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Abstract: As the use of internet of things (IoT) devices increases, the importance of security has
increased, because personal and private data such as biometrics, images, photos, and voices can
be collected. However, there is a possibility of data leakage or manipulation by monopolizing the
authority of the data, since such data are stored in a central server by the centralized structure
of IoT devices. Furthermore, such a structure has a potential security problem, caused by an
attack on the server due to single point vulnerability. Blockchain’s, through their decentralized
structure, effectively solve the single point vulnerability, and their consensus algorithm allows
network participants to verify data without any monopolizing. Therefore, blockchain technology
becomes an effective solution for solving the security problem of the IoT’s centralized method.
However, current blockchain technology is not suitable for IoT devices. Blockchain technology
requires large storage space for the endless append-only block storing, and high CPU processing
power for performing consensus algorithms, while its opened block access policy exposes private
data to the public. In this paper, we propose a decentralized lightweight blockchain, named Fusion
Chain, to support IoT devices. First, it solves the storage size issue of the blockchain by using the
interplanetary file system (IPFS). Second, it does not require high computational power by using
the practical Byzantine fault tolerance (PBFT) consensus algorithm. Third, data privacy is ensured
by allowing only authorized users to access data through public key encryption using PKI. Fusion
Chain was implemented from scratch written using Node.js and golang. The results show that the
proposed Fusion Chain is suitable for IoT devices. According to our experiments, the size of the
blockchain dramatically decreased, and only 6% of CPU on an ARM core, and 49 MB of memory, is
used on average for the consensus process. It also effectively protects privacy data by using a public
key infrastructure (PKI).

Keywords: blockchain; internet of things; inter planetary file system; public key infrastructure;
practical byzantine fault tolerance

1. Introduction

The IoT (internet of things) is a technology that connects everything to the Internet,
from small communication objects, like embedded sensors, to large machines, like vehicles.
By connecting Internet functionality, IoT devices have lots of advantages, such as higher
manageability and reachability. The number of IoT devices is expected to increase from
30.73 billion in 2020 to 75.44 billion in 2025 [1]. With the increase in utilization, the scope of
IoT has become widely spread to various fields, such as smart factories, transportation, en-
ergy, wholesale, city, healthcare, supply chain management, livestock, and construction [2].
In addition, IoT devices will generate a total data of 79.4 ZB in 2025 [3]. In the meantime,
the security of IoT has become more important as it produces big data and collects sensitive
information, such as personal biometrics, images, photos, and voices [4]. However, the
existing IoT devices use a centralized architecture to store and process data. They collect
and relay lots of data to a central server, which causes the problem of monopolizing data
rights. Furthermore, there are also lots of adversary models, such as the Mirai botnet
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method [5], that attack the central server by infecting IoT devices, using the vulnerability
of the use of the central network method of IoT. Such adversary models have actually
hacked 500,000 servers, home routers, and IoT devices, and there have been cases in which
user passwords stored in a central server have been leaked [6]. Therefore, the centralized
architecture of IoT devices becomes a security problem.

The cryptography technology used for the security of the existing centralized architec-
ture cannot guarantee the reliability of the data because the trusted third party performs
data forgery prevention. In addition, the distributed file system has the advantage of being
able to cope with single point errors in which multiple nodes distribute and store a file,
but cannot cope with data forgery. In the case of distributed systems, such as Ceph and
GlusterFS, a copy maintenance method such as N-way replication, etc., and a method of
restoration when a fault occurs, using an erasure code, is used. However, this method
does not guarantee the authenticity of the data. Moreover, since restoration is possible
only in specific error conditions, this system alone cannot guarantee the reliability and
integrity of the data. Blockchain technology has been discussed as an effective solution
to this problem. Blockchain has all the advantages of such a system, and being based on
a consensus algorithm, network nodes can guarantee the reliability of data and prevent
forgery, thus effectively solving the preceding problems. In brief, the main idea is that the
blockchain network uses a decentralized method based on a P2P network, where nodes
can participate without adding or changing additional equipment, and the blockchain is
distributed and stored for each node with the same blockchain data. Therefore, even if a
problem occurs in some devices, the overall system is less affected. Due to the characteris-
tics of these blockchains, a blockchain-based IoT network has some advantages. First, data
is stored for each node of the blockchain network, making it difficult to manipulate data
for adversary purposes. Second, it effectively defends against attacks against servers, such
as DDoS, due to the decentralized structure [7]. Third, even if a problem occurs in some
devices due to the connection between devices, the overall system is less affected. With
these advantages a blockchain based IoT is a good solution for various security problems
in the IoT environment.

