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Abstract: Multi-scale representation plays a critical role in the field of edge detection. However, most
of the existing research focuses on one of two aspects: fast training and accurate testing. In this paper,
we propose a novel multi-scale method to resolve the balance between them. Specifically, according
to multi-stream structures and the image pyramid principle, we construct a down-sampling pyramid
network and a lightweight up-sampling pyramid network to enrich the multi-scale representation
from the encoder and decoder, respectively. Next, these two pyramid networks and a backbone
network constitute our overall architecture, a bi-directional pyramid network (BDP-Net). Extensive
experiments show that compared with the state-of-the-art model, our method could improve the
training speed by about one time while retaining a similar test accuracy. Especially, under the single-
scale test, our approach also reaches human perception (F1 score of 0.803) on the BSDS500 database.

Keywords: edge detection; encoder–decoder; multi-scale representation

1. Introduction

Edge detection aims to extract perceptually salient edges and object boundaries from
natural images. As a fundamental problem of image processing, edge detection has a
significant impact on high-level feature extraction, feature description, and image under-
standing. Thus, it is closely related to many computer vision problems, including object
recognition [1], image segmentation [2,3], and medical imaging [4,5].

Multi-scale representation learning is a long-standing topic in the field of computer
vision, including edge detection. Edge detection is initially considered to be a low-level
task until [2] applies local cues of multiple sizes to attain state-of-the-art at that time.
In recent years, with the success of deep convolutional neural networks in computer
vision, including object detection [6,7] and semantic segmentation [8–10], some multi-scale
learning methods to fuse multiple kinds of hierarchical features for edge detection have
been developed. For example, HED [11] utilizes deeply supervised nets [12] to supervise
outputs of different network stages. Based on this, RCF [13] makes further efforts to enrich
the features of different levels in the same network stage. Nevertheless, [11,13] do not fully
take advantage of the contextual information of objects in a natural image, since constraints
on the neighboring pixel labels are not directly enforced in their encoder architectures.
On the basis of RCF, BDCN [14] attempts to resolve this issue by a pseudo bi-directional
cascade structure (BDC) and scale enhancement module (SEM). As SEM can capture rich
spatial contexts through multi-stream learning in the same network stage, it plays a major
role in making BDCN state-of-the-art. Specifically, this module is implemented by multiple
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dilated convolutions with various sampling rates. However, SEM needs to be utilized
in every network stage, so it introduces some additional parameters and significantly
increases training time.

To specify the performance of different methods, namely test accuracy and training
speed, we show some relevant results in Table 1. Note that RCF [13] has an advantage over
its previous approaches (including HED [11]) in terms of model performance. Therefore,
here we do not show the performance of its previous methods. From Table 1, one may
find that RCF and BDCN focus on one of two aspects: fast training and accurate testing,
respectively. In order to take both factors into account, we attempt to consider a novel
multi-scale learning method to deal with edge detection of natural images. To describe our
architecture clearly, we start from the encoder and decoder, respectively.

Table 1. Single-scale test performance of different networks with 15 K training iterations on BSDS500.
Here, ‘–’ represents ‘not used’. The metrics ODS and OIS refer to F1 score based on optimal dataset
scale and optimal image scale, respectively. Note that ‘]para’ refers to the model parameters and ‘+’
means the additional parameters on the basis of RCF [13]. ‘GFLOPS’ indicates giga floating-point
operations per second. ‘TT’ and ‘FPS’ represent the training time of the model and the average frames
per second during training, respectively.

Methods ODS OIS ] Para GFLOPS TT FPS

Human 0.803 0.803 – – – –

RCF [13] 0.792 0.809 14.8 M 81.77 7 h 5.95

BDCN_SEM [14] 0.801 0.817 +0.1 K 81.78 8 h 28 min 4.92
BDCN_BDC [14] 0.803 0.819 +1.5 M 114.3 12 h 27 min 3.35
BDCN [14] 0.804 0.820 +1.5 M 114.31 12 h 35 min 3.31

