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Abstract: This article deals with the detection of mechanical faults in synchronous machines from
single current measurement at variable speed. The proposed approach is based on an order tracking
method in which the analysis signal is sampled as a function of the mechanical angle. In this case, the
spectral components become independent of the speed and the frequency analysis can be exploited.
Order tracking is generally implemented from a position measurement. In this work we present
a method that allows us to estimate this position and the analysis signal from only one current
measurement. The proposed approach allows an intuitive adjustment of the algorithm parameters.
Secondly, a statistical method is used to finalize the diagnosis. At variable speed, this type of method
is difficult to implement and we show that order tracking makes it possible to simplify the analysis.
The procedure is tested in simulation and on a experimental test bench.

Keywords: PMSM fault diagnosis; variable speed; tacholess order tracking; current

1. Introduction

Fault detection in electrical machines at constant speed is a subject that is currently
well mastered. Frequency methods are very effective because the signatures of the main
faults are well known. At variable speed, classical Fourier analysis is impossible. The
spectral lines will smear with each other because the starting data is sampled over time.
To avoid this problem, Order Tracking (OT) consists of replacing traditional temporal
sampling with angular sampling. This method is widely used in mechanics and in the field
of heat engines. The angle considered can be chosen in several ways, but most often it is
linked to the mechanical position of the shaft. In this case, a periodic fault is no longer
characterized by a number of impacts per second (quantity dependent on the speed) but
by a number of impacts per revolution. Order tracking requires having a measurement
or an estimate of the mechanical angle and direct or indirect sampling of the signal to be
analyzed. OT methods can be classified into two categories [1]:

• Time Dependant: this group brings together the methods for which the signal is
initially sampled in the time domain.

• Angle Dependant: this group brings together the methods for which the signal is
directly sampled in the angular domain.

All these methods use the mechanical position information to carry out the OT. The
position must either be extracted from a sensor or estimated, this results in three OT
techniques which are perfectly detailed in [2–4]:

• Hardware Order Tracking (HOT): these techniques perform the sampling of the signal
proportional to the speed of rotation of the shaft. They require a position measurement
and an anti-aliasing filter. The position measurement generates a signal proportional
to the speed of the machine shaft which controls sample rate and cutoff frequency of
the analog tracking filter. Data are directly sampled at constant angular pitch.
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• Computed Order Tracking (COT): the analysis signal and tachometer pulses are
recorded with a constant temporal sampling period. The signal is then digitally
processed to obtain new data which is sampled at constant angular pitch.

• Tacholess Order Tracking (TOT): the disadvantage of HOT and COT techniques is
that they always require a sensor to measure the position of the rotor. To solve
this problem, the position can be estimated from a less intrusive and expensive
measurement (vibratory or electric measurements). TOT techniques can be considered
as a special case of COT methods but without position sensor because the angular
re-sampling is always done by calculation.

In TOT, we can distinguish:

• the analyzed signal in which signatures of the fault are sought, and in particular the
characteristics of the signal used: vibration, current or its instantaneous amplitude
IA(t), frequency IF(t) or phase IP(t), sound. . .

• the signal or signals used to estimate the angular position: vibrations, currents,
voltages, currents and voltages associated with a model, video. . .

The Table 1 presents some references of applications of TOT in diagnosis specifying
the points above.

Table 1. Tacholess Order Tracking (TOT) and applications.

Ref. Analysed Signal Angle Estimate

[5–12] vibration vibration

[13–15] vibration current

[16] vibration currents/voltages + observer

[17] vibration voltages

[18–20] current current

[21] IF current

[22] IF currents/voltages + observer

[23] IA and IF current

[24] sound current

[25] sound video

We focus on the TOT operated on the Permanent Magnet Synchronous Generator
(PMSG) from a single measurement. The most effective and widespread solution is to use
vibration measurement. Indeed, mechanical faults cause disturbances in the mechanical
torque on the motor shaft. The vibration measurement has the advantage of being located
very close to the source of the fault. In the case of variable speed, many studies have dealt
with the estimation of instantaneous angular speed by vibratory analysis. The article [26]
provides a complete bibliography on this research topic.