1.1. Blockchain Requirement and IoT Device Specification

Table 1 shows a list of minimum requirement for representative blockchain platforms,
and Table 2 shows a specification of an existing IoT hardware platform. Briefly, a blockchain
node requires a PC-level hardware specification, but IoT platforms do not support such a
high specification. As described in Table 1, Bitcoin and Ethereum Full Node require at least
200 GB and 465 GB of disk space, respectively. This is clearly not suitable for IoT devices,
which have a very limited size of flash storage, as described in Table 2. In addition, Bitcoin
and Hyperledger Fabric require a minimum 1 GB and 4 GB of memory, respectively. Note
that most IoT devices have a KB–MB size memory in Table 2.

Table 1. Minimum requirements for representative blockchain platforms.

Blockchain Disk Space (Least) Memory (Least) System Operating System

Bitcoin Core [8] 200 GB 1 GB Laptop ARM chipsets 1GHz Mac OS, Linux,
Windows 7/8.x/10

Ethereum Full-Node 464 GB - Laptop ARM chipsets Linux, MacOS
Hyperledger Fabric - 4 GB - Mas OS, Ubuntu Linux
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Table 2. Comparison of the existing internet of things (IoT) supported hardware platforms [9].

Platform CPU GPU Clock Speed Memory Storage
(Flash)

Intel Galileo Gen2 Intel®Quark™ SoC X1000 - 400 MHz 256 MB 8 MB
Intel Edison Intel®Quark™ SoC X1000 - 100 MHz 1 GB 4 GB

Beagle Bone Black Sitara AM3358BZCZ100 PowerVR SGX530 @520 MHz 1 GHz 512 MB 4 GB
Electric Imp 003 ARM Cortex M4F - 320 MHz 120 KB 4 Mb

Raspberry Pi B+ Broadcom BCM2835 SoC
based ARM11 76JZF

VideoCore IV®Multimedia@
250 MHz 700 MHz 512 MB SD Card

ARM NXP LPC1768 ARM Cortex M3 - 96 MHz 32 KB 512 KB

1.2. Challenges

Blockchain technology is suitable as a solution for the security of IoT, but due to the
size of the blockchain, computational power, and transparency of data, it has the following
problems when applied to IoT devices.

(1) Blockchains increase in size as time goes by, and require a large amount of storage; to
maintain a full node, the size of the Ethereum blockchain has reached 308 GB, and
271 GB in the case of Bitcoin, to date [10].

(2) The average performance of IoT devices is low. The IoT device’s CPU performance is
not suitable for participation in the consensus algorithm of the existing blockchain
technology. The PoW consensus process recommends GPU devices, and requires a lot
of computation power.

(3) As the use of IoT devices increases, IoT devices store sensitive information, such
as personal bioinformatics, photos, and images, and it becomes a serious privacy
problem once they are leaked by attacks. In the case of TRENDnet, the company that
produces and sells SecurView, due to a security problem with its IoT products, lots of
images inside the homes of about 700 households were leaked to hackers [11].

Blockchains optimized for IoT devices that solve these problems, could solve the
security problems of existing IoT devices.

1.3. Research Contribution

In this paper, we propose a lightweight blockchain named Fusion Chain that supports
IoT devices using low CPU processing power, and improves security by orchestrating IPFS
(interplanetary file system) [12], PBFT (practical Byzantine fault tolerance) [13], and PKI
(public key infrastructure) [14]. Therefore, Fusion Chain effectively supports IoT devices
by solving problems (1), (2), and (3) in Section 1.2. The methods for optimization for IoT
devices are as follows.

• In order to solve the capacity problem, Fusion Chain leverages IPFS (interplanetary
file system) as a backend universal storage. IPFS is a distributed file system using a
P2P network. In Fusion Chain, the size of the blockchain is reduced by migrating the
blocks to IPFS. Instead, it maintains a 32-byte IPFS hash block.

• The PBFT (practical Byzantine fault tolerance) consensus algorithm is converged to
overcome the low computing power of the IoT. PBFT is suitable for IoT devices by
using network-based consensus rather than computing power by sending a request
through the network’s broadcasting process, and then counting the responses.