Ours 0.803 0.822 +3.9 K 81.81 7 h 42 min 5.41

First, we reconsider how to strengthen the encoder. Besides the multi-stream learning
approach in the same network stage, like SEM, the one across network stages often ap-
pears in computer vision, such as [9,15]. However, this usually also consumes magnitude
computations because of frequent up-sampling in the encoder. For a given image, the com-
putational complexity of up-sampling is significantly higher than that of down-sampling.
Intuitively, a feasible alternative is to apply down-sampling to multi-stream learning across
network stages. Meanwhile, the amount of down-sampling had better not exceed a certain
threshold, such as the total number of network stages. Based on the above ideas, we
propose a simple and naive down-sampling pyramid network (DSP). Specifically, based
on the image pyramid principle, according to the number difference between the current
network stage and the first stage, we transform the original input image into a lower
resolution one, and then fuse the down-sampling image and the corresponding features
from the backbone to heighten the previous encoder further.

Moreover, we consider how to enhance the decoder architecture. Instead of simply
utilizing channel concatenation like RCF [13], inspired by U-Net [16], we propose an
up-sampling pyramid network (USP) to fuse information from different network stages.
In particular, we restore the resolutions of feature maps gradually and then hierarchical
features in our USP are separately fused with the corresponding ones in the encoder.
To make our USP lightweight, we compress the feature maps in the encoder by a series of
1 × 1 convolutions. Finally, the triple mechanisms (i.e., our DSP, lightweight USP, and a
trimmed VGG16 as the backbone) make up our bi-directional pyramid network (BDP-Net).

To sum up, our contributions are three-fold:

• Firstly, a down-sampling pyramid network is proposed to enrich the multi-scale
representation of the previous encoder. To our knowledge, it is the first time that a
down-sampling pyramid network has been used to enrich multi-scale features in the
field of edge detection.
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• Secondly, a lightweight up-sampling pyramid network is proposed to enhance the
multi-scale representation of the previous decoder. Combining these two pyra-
mid networks with a trimmed VGG16 makes up our bi-directional pyramid net-
work (BDP-Net).

• Last but not least, while retaining the test accuracy with BDCN [14], the state-of-the-
art model in the field of edge detection, the proposed BDP-Net is experimentally
demonstrated to improve the training speed by about one time.

The remainder of the paper is organized as follows. Section 2 reviews the related
work. Section 3 introduces our method and then Section 4 experimentally demonstrates
its effectiveness and compares it with some state-of-the-art approaches. Finally, Section 5
provides a summary of the paper.

2. Related Work

Since our work is mainly related to multi-scale representation learning as well as edge
detection, we give a brief review of these in the following.

2.1. Edge Detection

Edge detection is a long-standing topic dating back to work [17] in 1959. Since then,
extensive literature has emerged about edge detection. Generally, one may divide these
approaches into three categories: edge differential operators, traditional machine learning
methods, and systems based on deep learning.

Edge differential operators are early pioneering methods (e.g., Robinson [18] and
Sobel [19]), which mainly depend on the information of color and intensity. Specifically,
they refer to the first or second derivative information. By introducing the idea of non-
maximum suppression to edge detection, Canny [20] is widely used across various tasks
and turns into a representative of such methods. However, since these methods rely on the
manual design of edge detection operators instead of learnable patterns, they usually have
poor accuracy on test data.

The traditional machine learning approaches, such as [2,21–25], generally apply data-
driven methods to supervised learning by virtue of manual features. For instance, Mar-
tin et al. [21] formulate some low features about color, brightness, and texture in natural
images, and then combine the information and their ground truth to train a classifier.
Dollár et al. [24] make full use of predictions of local edge masks based on structured
learning. Sam et al. [25] propose an efficient model, oriented edge forest, by combining a
random forest classifier and a clustering method based on local edge orientations. Never-
theless, the edge information extracted from these methods is still relatively limited, even
if designing sophisticated feature engineering.