An alternative to vibration measurement is to use electrical measurements. This
solution has many advantages because these measurements are generally already available
for machine control or for energy metering. However, they still represent a challenge,
particularly at variable speed. Indeed, compared to vibration measurements, the signal
to noise ratio is much lower, which complicates detection. The mechanical disturbance
must pass through various mechanical/magnetic/electrical transformations before it can
be measured. In addition, the usable signal results from a modulation (AM and/or FM) of
the fundamental by the spectral components linked to the fault. The most recent methods
consist in, first of all, demodulating the current and finding the fault in the instantaneous
amplitude or frequency.
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In this article, we have chosen to use the instantaneous frequency (IF(t)) of the current
as the analysis quantity, which, in the case of a synchronous machine, amounts to consid-
ering an estimation of instantaneous angular speed (IAS). The IAS has been considered
for years as a very effective signal in the context of machine diagnostics [1,27,28] and its
estimation from electrical measurements has generated a lot of work, especially in the area
of control and diagnostics, using observers [29–31] or signal processing methods [32–34].
To determine instantaneous frequency and phase of the current generated by a PMSG
with only one current measurement, one solution consists in using a phase locked loop
(P.L.L) [35]. This solution allows simultaneous estimation of IF(t) and IP(t) and has been
used extensively in power grid monitoring [36–38]. However, as has been shown in [39],
its use in the case where the amplitude and the frequency vary simultaneously requires
modifications of the structure. In the following, we choose to use a dynamic model of
the current and to identify its parameters. In Section 2, the identification algorithm is
presented. Compared to [40], a linearization approach is proposed in order to obtain a
physical meaning of the parameters of the algorithm. In Sections 3 and 4 an original online
order tracking method is described and tested experimentally. Order tracking is combined
with a statistical approach in Section 5 leading to a simplified fault detection compared to
the methods generally proposed for machines operating at variable speed (Figure 1).

Current measurement at variable speed

Estimation of speed and position via identification algorithm

i1(t)

ŵ(t)
θ̂(t)

Online re-sampling

ŵ(θ)

Fast Fourier Transform

f ault signature

Statistical approach

alarm threshold

Fault detection

Figure 1. Flowchart of the proposed method.

2. Identification Algorithm
2.1. Online Identification Algorithm

The nonlinear adaptive algorithm based on adaptive notch filter and developed by [40]
is used to estimate and track those components. Consider u(t) a signal having many
sinusoidal components with noise n(t) as presented in Equation (1). Let y(t) presented
in Equation (2) considered as a sinusoidal signal with amplitude Â(t) and total phase φ̂(t).
To show explicitly the instantaneous frequency, the relation (3) is established.

u(t) =
∞

∑
i=0

Ai sin φi + n(t) (1)
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y(t) = Â(t) sin φ̂(t) (2)

φ̂(t) = ω̂ t + δ̂. (3)

while ω is the angular speed and δ is the constant phase. The algorithm aims to estimate
the output signal y(t). In other words estimating the amplitude, the frequency and the
phase of the signal around a specific frequency f . The governing equations of the algorithm
detailed in [40,41] can be written as following:

dÂ(t)
dt

= m1e(t) sin φ̂(t), (4)

dω̂(t)
dt

= m2e(t)Â(t) cos φ̂(t), (5)

dφ̂(t)
dt

= ω̂(t) + m3
dω̂(t)

dt
, (6)

m1, m2 and m3 are positive constants.
The error function e(t) is:

e(t) = u(t)− y(t). (7)

In order to minimize the least squares error between the input and the estimated
sinusoidal signal, the gradient descent method is used in this algorithm. The block diagram
of the algorithm is shown in Figure 2. Although this algorithm seems simple, the role of
parameters m1, m2 and m3 has never really been shown.
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Figure 2. Block diagram of the nonlinear adaptive algorithm.

2.2. Parameter Setting

In order to help to initialize the parameters m1, m2 and m3 we propose to linearize the
algorithm presented in Figure 2 around small variations in amplitude and small variations
in frequency. The input signal u(t) is considered of the general form specified in the
relation (1), where n(t) denotes a noise. For a particular specified sinusoidal component of
u(t), we consider u(t) = A1(t)sin(φ1(t)).

Each parameter is defined as

A1(t) = A0 + δA1 (8)

φ1(t) = 2π( f0 + δ f1)t (9)
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The output signal y(t) is defined in the relation (2). Each parameter is defined as

Â(t) = A0 + δÂ (10)

φ̂(t) = 2π( f0 + δ f̂ )t (11)

By linearizing the Equations (4)–(6) around the operating points Ao and fo, we can
express two transfer functions denoted H1 and H2.