• PKI (public key infrastructure) solves the problem of revealing private data to all
blockchain nodes. PKI consists of a private key stored by itself and a public key
disclosed to the other party, so data privacy can be guaranteed by encrypting data
with the public key of the user who owns the IoT device, and then decrypting it with
the user’s private key only.
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The remaining part of this paper will introduce related work and explain background
knowledge on IoT and blockchain specifications. After that, the architecture and implemen-
tation details are described. Last, experimental will be shown and concludes this paper.

2. Related Work
2.1. Lightweight Blockchain

In Sensor-chain [15], a lightweight solution was proposed for the appropriate use of
IoT devices in a blockchain. A spatial blockchain that divides the blockchain into space
units and a migration manager function were used, in conjunction with migration over
time. Each node owns a blockchain according to its space, and the content of the blockchain
data is aggregated into one block, the size of the blockchain is reduced by starting from
that block. Although this approach reduces blockchain size for IoT devices, it also lost
blockchain data. In contrast Fusion Chain maintains all data by migrating to IPFS.

IOTA [16] is a cryptocurrency platform designed to apply blockchain to IoT. The
size of the blockchain was reduced and made suitable by using a proprietary blockchain
tangle algorithm. However, due to the semi-centralized form of the IoT, which does not
achieve complete decentralization of the blockchain, the node storing a lot of data can be
attacked, and there is a vulnerability [17] to hacking methods such as a centralized attack.
In addition, it is not suitable for IoT devices with low computation power, since it uses
PoW as the consensus algorithm, which requires high computation power.

In IPFS for Smart Contract [18], a solution using IPFS was proposed to reduce the
weight of the Ethereum blockchain. In this paper, the total size of Ethereum was reduced by
uploading the smart contract code in Ethereum and not taking up space due to unnecessary
or unused smart contracts, and uploading the smart contract code to IPFS and storing only
the IPFS hash. This is a method suitable only for Ethereum that reduces the size of the
smart contract code stored in the Ethereum blockchain.

2.2. Consensus Algorithm Based on PBFT

Hyperledger Fabric uses a PBFT-based consensus algorithm [19], and the role of the
blockchain node is played by a peer node and orderer node. When a transaction occurs in
Hyperledger Fabric, the transaction is sent to the Endorsing Node, and the received node
writes its own signature after verifying the validity, and after executing the transaction.
After that, the transaction is transferred to the client, and all transactions are sent back
to the orderer, and the orderer checks whether the signature of each transaction is valid,
creates a block, and delivers the block to peers in the blockchain network. The Peer verifies
the validity of the block and adds it to the blockchain if it is valid. In Fusion Chain, the role
is not divided into a node that verifies a transaction, and a node that creates a blockchain.
The difference is that the client, the creator of the transaction, directly drives the blockchain
node. In Hyperledger Fabric, the consensus algorithms of Solo, Kafka, PBFT, and Raft
are used.

Cosmos [20] used a consensus algorithm called Tendermint to solve the energy inef-
ficiency of the PoW method of existing blockchain projects, by using an interchain that
connects different blockchains. PBFT with a block generator was used. A modified version
of the PBFT consensus algorithm was used. After two-thirds or more nodes reach a fast
consensus, they create blocks and give finality. To prevent the blockchain from being
forked, verifiers use a round robin method to select a verification leader, and the authority
is the number of tokens. A blockchain is created in each round, and selected by an ordered
list of validators in proportion to their voting rights.

2.3. Privacy in Blockchain

In MedChain: Efficient Healthcare Data Sharing via Blockchain [21], a blockchain
is used without using a third-party cloud service to store healthcare data. An efficient
healthcare data sharing scheme was proposed, and the roles of users were divided into
patient, requester, and healthcare provider. Nodes with each role possess a public key–
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private key, and the healthcare provider encrypts the healthcare data collected from the
sensor, and stores it in the blockchain, focusing on efficient and safe storage of the data.

In Blockchain Mechanism and Symmetric Encryption in a Wireless Sensor Network [22],
the integrity and availability of data collected from IoT devices in a wireless sensor network
are maintained using blockchain and cryptographic tools. The plaint-text collected by the
IoT sensor uses the AES (advanced encryption standard) encryption algorithm to increase
data security.

The Secure Data Sharing Platform Using Blockchain and Interplanetary File Sys-
tem [23] proposed a data sharing scheme using Ethereum’s smart contract and IPFS.

2.4. Other Blockchain Platforms

We will briefly describe three representative blockchains. Table 3 compares Fusion
Chain with existing representative blockchain platforms.

Table 3. Comparison of roles by blockchain node.