Due to the emphasis on learning features automatically, methods based on deep
learning, especially convolution neural networks (CNNs), have become the current main-
stream in the field of edge detection. The early approaches based on deep learning, such
as DeepContour [26], DeepEdge [27] and N4-Fields [28], mainly utilize patch-to-patch
or patch-to-pixel strategies, which generally weaken prediction effectiveness. HED [11]
first implements image-to-image prediction by leveraging fully convolutional neural net-
works. RCF [13] makes further efforts to enrich the hierarchical features by numerous 1 × 1
convolutions. BDCN [14] relies on a bi-directional pseudo-cascade structure and scale
enhancement module to push forward state-of-the-art. In addition, LPCB [29] proposes a
bottom-up/top-down architecture with a combination of cross-entropy and the Dice loss,
to achieve good prediction for edge detection. However, as mentioned in Section 1, these
methods are either insufficient in context information or inefficient in training.

2.2. Existing Multi-Scale Learning

Extracting and fusing multi-scale features is an enduring topic in computer vision,
including edge detection. According to different locations used in a deep learning architec-



Electronics 2021, 10, 329 4 of 15

ture, multi-scale methods are divided roughly into two groups: those outside the network
and those within the network.

The representative methods outside the network apply multi-scale inputs to a shared
network or multiple networks and then fuse the multi-scale outputs. For example, Ar-
beláez et al. [30] begin with a multi-resolution image pyramid to perform multi-scale
combinatorial grouping. Clément et al. [31] transform the original images through a Lapla-
cian pyramid into multi-scale images that are fed to different networks. In addition to
training, multi-scale inputs could be used for testing. For instance, Liu et al. [13] resize an
original image to three resolutions, and then these are separately fed to the same network
to obtain three outputs. Finally, these outputs are first restored to the original size and
then integrated to achieve high-quality edge maps through a simple average. Although the
multi-scale input method can improve the test accuracy, it also increases model training
or testing time.

From the perspective of network stages, the multi-scale methods used within the
network (see Figure 1) could be further divided into two groups, i.e., those used in the
same stage and those applied in different stages.

conv

down-sample

fusion

output

up-sample

input

 (a)                                       (b)                        (c)                                 (d)

 (e)                                                            (f)                        

Figure 1. Outlines of multi-scale methods within the network: (a) multi-level learning; (b) modular
structure; (c) multi-scale formed by different network stages; (d) encoder–decoder combined with
skip-layers; (e) multi-scale across network stages; (f) our proposed bi-directional pyramid network
(BDP-Net). Here, ‘conv’ refers to a convolution layer that usually embodies an activation operation.
For simplicity, we show only a single-stage network for (a,b). Note that a dark blue (up or right)
arrow indicates an output of the network.

In views of different forms, we divide multi-scale approaches used in the same
network stage into two categories:

(a) Multi-level learning. In relation to a specific network, convolutions of different
depths at the same stage have various receptive fields and then learn features of differ-
ent levels. A typical example is RCF [13]. However, as mentioned in Section 1, RCF
underutilizes the contextual information of objects in a natural image.

(b) Modular structure. Due to strong scalability, a large number of relevant methods
have emerged in recent years, such as the Inception Series [32–34], Pyramid Pooling
Module [35], ASPP [36], and SEM [14]. In addition to such parallel structures, some series
structures like dense blocks [37] have been introduced. Generally, the modular structure
could obtain good test results at the cost of increasing the model parameters and massive
computation during training.

In relation to multi-scale methods applied in the different network stages, we divide
these into the following categories:
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(c) Multi-scale formed by different network stages. Generally, a deeper network stage
often corresponds to a larger receptive field. For instance, Xie et al. [11] leverage the
side-output layers to learn nested multi-scale features for edge detection. Lin et al. [6]
introduce multi-scale outputs from different stages in the up-sampling feature pyramid.
Due to a lack of sufficient context information in their encoder, their test accuracy still
needs to improve.

(d) Encoder–decoder combined with skip-layers. For instance, U-Net [16] makes full
use of the same level information from the encoder and decoder architecture. However,
its decoder and encoder are almost the same in structure, which results in redundant
parameters and calculations.

(e) Multi-scale across network stages. Hou et al. [15] and Zhang et al. [9] fuse in-
formation derived from the current stage and all the deeper stages and then provide a
performance improvement. However, due to frequent up-sampling, their methods usually
consume magnitude computations.

