection methods are shown in
Table 8 and Figure 16.

Table 8. Experimental results of feature selection.

Method POD FAR TS

Correlation coefficient [34] 1.0 0.5417 0.4583
XGBoost [31] 0.9091 0.4118 0.5555

XGB+FM 1.0 0.4211 0.5789
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As can be seen from the results, compared with the other two methods, the model
after XGB+FM factor selection was more efficient. XGB+FM factor selection was superior to
the other two methods in terms of TS, which attracted more attention. The POD was equal
to the correlation coefficient method. Meanwhile, the three indicators of our method were
better than the forecast results without factor selection. However, the consequence was not
exceedingly satisfactory. Eight of the 71 heavy precipitation cases were still expected to
be hail. In addition to the imbalance of the test set, another potential contributor for this
result may be that the train set still did not support the model to get a better parameter
space, which is also urgent work for the future.

The factor selection method proposed in this paper is reasonable. The process of XG-
Boost tree construction ensures the effectiveness of factors, and the FM model considers the
correlation among the factors and finds the optimal combination of factors to achieve more
exciting forecast results. In practical application, the proposed method can significantly
reduce the storage space and model training time of meteorological big data and promote
forecast performance at an appropriate threshold.



Electronics 2021, 10, 321 19 of 22

In general, the following results can be seen. Adding feature interaction on the basis
of linear features was helpful to improve the forecast accuracy. Learning of both low-order
(FM) and high-order (XGBoost) features improved the reliability of the forecast results.
The forecast results were improved based on the important features selected by XGB+FM.
Finally, the performance of the model could be improved through feature interaction.

5. Conclusions

In this paper, the difficulties of severe convective weather region forecast were solved.
A severe convection forecast method was proposed, in which XGBoost and the FM model
were cascaded to improve the forecast accuracy. We suggested a bidirectional LSTM
network with the attention mechanism to impute missing data. We put forward an SVM-
SMOTE algorithm to overcome the problem of long-tailed data distributions. Meanwhile,
a Bayesian optimization algorithm was adopted to fine-tune the hyperparameters of the
model. Our experiment results demonstrate the following:

• The SVM-SMOTE algorithm innovatively proposed two interpolation methods based
on a sample discrimination mechanism, and the consequence showed the effectiveness
of the discrimination based on the boundary area. The main advantages are that
support vectors are often partial samples of minority classes, which reduces the time
complexity, and support vectors are bounded, which may increase the classification
ability of the dataset;

• In our model, the transformed features of XGBoost are sparse, which can reduce
the influence of noisy data and improve the robustness of the hybrid model. As a
probabilistic nonlinear classifier, the FM’s interactive feature function is more than
effective for sparse features and helps to capture the nonlinear interaction between
features;

• XGB+FM learns both low-order and high-order features at the same time to improve
forecast accuracy, which is important to attempt in the field of meteorology.

In view of the large number of forecast factors in the meteorological field, a forecast
factor selection technique was proposed to strengthen forecast performance. By analyzing
feature importance, the results of the machine learning models are easier to understand:

• This study proves that both the number of decision trees and the number of features
affect the forecast results. Therefore, more important features need to be selected for
severe convection forecasting;

• XGB+FM proposes a new evaluation method for feature importance, which greatly
reduces the learning time by discarding features with low correlation and, at the same
time, alleviating the storage consumption of meteorological big data;

• XGB+FM is more powerful after factor selection than other ensemble strategies. Mete-
orologists can then decide which factors to refeed into the model for better results.

Limited by the number of severe convective weather and the diversity of features,
our model may not be able to maximize the forecast advantage. Another possible model
training method is to train the feature engineering XGBoost model with part of the data set
and train the FM classifier with another part of the data. In actual situations, the dataset
should be updated continuously, according to climate change, to improve the performance
of severe convection forecasting. Our research proves the effectiveness of high-altitude
factors for forecasting severe convection. However, the difference of meteorological factors
toward the formation mechanism of heavy precipitation and hail is still worthy of further
study. Future work can also study the interaction between XGBoost and FMs. As an
example, XGBoost can be trained with meteorological data for one season, while the
parameters of an FM can be trained once a week—or otherwise once a month—which may
be more consistent with the seasonal characteristics of meteorological data.
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Appendix A

Table A1. List of 20 physical quantities of automatic station.

Physical Quantities Abbreviations Physical Quantities Abbreviations

Ground-Level Pressure PRS Sea-Level Pressure PRS_Sea
Temperature TEM Dew Point Temperature DPT

Relative Humidity RHU Vapor Pressure VAP
2 min Wind Direction WIN_D_2mi 2 min Wind Speed WIN_S_2mi
10 min Wind Direction WIN_D_10mi 10 min Wind Speed WIN_S_10mi
Precipitation in 1 Hour PRE_1h Water Vapor Density WVD

Saturated Water Pressure SWP Temperature Dew-point
Difference TDD

Air-Specific Humidity ASH Virtual Temperature VT

Potential Temperature LT Virtual Potential
Temperature VLT

Precipitable Water PW1 Precipitable Water PW2

Appendix B

Table A2. List of 33 convection parameters of radiosonde station.

Convective Parameters Abbreviations Convective Parameters Abbreviations

Convective Available
Potential Energy CAPE Deep Convection Index DCI

Best CAPE BCAPE Modified DCI MDCI
Convective Inhibition CIN Index of Stability IL
Severe Weather Threat

Index SWEAT Index of Convective
Stability ICL

Wind Index WINDEX Total Totals Index TT

Relative Helicity of Storm SHR Micro Downburst daily
Potential Index MDPI

Energy Helicity Index EHI Zero Temperature Height ZHT

Bulk Rickardson Number BRN Minus Thirty Temperature
Height FHT

Storms Severity Index SSI Index of Convective IC
Swiss Index00 SWISS00 Best IC BIC
Swiss Index12 SWISS12 Convection Temp TCON
Condensation
Temperature TC K Index KI

Condensation Level PC Modified KI MK
Equilibrium Level PE Showalter Index SI

Convective Condensation
Level CCL Lifting Index LI

Level of Free Convection LFC Best Lifting Index BLI
Precipitable Water PW
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Appendix C

Table A3. List of abbreviations.

Proper Nouns Abbreviations Proper Nouns Abbreviations

Extreme gradient boosting XGBoost Gradient boosting decision
tree GBDT

Attention-based
bidirectional long

short-term memory
Att-Bi-LSTM

Support vector
machines–synthetic

minority oversampling
technique

SVM-SMOTE

Factorization machine FM Logistic regression LR
Random forest RF Area under the curve AUC

Receiver operating
characteristic ROC Universal time coordinated UTC

Occurrence time OT Percent of doom POD
False alarm rate FAR Threat score TS

Balanced random
subspace BRS Stochastic gradient descent SGD

Weighted feature
importance WFI
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