Platform Scalability Consensus Algorithm Node Type Block
Creation

Block
Validation

TX Cre-
ation/Validation

CPU/GPU
Overhead

Bitcoin O PoW
Full-Node O O O High

Lightweight-Node X X O Low

Ethereum O PoW
Full-Node O O O High

Lightweight-Node X X O Low

Hyperledger
Fabric X

Kafka, Raft, Solo, PBFT
(practical Byzantine

fault·tolerance).

Peer X O O Low

Orderer O X X Low

* Fusion Chain O PBFT - O O O Low

* Fusion Chain has all functionalities with low CPU/GPU overhead.

2.4.1. Bitcoin

Bitcoin [24] is an online cryptocurrency based on blockchain technology. It was
designed to allow individuals to freely conduct financial transactions in a P2P manner,
without a central agency, such as a bank. In the Bitcoin network, two types of nodes are
available: full node and lightweight-node. The Bitcoin full node [25] synchronizes all
blockchain data of Bitcoin blockchain network, and participates in the consensus process
as it holds all block data from the genesis block to the present. Bitcoin full nodes have full
functionality, including block generation, block verification, transaction generation, and
transaction verification. Since Bitcoin adapts PoW as a consensus algorithm, it requires
high CPU computation power for mining blocks.

The Bitcoin lightweight-node [26] participates in the blockchain and performs transac-
tions. It requests data from the full node to verify individual transactions. It does not have
all the block data like a full node, but only summarizes and holds important data in the
Merkle tree in the block header. These nodes can verify and create transactions but cannot
participate in the consensus process.

2.4.2. Ethereum

Ethereum [27] is a distributed computing platform for implementing smart contract
functions based on blockchain technology. It provides extensibility to operate various
applications with smart contracts. The Ethereum full node [28] stores all blockchain data
and verifies the new transactions and blocks received, and it participates in the consensus
process. Like Bitcoin, it adapts PoW as a basic consensus algorithm, and requires high CPU
computation power for mining blocks.

The Ethereum lightweight node [29] does not store all blockchain data, but only stores
some information of the blockchain. When storing blocks, the Merkle Patricia tree structure
in the block header is used to reduce weight. It has functions related to transactions
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that can be performed, but it cannot generate blocks since it cannot participate in the
consensus algorithm.

2.4.3. Hyperledger Fabric

Hyperledger Fabric [30] is a platform for developing blockchain solutions and ap-
plications. Unlike Bitcoin or Ethereum, hyperledger fabric is a permissioned blockchain,
which means that only permissioned nodes can join the private blockchain network. Note
that Bitcoin and Ethereum are public blockchains where everyone can join the network.
Therefore, instead of allowing access to a private network to specific people and not being
paid coins, the advantage is faster network speeds than general public blockchains. Hyper-
ledger Fabric has a peer node and orderer node. The peer node [31] runs in the form of a
docker container, verifies the transaction sent by the client, and verifies the block created
by the orderer node. It uses PBFT, Kafka, Solo, and Raft as consensus algorithms.

3. Design

In this section, we describe the architecture of the Fusion Chain. It describes the
system structure, consensus algorithm, data privacy, and simple implementation notes.

3.1. Overview

Figure 1 shows the whole architecture of the Fusion Chain, and also shows the process
of block creation in Fusion Chain. The steps of block creation are as follows.

Figure 1. System Architecture.

• Step 1: An IoT device collects data through sensors and encrypts it using its public
key. Then it creates a transaction and propagates the transaction to other participants
in the network.

• Step 2: All nodes of the Fusion Chain network use PBFT consensus. If it succeeds, a
new block is created, which includes the transaction in Step 1.

• Step 3: Uploads the created block to IPFS.
• Step 4: The uploaded block is stored in the distributed hash table (DHT) of the

IPFS network.
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• Step 5: When blocks are distributed and stored on the IPFS Network, an IPFS hash is
returned to Fusion Chain.

• Step 6: The Fusion Chain node creates a lightweight block that stores the index and
IPFS hash of the block in the block, and stores it in the blockchain.

Table 4 describes the system layer of Fusion Chain. It has an IoT node, blockchain
network and blockchain data store layer.

Table 4. System Layer.

Layer Features

IoT Node Through the sensor, data is collected from the surrounding environment and the device performs data
encryption with a public key to create a transaction.

Blockchain Network Blocks are created through transactions. After verifying the block through the PBFT consensus algorithm,
it is uploaded to the interplanetary file system (IPFS) network.