(f) Our architecture (BDP-Net). A down-sampling and lightweight up-sampling
pyramid network are introduced. Contrary to [9,15], we up-sample two times at almost
every network stage, which is a result of the down-sampling of the original input. Further,
the proposed architecture could cut down many calculations and speed up the training
process. Next, we introduce our method in detail.

3. Methodology

In this section, we introduce our architecture based on VGG16 [38]. In comparison
with the raw VGG16, we not only remove all the fully connected layers and the 5th pooling
operation, but also introduce modifications for the encoder and decoder as follows.

3.1. The Proposed Down-Sampling Pyramid Network

To make full use of contextual information in natural images, inspired by the multi-
scale learning approaches [9,15] across network stages, we introduce the down-sampling
pyramid network (DSP) by the image pyramid principle. Specifically, we propose some
bypass networks to down-sample the original image and then these parallel branches
constitute our DSP, as shown on the left of Figure 2. Note that one may conduct the above
DSP by 1 × 1 convolutions with different strides, or combining 1 × 1 convolutions with
stride 1 and bilinear (or bicubic) interpolation. The down-sampling stride is obtained
according to the number difference between the current stage and the first stage. (Note
that we adopt 1 as the stride of the 4th pooling like Liu et al. [13]. Thus, the stride of the
last 1 × 1 convolution in the down-sampling pyramid network is 8, not 16. In addition,
the last information fusion is before the 4th pooling operation.)

Next, the current down-sampling image is fused with the output from the previous
stage in the backbone. Finally, the fusion information is fed to the next stage in our encoder.
For example, the inputs of the third stage in our encoder contain the output of the second
stage and the feature map obtained by 23−1 down-sampling about the original image.

Further, the modified encoder is composed of this DSP and the previous encoder.
Compared with the state-of-the-art model BDCN [14], our proposed DSP introduces no
additional hyper-parameters. (Specifically, BDCN [14] needs to adjust two kinds of hyper-
parameters, namely the number and the sampling rate of dilated convolutions.)
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Figure 2. The framework of our BDP-Net. The left and right paths in orange correspond to our down-sampling pyramid
network (DSP) and up-sampling pyramid network (USP), respectively. Here, ‘3 × 3 − 64’ represents a convolution with
kernel 3 and channel 64, and ‘2 × 2 pool’ means a max-pooling with stride 2 in height and width. ‘s = 2’ indicates that
the down-sampling stride is 2. ‘⊕’ means information fusion. ‘deconv × 2’ and ‘BI × 2’ refer to twice up-sampling using
deconvolution and bilinear interpolation, respectively. The rest are similar. In addition, ‘sigmoid/loss’ indicates using the
sigmoid layer to obtain a prediction and then calculating the corresponding loss.

3.2. The Proposed Lightweight Up-Sampling Pyramid Network

In the field of edge detection, RCF [13] makes use of abundant 1 × 1 convolutions to
compress channel information and obtains rich hierarchical features by five side-outputs
and a fusion output. In terms of the fusion output, RCF directly restores the resolutions of
feature maps from different stages to the original input size and then applies one channel
concatenation and one convolution operation to obtain the output. Evidently, such a fusion
output in RCF is too simple to get rich information. BDCN [14] also has this problem,
because it utilizes a fusion output similar to RCF.

Motivated by U-Net [16], we propose the lightweight up-sampling pyramid network
(USP) to enrich multi-scale features from the decoder. Specifically, we take double and
possible quadruple up-sampling for the feature map in the current phase (referring to
stages 2, 3, and 4) and then fuse the information from the corresponding stage in our
encoder, as shown on the right of Figure 2. Note that the fusion method involves adding
between feature maps instead of concatenation. Hence, the channels from our decoder are
the same (i.e., 1), as shown in Block_2 from Figure 2, which leads to a lightweight decoder.
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Finally, our DSP, lightweight USP, and the trimmed VGG16 as the backbone, make up
a novel encoder–decoder architecture: the bi-directional pyramid network (BDP-Net). One
can see Section 4.3 for details of the model parameters and training speed of the proposed
network. The adopted loss function originates from [14].