Blockchain Data Store Blocks created in the blockchain network are distributed and stored in the IPFS network, and the IPFS
hash is returned.

In the blockchain network, a block is created from the transmitted transaction, and
the block is verified through the PBFT consensus algorithm. In IPFS, the verified block is
distributed and stored in IPFS, and only the IPFS hash is returned, while only the index
and IPFS hash are stored in the block in the blockchain network.

3.2. IoT Node

In the IoT node, data is collected from the surrounding environment through sensors
and it is encrypted, and then a transaction is generated and propagated. Fusion Chain uses
an asymmetric key algorithm based on PKI algorithms. This algorithm uses two types: a
private key that is not shared with anyone, and a public key that is open to everyone. In
this algorithm, different keys are used for both encryption and decryption. In this paper,
the data generated by the IoT device can be accessed only by authorized users through
the private key owned only by the user. The following process describes encrypting and
decrypting data generated by IoT devices in Fusion Chain.

(1) The data collected from the IoT is encrypted with the user’s public key. A transaction
contains this encrypted data, and a block contains this transaction. In Fusion Chain,
the block is stored in the blockchain store. In Section 3.4., the detailed process of the
blockchain store is described.

(2) When accessing data, the block data is decrypted using a private key owned only by
the user. When the data is in the blockchain store, the IoT node uses a hash value of
the data to find exact data from the blockchain store.

3.3. Blockchain Network

For the blockchain network, we use PBFT as a consensus algorithm. PBFT was created
to improve the speed of the BFT consensus algorithm, which was created due to frequent
malicious attacks and errors on the network. PBFT solves the Byzantine general problem
while operating in an asynchronous system, and can achieve real-world performance. PBFT
needs to obtain more than two-thirds of the agreements of other nodes in order to generate
blocks, after verification of all nodes participating in consensus in the network. Since all
nodes participating in each verification participate in the case of PoW, there may be a
branch in which two different miners finish mining at the same time, and create their own
blocks on the blockchain, but in PBFT, since all nodes agree, this type of branch does not
occur. Algorithm 1 shows the process of the PBFT consensus algorithm.
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Algorithm 1. PBFT Algorithm (f = the number of Byzantine nodes)

1. The client sends a transaction message to the primary node.
2. When the primary node receives the transaction, it executes a procedure called pre-prepare.

Then it creates a message, and sends it to all nodes.
3. The node in the network receives the pre-prepare message, and verifies that it is valid.

Prepare message is generated, and sent to all nodes only when it is verified.
4. Each node collects pre-prepare messages and prepare messages. When the number of

pre-prepare messages is 2f + 1 and prepare messages are 2f or more, the status of prepared
certificate is established.

5. When the condition of the prepared certificate is satisfied, a commit message is sent to all
nodes. The received node sends a commit message again if valid.

6. Each node collects the commit message and enters the commit certificate status. If there is
both a prepared certificate and a commit certificate, it becomes a committed certificate and
accepts the transaction requested by the client.

In this paper, PBFT was combined with a block generator and used in a way suitable
for Fusion Chain. Unlike Algorithm 1, where the client generating transaction and the node
performing verification are separate, in the Fusion Chain network, the node that generated
the transaction is the IoT device. Thus, the transaction creator becomes the leader node,
and the node generates a block with the encrypted transaction. After that, it sends block
verification message to other nodes. The block is verified through a total of three processes:
propose, prevote, and commit. Algorithm 2 and Figure 2 describe the PBFT consensus
process in Fusion Chain.

Figure 2. A sequence diagram Fusion Chain with PBFT.

In Algorithm 2, the blockchain node that generated data in Fusion Chain becomes
the leader node, creates a block, and requests verification from other nodes. When there
are N nodes in the network, and when there are f byzantine failures, N – f messages must
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be delivered to operate normally. Furthermore, since there are cases where f byzantine
failure nodes send malicious messages, (N-f)-f messages must be more than f messages.
(N-f)-f > f −→ since N > 3f, it is guaranteed that a node consisting of at least 3f + 1 node
can withstand f node attacks and errors. Based on the content, a block generator is added
to the consensus algorithm of the Fusion Chain to transmit and verify a block instead of a
message, and a total of two block verifications are performed: the prevote step, the network
preparation step for block verification, and the commit step for block verification. First, the
leader node creates and transmits the pre-vote message and block to all nodes. Only when
the verification is more than two-thirds of the total nodes, a commit message is requested
from all nodes and the block is verified again to two-thirds of the total nodes. If the above
is verified, the block is added to the blockchain. This process reduces the possibility of data
forgery in the process of adding a block to the blockchain by receiving verification from
another node immediately at the node generating the block.