4. Experiments

In this section, we start with three datasets, state details of the implementation in our
experiments, and then discuss the effectiveness of our network and make comparisons
with some state-of-the-art models.

4.1. Datasets

We evaluate the proposed method on three public datasets: BSDS500 [2], NYUDv2 [39],
and Multicue [40].

BSDS500 consists of 200, 100, and 200 images for training, validation, and testing,
respectively. The ground-truth is obtained by average, as multiple annotators label every
image. Its training and validation sets are used to finetune, and its test set is applied for eval-
uation. In relation to data augmentation, we utilize the same strategies as [11,13,14], which
embrace three data transformations, namely scaling, rotating, and flipping. To expand the
training set further, we also increase the flipped PASCAL VOC Context dataset.

NYUDv2 contains 381, 414, and 654 images for training, validation, and testing, respec-
tively. Its ground truth provides binary annotations. We utilize the training and validation
sets for finetuning, and the test set for evaluation. The data augmentation strategy is the
same as [11,13,14]. Unlike BSDS500, it includes paired depth images in addition to RGB
images, as it is initially applied for scene understanding. Following previous work [11],
we apply this information by HHA features, namely horizontal disparity, height above
ground, and angle with gravity.

Multicue includes 100 challenging natural scenes. There are ten frames taken from
the left and right views in every scene. The last frame of the left view for each scene is
annotated for two annotations, namely object boundaries and edges. Here we utilize 80
and 20 images for training and testing, respectively. Regarding data augmentation, we
apply the same strategy as [13,14].

4.2. Implementation Details

On the three databases, the batch size was set to 10 for all the experiments. In the
training phase, we applied full resolution images for BSDS500 and NYUDv2, and randomly
cropped 500 × 500 patches for Multicue as its image resolution is high.

All experiments were conducted on a single GeForce GTX 1080Ti. Our architecture
was implemented by using the publicly available PyTorch (https://github.com/pytorch/
pytorch). In the experiments, the VGG16 [38] pre-trained on ImageNet [41] was applied to
initialize the backbone.

SGD was utilized to train in this paper. The initial learning rate was 10−6 except
10−7 for edge detection on Multicue. The learning rate decayed by 10 times after every
10k iterations. Furthermore, momentum and weight decay were set to 0.9 and 2 × 10−4,
respectively. We trained 15 K iterations for BSDS500 and NYUDv2, 2 K and 1 K iterations
for Multicue boundary and edge, respectively.

Standard non-maximum suppression is usually utilized to produce the thinned edge
maps before evaluation. The maximum tolerance matching between edge predictions
and ground-truth annotations was set to 0.0075 for BSDS500 and Multicue, and 0.011 for
NYUDv2. In addition, the random seed was set to a fixed value of 7 to reduce the random
error in our experiments.

Concerning evaluation metrics, we adopted the training speed (frame per second,
abbreviated as FPS), the average precision (AP) on the full recall range (equivalently,
the area under the precision-recall curve), as well as ODS and OIS, which correspond to

https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
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F1 score based on the thresholds from the optimal dataset scale and optimal image scale,
respectively. Note that the F1 score is defined as

F1 =
2PR

P + R
. (1)

P =
TP

TP + FP
. (2)

R =
TP

TP + FN
. (3)

where TP, FP, and FN refer to true positive, false positive, and false negative, respectively.
Here, P and R represent precision and recall, respectively. In addition, we utilize the
evaluation metric introduced in [24], R50, which represents the recall at 50% precision.

We also discuss the computational complexity of different models. The computational
complexity of a model usually includes spatial complexity and time complexity. Generally,
one utilizes the number of floating-point operations per second (FLOPS) to represent
the time complexity. In addition, one applies the parameters of the model to roughly obtain
the spatial complexity.

4.3. The Effect of Network Architecture

In this section, we conduct experiments to discuss the effectiveness of the proposed
network. For a fair comparison with RCF [13] and BDCN [14], we use the modified VGG16
as our backbone network.