Algorithm 2. PBFT with block generator algorithm for Fusion Chain (n = the number of Fusion
Chain nodes)

1. When sensor data is created in an IoT node, the node becomes a leader node, encrypts the
data, creates a transaction, creates a block, and requests propose and prevote from
other nodes.

2. Each node sends a prevote message to the leader node after verification. The leader node is
in prepared certificate status when the number of prevote messages is more than two-thirds
of all nodes.

3. The leader node requests a commit message from nodes.
4. Each node sends a commit message to the leader node after verification. Leader node is in

the state of commited certificate when the number of commit messages is 2/3n or more of
all nodes.

5. If the prepared certificate condition and the commit certificate condition are satisfied, the
leader node completes the verification of the block.

6. All nodes store the verified blocks in the blockchain.

3.4. Blockchain Data Store

Fusion Chain leverages IPFS for reducing the storage overhead of blockchain data
in the IoT node. IPFS stores files, such as photos, texts, and videos distributed on the
internet, and can quickly load distributed data using unique hash values. It is possible
to load high-capacity files quickly and efficiently by a unique hash value. Thus, it can
be used efficient for file storage. In Fusion Chain, blocks are stored in IPFS instead; the
Fusion Chain blockchain only maintains a hash value of the block. A distributed hash
table (DHT) [32] allows nodes participating in the IPFS network to manage hash tables
individually and store data without a server. Note that DHT is used when searching for a
file. This is a method of mapping the file name to a value in the hash table held by each
node, without using a central server. DHT can reduce the load on the network, and files
on the network can be searched quickly and accurately. IPFS uses a method of finding
the name of a file (CID) on DHT through content-addressed data that uses the file itself
as an address, and then finding the nodes that have distributed fragments of the file and
loading the file. When IPFS distributes files, it converts all files on the network into the
Merkle directed acyclic graph(DAG) format. For each node, the CID, the hash of the node
contents, is used for Merkle–DAG. Using Merkle–DAG, IPFS can address content, prevent
tampering, and prevent duplication. IPFS works by searching and sharing IPFS objects.
IPFS objects only store the file contents in binary format when the contents of the original
file are smaller than 256 KB, and stores the files in chunks if the contents of the original file
are larger than 256 KB.

Figure 3 explains how blocks are stored in IPFS in Fusion Chain. The storage method
is as follows.
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Figure 3. DHT block storage example.

• Step 1: Blocks are created in the blockchain network as a form of file.
• Step 2: The created block is uploaded to the IPFS.
• Step 3: Block files are distributed to nodes on the IPFS P2P network.
• Step 4: The divided files are stored in the DHT of the IPFS nodes. When saved, it is

distributed and saved in the form of key-value.
• Step 5: After uploading to IPFS, the IPFS hash is returned, and the hash value is stored

in the blockchain.

3.5. Block Structure

Figure 4 depicts the block structure of Fusion Chain. As Fusion Chain is aimed at
IoT devices, it stores essential data into a block: Index and IPFS hash. The IPFS stored
data contains an index, hash, previousHash, timestamp, and data. Thus, it can maintain a
very lightweight structure. In contrast, Ethereum contains almost 20 data fields in a block,
which causes high storage overheads.

Figure 4. Block structure comparison: Fusion Chain vs Ethereum.

4. Implementation

This section describes the implementation of Fusion Chain. We published the full
source code of Fusion Chain in github.com [33]. It was written in Node.js and golang [34]
from scratch.

Figure 5 shows the message that the nodes of the blockchain network send and
receive during the PBFT consensus process. In the method of applying PBFT proposed
in this paper, the node that generated the transaction becomes the leader node, and after
generating the block, it propagates to all other nodes, and the prevote process starts.
The nodes that receive the block, verify the block, and send the result back to the leader
node. If two-thirds or more agree, the commit process begins. Again, the nodes verify
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the block. After that, the result is sent to the leader node, and when two-thirds of them
agree, the block is added to the blockchain. In this process, the nodes implement request
and verification through the message in Figure 5. Through the REQUEST_PREVOTE and
REQUEST_COMMIT messages, the Leader node requests prevote and commit verification.
Nodes that have received the verification request send verification results through the
messages of GET_PREVOTE and GET_COMMIT.

Figure 5. PBFT consensus messages.

Figure 6 shows the implementation of the PoW consensus process. Fusion Chain
implements PoW for performance comparison. In the consensus process, minor nodes
in the blockchain network create a block by obtaining a transaction from the transaction
pool, and calculate the hash value through the index, previoushash, timestamp, data,
difficulty, nonce, and SHA256 algorithm of the created block. After that, the nonce value is
set to 0, and the SHA256 hash value is repeatedly calculated by adding one by one, and
the correct answer is repeatedly searched until a hash value with the same number of
preceding zeros is found. The number of zeros for the correct answer varies depending on
the difficulty level.
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Figure 6. Major Functions for PoW consensus algorithm.

5. Experimental Results
5.1. Experimental Environment

The experiment was conducted using three RaspberryPi 4 B (System on Chip: Broad-
com BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5 GHz, Memory: 4 GB
LPDDR4-3200 SDRAM, OS: Raspbian GNU Linux 10) [35]. The Fusion Chain was imple-
mented through Node.js, and Ethereum through Geth [36]. Node.js used v10.15.3 and Geth
version 1.9.6. Geth is an official golang implementation of the Ethereum protocol.

For the experiment, we used four types of common dataset for IoT devices: log, picture,
sound, and video. Table 5 contains a detailed dataset description for the experiments. The
size of each dataset was determined by referring to the average file size of txt, jpg, wav,
and mp4 files [37].

Table 5. Dataset for IoT device.

Data Type Size Format

Log 1 KB txt
Picture 10 KB jpg
Sound 100 KB wav
Video 1 MB mp4

5.2. Blockchain Size Overhead

Fusion Chain maintains IPFS hash values in its blockchain, and data contents are
stored in the IPFS. Please note that the size of the IPFS hash value is only 32 Bytes, which
means that for a small log file the size difference is 32 times, and for a video file, the
difference is 32 k times. Apparently, therefore, the size of this blockchain is much smaller
than other existing blockchains like Ethereum or Bitcoin, because Fusion Chain only stores
IPFS hash (32 bytes) into its blockchain. For example, if we put a 1 MB video into a
blockchain, existing blockchain platforms will store the 1 MB video itself, but Fusion Chain
stores only 32 bytes.

However, what if we store 32 bytes of text data in existing blockchain platforms? In
order to see the effectiveness of the simple block structure of Fusion Chain, we conducted
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more experiments. We generated 1000 blocks in Fusion Chain and Ethereum blockchain,
respectively. For fairness, each block contained 32 bytes data, which is the same as the IPFS
hash value size. Figure 7 shows the result of the experiment. Surprisingly, the blockchain
size of Ethereum was much bigger than Fusion Chain. This difference is caused by the
complexity of the Ethereum block structure.

Figure 7. Blockchain Size.

The blockchain size comparison experiment process was as follows: H() is a function
that uploads data to IPFS and returns a hash. FusionChainHash of (1) uploads all data
except the index of the existing block. ipfsHash uploads and returns only IoT data to be
stored in the blockchain, and becomes data in Ethereum transactions. In the block size of
(2), FusionChainBlock only has index and FusionChainHash, but EthereumBlock stores
BlockHeader and ipfsHash. As a result of this in (3), when a block with a length of 1000 is
created, it is found that the blockchain size of Fusion Chain is always smaller than that of
Ethereum (4).

HashSize =

{
FusionChainHash = H( previousHash,timestamp,data,hash)

ipfsHash = H(data)
(1)

BlockSize =

{
FusionChainBlockSize = index + FusionChainHash

EthereumBlockSize = EthereumBlockHeader + ipfsHash
(2)

1000

∑
1

FusionChainBlockSize(data) <
1000

∑
1

EthereumBlockSize(data) (3)

All other cases:
FusionChain < Ethereum (4)

5.3. CPU and Memory Overhead

Supporting low CPU and memory overheads is essential requirement for IoT devices.
In order to test the CPU and memory overheads, we measured CPU and memory usage
during mining operations for Fusion Chain and Ethereum. Originally Fusion Chain’s
default consensus algorithm was PBFT. In addition, we implemented the PoW consensus
algorithm in Fusion Chain for the sake of a fair comparison with Ethereum, as it supports
PoW only.
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Figure 8 depicts CPU usage when Fusion Chain and Ethereum ran consensus algo-
rithms. The PBFT consensus algorithm showed very low CPU usage (about 6%) compared
to PoW. The PBFT algorithm makes consensus using network communication among the
participating nodes. Therefore, CPU computation is hardly performed. In the case of
PoW, however, since mining nodes create blocks and perform hash calculations with the
index, previoushash, timestamp, data, difficulty, and nonce to find a specific hash value,
it consumes lots of CPU computation power. In the case the PoW, Ethereum and Fusion
Chain used 110% and 100% of the CPU, respectively. Note that, Raspberry PI 4 B has a quad
core CPU, so a maximum 400% of CPU usage is available. As a result, the Fusion Chain
consensus algorithm is almost 16 times lighter than Ethereum’s consensus algorithm.