4.3.1. Ablation Study on BSDS500

As our baseline, the modified VGG16 removes all the fully connected layers and the 5th
pooling operation. Figure 3 reveals the single-scale test results on BSDS500. Compared with
the baseline, the proposed down-sampling pyramid network (DSP) and light up-sampling
pyramid network (USP) help to achieve higher ODS and OIS, respectively. Meanwhile, BDP-
Net, as a combination of both mechanisms, could further improve the evaluation metrics.

In addition to the baseline model, we also compare our method with two state-of-the-
art models, i.e., RCF [13] and BDCN [14], by reproducing their experiments. From Figure 3
and Table 2, we can see that:

(i) Our USP helps to achieve better generalization earlier than RCF. In particular,
under the single-scale test, it achieves higher ODS and OIS (0.799 and 0.813) than RCF
(0.792 and 0.809), and concurrently the training time is 4 h 55 min for 10 K iterations and
7 h for 15 K iterations, respectively.

(ii) Compared with BDCN, the proposed BDP-Net utilizes nearly half of the training
time while retaining comparable metrics. Specifically, under 15K training iterations, BDP-
Net needs 7 h 42 min to obtain ODS, OIS, and AP (0.803, 0.822, and 0.845) while BDCN
requires 12 h 35 min to achieve the performance with the metrics (0.804, 0.820, and 0.724)
under the single-scale test.

(iii) Note that our BDP-Net also catches up with human perception (0.803) under the
single-scale test while using only the training set from BSDS500. In terms of the training
speed, BDP-Net is nearly twice as fast as BDCN [14].
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Figure 3. Evaluation results on BSDS500. Here, we utilize a single-scale test. The solid pink line represents the F1 score
(0.803) from human perception. BDP-Net_DSP and BDP-Net_USP refer to our BDP-Net without the down-sampling and
up-sampling pyramid networks, respectively.

Table 2. Evaluation results on BSDS500. They are obtained with 15 K training iterations except
that those of BDP-Net_DSP are trained with 10 K iterations. Note that ‘–’ represents ‘not used’;
‘] para’ refers to the model parameters, and ‘+’ means the added parameters on the basis of RCF [13].
‘GFLOPS’ indicates giga floating-point operations per second. In addition, the superscript ‘†’ corre-
sponds to the multi-scale test versions.

Methods ODS OIS AP R50 ] Para GFLOPS TT FPS

Human 0.803 0.803 – – – – – –

Baseline 0.758 0.771 0.673 0.773 −89,685 80.49 5 h 25 min 7.69
BDP-Net_DSP 0.798 0.813 0.714 0.899 +74 81.78 4 h 55 min 5.65
BDP-Net_USP 0.800 0.816 0.772 0.889 +3840 81.8 7 h 9 min 5.83
BDP-Net 0.803 0.822 0.845 0.918 +3914 81.81 7 h 42 min 5.41

Baseline † 0.788 0.799 0.766 0.812 −89,685 80.49 5 h 25 min 7.69
BDP-Net_DSP † 0.807 0.823 0.795 0.902 +74 81.78 4 h 55 min 5.71
BDP-Net_USP † 0.807 0.825 0.804 0.889 +3840 81.8 7 h 9 min 5.83
BDP-Net † 0.808 0.828 0.847 0.913 +3914 81.81 7 h 42 min 5.41

RCF [13] 0.792 0.809 0.780 0.898 14.8 M 81.77 7 h 5.95
BDCN [14] 0.804 0.820 0.724 0.894 +1.5 M 114.31 12 h 35 min 3.31
RCF † [13] 0.801 0.820 0.803 0.895 14.8 M 81.77 7 h 5.95
BDCN † [14] 0.811 0.831 0.796 0.890 +1.5 M 114.31 12 h 35 min 3.31

Moreover, compared with the USP, our DSP could achieve a similar test accuracy and
training speed. In the following, we discuss the computational complexity of different
models. Since using the same group of networks (e.g., RCF, BDCN, and our BDP-Net) and
the same configurations on three public datasets, we only compare the model parameters
through Table 2 in this section. To compare the parameters of different models conveniently,
we utilize RCF as the base instead of the modified VGG16. In Table 2, compared with RCF
(14.8 M parameters and 81.77 GFLOPS), our down-sampling and lightweight up-sampling
pyramid network add negligible parameters and floating-point operations. Their combina-
tion, BDP-Net, has a smaller increase in complexity (3.9 K parameters and 0.04 GFLOPS).
Meanwhile, BDCN requires significantly more parameters and floating point operations
(1.5 M parameters and 32.54 GFLOPS), thus its training efficiency is greatly reduced.