Figure 8. CPU usage comparison.

Figure 9 depicts memory usage when Fusion Chain and Ethereum run the consensus
algorithm. Compared to the PBFT consensus algorithm, PoW must maintain a transaction
pool to store transactions in memory. For this reason, PBFT is 49.6 MB, and PoW is 64.4 MB
on average, which uses about 30% more memory than PBFT. In the case of Ethereum, an
average of 2.1 GB of memory is used during the mining process.

5.4. IPFS Latency of Upload/Cat

Fusion Chain needs to access IPFS when it needs to access its block data. In this
experiment, we measured IPFS upload and download latency. Table 6 shows the exper-
imental results of measuring the upload latency time. Internally, Fusion Chain uses the
IPFS command below to upload data to IPFS.

ipfs add 〈path〉 . . . − Add a file or directory to ipfs

Table 6. IPFS Upload Latency.

Data Type Maximum Minimum Median

Log 104.97 ms 85.801 ms 91.632 ms
Picture 115.81 ms 84.635 ms 93.43 ms
Sound 123.7 ms 87.733 ms 97.877 ms
Video 155.98 ms 117.76 ms 127.91 ms

Figure 10 describes the latency time that occurs when uploading the data set in Table 5
to IPFS. The latency time for uploading log, picture, sound, and video data to IPFS was
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measured. Table 6 shows the upload time in a table. The log was the smallest, and the
latency time of other data did not change significantly depending on the size, so the result
is suitable for large-sized data.

Figure 9. Memory usage comparison.

Figure 10. IPFS Upload Latency.

In the process of downloading the data set of Table 5 from IPFS, Table 7 is the result of
measuring the latency time when downloading the IPFS hash of the file uploaded to IPFS.
Internally, Fusion Chain uses the IPFS command below to download data from IPFS. Note
that the cat command downloads data to memory rather than to disk.

ipfs cat 〈ipfs− path〉 . . . − Show IPFS object data.

Figure 11 depicts latency time when downloading the data set from Table 5. There are
two types of file download methods of IPFS: disk download through get command, and
memory download through cat command.
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Table 7. IPFS Cat Latency.

Data Type Maximum Minimum Median

Log 87.968 ms 75.715 ms 80.097 ms
Picture 97.287 ms 75.448 ms 80.806 ms
Sound 94.959 ms 79.263 ms 84.905 ms
Video 121.76 ms 88.139 ms 98.572 ms

Figure 11. IPFS Cat Latency.

5.5. PKI Latency

Figure 12 shows the result of measuring the latency time when data is encrypted
and decrypted with an asymmetric key. In the case of encryption with a public key, there
was a latency of 49.7734 ms on average, and in case of decryption, there was a latency
of 1.0173 ms. The latency time of encryption was more than that of decryption, and the
latency time when applied had a small effect on performance.

Figure 12. Asymmetric Encryption Latency.
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6. Conclusions

In this paper, a lightweight blockchain named Fusion Chain was proposed for IoT
devices. A solution was proposed to solve the specific problems (1), (2), and (3). As a
result of the experiment (1), the size of the blockchain was reduced from a maximum of
1010.12% to a minimum of 270.12%. The computational power problem of (2) proved
that the PBFT, which does little CPU computation, uses only 6.3102% of the CPU, a small
amount. The PKI of (3) guarantees the privacy of the data, and there was almost no latency
time, so it was shown that there is no problem in performance. Through these results,
it was shown that Fusion Chain can operate properly in IoT devices, and contribute to
the security of IoT devices. As a result, it is possible to solve the data reliability and the
security vulnerability of IoT applications, caused by Mirai botnet and DDoS attacks, by
using blockchain technology for lightweight IoT devices. The lightweight IoT devices
ensure the reliability and integrity of data without a centralized server. Currently we are
conducting research on a lightweight blockchain that maintains high transaction per second
(TPS) by implementing an inter-chain structured blockchain that divides IoT devices into
groups using Fusion Chain.
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