Finally, we show the test accuracy of more methods in Figure 4. Specifically, apart
from HED [11], RCF [13], BDCN [14], and our BDP-Net, it includes (1) differential operator,
Canny [20]; (2) traditional machine learning methods, including gPb-UCM [2], Pb [21],
EGB [23], SE [24], OEF [25], and MShift [42]; (3) early deep learning methods based
on image patches, such as DeepContour [26] and DeepEdge [27]. Compared with the
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non-deep-learning approaches, the deep learning methods show obvious advantages.
Compared with the deep learning systems based on image patches, recent approaches (e.g.,
HED, RCF, and BDCN) combine with multi-scale learning and image-to-image training
to further improve the test accuracy. In comparison with BDCN, the state-of-the-art, our
BDP-Net achieves a similar test accuracy on the BSDS500 dataset. However, when adding
more training data (e.g., PASCAL Context dataset [43]), our approach is slightly inferior,
which sheds light on further improvement. In addition, we also display the prediction
results obtained by different methods, as shown in Figure 5.
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Figure 4. The precision–recall curves of various approaches using a single-scale test on BSDS500. We
also display multi-scale versions of some approaches, i.e., BDCN-MS, Ours-MS, and RCF-MS, which
are trained by utilizing an additional PASCAL Context dataset [43]. Note that the metrics precision
and recall are obtained by using the optimal dataset scale during evaluation.

(a) img (b) RCF (c) BDCN (d) BDP-Net (e) gt

Figure 5. Visual comparison on BSDS500: (a) contains the raw images; (b–d) correspond to the results
obtained by these networks; (e) corresponds to their ground-truth. For simplicity, we merely show
the prediction results where the training set is the augmented BSDS500. Note that the prediction
images are those before using non-maximum suppression.
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4.3.2. Performance on NYUDv2 and Multicue

In terms of NYUDv2, we first performed experiments on RGB and HHA images
separately, and then averaged their predictions to obtain the results of RGB-HHA. Table 3
shows the evaluation metrics of RCF [13], BDCN [14], and our BDP-Net on NYUDv2. In
relation to HHA feature images, there is little difference for the metrics (ODS, OIS, AP,
and R50) obtained by leveraging three different networks. For RGB images, our method
has a slight advantage in terms of average precision. In addition, compared with RCF, our
BDP-Net has an approximate floating point operation and training speed while BDCN
adds a large number of floating-point operations and then its training speed is significantly
reduced. Compared with RCF and BDCN for NYUDv2 RGB images, our method gains an
advantage in balancing effectiveness and efficiency. Please see Figure 6 for the precision–
recall curves of different methods. We also display some visual results in Figure 7.

Table 3. Comparison of different methods with 15 K training iterations on NYUDv2. Here, we utilize
the multi-scale test to get the following results.

Methods Data ODS OIS AP R50 GFLOPS TT FPS

RCF [13]
HHA 0.693 0.709 0.678 0.827 94.21 13 h 26 min 3.10
RGB 0.736 0.755 0.728 0.896 94.21 13 h 26 min 3.10
RGB-HHA 0.751 0.770 0.765 0.899 - - -

BDCN [14]
HHA 0.694 0.708 0.671 0.818 131.39 24 h 26 min 1.71
RGB 0.752 0.768 0.739 0.874 131.39 24 h 26 min 1.71
RGB-HHA 0.762 0.776 0.761 0.869 - - -

BDP-Net
HHA 0.694 0.708 0.676 0.812 94.25 13 h 43 min 3.04
RGB 0.746 0.762 0.750 0.892 94.25 13 h 43 min 3.04
RGB-HHA 0.759 0.776 0.772 0.895 - - -
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Figure 6. The precision–recall curves of various approaches on NYUDv2. Note that the metrics
precision and recall are obtained by using the optimal dataset scale during evaluation.



Electronics 2021, 10, 329 12 of 15

(a) img (b) hha (c) RCF (d) BDCN (e) BDP-Net (f) gt

Figure 7. Visual comparison on NYUDv2: (a) contains the original images; (b) shows the correspond-
ing HHA feature images; (c–e) are obtained by averaging the prediction results on RGB and HHA,
respectively; (f) corresponds to their ground-truth.

For Multicue, we carried out two distinct visual tasks, namely object boundary and
edge. Table 4 reveals some evaluation results of different architectures. Concerning
object boundary, BDP-Net attains almost as good a performance with respect to the given
metrics as BDCN [14] while retaining the similar training speed with RCF [13]. Meanwhile,
compared with RCF and BDCN for edge detection, our BDP-Net achieves growth of about
two points on the metrics (ODS, OIS, AP, and R50). In addition, compared with RCF, our
approach has similar floating-point operations and slightly lower training speed. However,
BDCN possesses a significant increase in floating-point operations. Moreover, it has more
parameters, and thus its training efficiency is greatly reduced. All in all, it seems to have
no advantage on such a small database. In addition, please see Figures 8 and 9 respectively
for the precision–recall curves and the visual results of different methods for Multicue.
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Figure 8. The precision–recall curves of various approaches on Multicue. The subscripts “e” and “b”
represent the tasks of edge and boundary detection, respectively. Note that the metrics precision and
recall are obtained by using the optimal dataset scale during evaluation.
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(d) BDP-Net (e) gt(a) img (b) RCF (c) BDCN 

Figure 9. Visual comparison on the Multicue edge database: (a) contains the raw images; (b–d)
correspond to the results obtained by these networks; (e) is their ground-truth for the Multicue edge
task. To see these images and their ground-truth, you may need to zoom in at least 3 times, as they
have high resolutions, and their annotations are rich and hierarchical.

Table 4. Comparison of different methods with 2 K and 1 K training iterations for Multicue boundary
and edge, respectively. Here, the following results are derived by applying the multi-scale test.

Methods ODS OIS AP R50 GFLOPS TT FPS

Human_Boundary [40] 0.760 - - - - - -
RCF_Boundary [13] 0.812 0.817 0.861 0.963 98.77 1 h 45 min 3.17
BDCN_Boundary [14] 0.827 0.835 0.875 0.971 137.78 3 h 15 min 1.71
BDP-Net_Boundary 0.827 0.834 0.842 0.974 98.81 1 h 48 min 3.09

Human_Edge [40] 0.750 - - - - - -
RCF_Edge [13] 0.851 0.857 0.853 0.888 98.77 53 min 3.14
BDCN_Edge [14] 0.851 0.858 0.852 0.889 137.78 1 h 36 min 1.74
BDP-Net_Edge 0.871 0.877 0.892 0.926 98.81 1 h 6 min 2.53

5. Conclusions and Discussion

To sum up, in this paper, we developed a novel multi-scale learning method, BDP-Net,
to deal with contextual information of objects in natural images. According to our extensive
experiments, one can find that compared with the state-of-the-art model BDCN [14], our
BDP-Net can cut down about half of the training time while retaining a similar test accuracy.

However, from Figure 4 and Table 3, we find that compared with BDCN, our BDP-
Net still has some room for improvement in the test accuracy when enough training
data are available. To our knowledge, common down-sampling methods, such as bilinear
interpolation and 1× 1 convolution with stride 2 or more, usually lose some spatial position
information in natural images. Therefore, our down-sampling pyramid network also has
a similar problem. Besides, to reduce the loss of spatial information, the three methods
(namely our method, the previous RCF, and BDCN) apply down-sampling three instead of
four or more times in the backbone network. Furthermore, their training speed still needs
to improve. A possible solution could be to combine model compression with a transformer,
such as in [44,45]. In addition, some modules from neural architecture search (NAS), such
as Lite R-ASPP [46], potentially provide novel ideas for edge detection. However, these are
out of the scope of this work. For more details of NAS modules, please refer to the relevant
literature [47,48].
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