H1(p) =
δÂ(p)
δA1(p)

=
m1

m1 + p
(12)

H2(p) =
δ f̂ (p)
δ f1(p)

=
m2 A2

0π + m2m3 A2
0πp

p2 + m2m3 A2
0πp + m2 A2

0π
(13)

H1(p) represents the linearized behavior between δÂ and δA1. We obtain a transfer

function of the first order for which the time constant is equal to
1

m1
. H2(p) represents

the linearized behavior between δ f̂ and δ f1. This second transfer function is a 2nd order
function that is expressed as a function of m2, m3 and A0. From the writing of H2(p), it is
possible to give a canonical form such that:

H2(p) =
δ f̂ (p)
δ f1(p)

=
1 + α.p

p2

ω2
0
+

2m
ω0

p + 1
(14)

where

α = m3 (15)

ω2
0 = m2 A2

0π (16)

m =
1
2

A0m3
√

m2π (17)

So, by setting ω0 and m, for a given amplitude A0, it is then possible to determine m2
and m3.

Simulation Results

The first test studies the effect of a change in amplitude on the input signal. We take
A0 = 1 and we make a change δÂ of 5%. We have plotted, on the Figure 3, the response of
the algorithm and that of the linearized system H1(p). The two outputs are similar and
describe a response of 1er order. On the Figure 3b, the frequencies estimated at the output
of the algorithm and the linearized system H2(p) are plotted. It is noted that a change in
the amplitude affects at the same time the estimate of frequency because of the coupling
between the amplitude and the frequency in the equations of the algorithm.

The second test shows the effect of changing the input frequency. We choose a
frequency f0 = 50 and we make a change δ f̂ from 0.2%. The Figure 4 shows the results
obtained. The outputs of the algorithm and the linearization have a similar appearance and
describe a response of 2ème order. However, we check here the limits of the linearization due
to the coupling which is real and not taken into account by the approximation made here.

Although imperfect, the approach adopted here allows us to have an approximate in-
terpretation of the role of the different parameters of the algorithm. The proposed algorithm
therefore theoretically makes it possible to obtain the instantaneous frequency of rotation
of the machine as well as its mechanical position from a single current measurement. The
next step is to sample this rotation frequency as a function of the position with a constant
angular sampling step. In the next section, we show that this can be done in real time.
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Figure 3. Amplitude tracking. (a) amplitude step; (b) frequency output of the algorithm.
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Figure 4. Frequency tracking. (a) amplitude output of the algorithm, (b) frequency step.

3. Online Re-Sampling

Angular re-sampling is used to overcome the variable speed problem. The hardware
solution (HOT) is to implement a sensor providing an electric impulse at every angle
increment (constant ∆θ) and trigging the sampling of the analysis signal. The soft solutions
(COT and TOT) use the rotor position and transform the time-dependent vector θ(t) into
another time-dependent vector with equally spaced position increment using an inter-
polation algorithm. Several methods allow us to obtain this result [42–47]. The previous
interpolation algorithms are used in offline mode. In this paper, the same strategy is used
but using a new online interpolation method. The corresponding block diagram is shown
in Figure 5, this method uses the estimated position θ̂(t), it detects a constant increase in
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angle using a quantizer and generates an impulse using a monostable. The new vector of
impulses is used to re-sample the time-dependent signal (signal(t), ∆t = constant) into a
angle-dependent signal (signal(θ), ∆θ = constant). The new signal created is stationary and
could be studied using classic signal processing tools. In the next section, the identification
algorithm and the angular sampling are tested on a test bench.

����
∑

+

_
- -

6

-

-
?

monostable

ω̂(t)

-

?
signal(t) signal(θ)

∆θ = constant

limiterquantifier

	

-

Pulses(t)

Pulses

θ̂(t)

Sub-system

Figure 5. Block diagram of the online re-sampling.

4. Experimental Results
4.1. Test Bench Description

The setup is a wind turbine simulator composed of two 8 KW Permanent Magnet
Synchronous Machines. The PMSG (high speed side) is driven by a PMSM (low speed
side) through a 4.57 gearbox. The motor is controlled by a Variable speed drive. For the
PMSG, the number of pairs of generator poles is P = 4. A passive load is connected to the
PMSG. Position measurement is available on low and high speed sides. Data are collected
using the dSPACE-DS1104 acquisition card (dSPACE, Paderborn, Germany). To simulate
the fault, a mechanical system designed by our laboratory have been used. The system is
mounted on the axis on the low speed side. It contains a roller installed vertically to impact
a 9 tooth sprocket, see Figure 6. This system can emulate a fault with frequency of 9 impacts
per turn. The force of the impact can be also controlled giving diverse fault strength.

Figure 6. Test bench and fault emulator.

4.2. Test Results

A variable speed test is carried out to test the proposed method. Angular Speed
ω̂(t) and position θ̂(t) are estimated by the nonlinear adaptive algorithm using only the
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current signal i1(t). The PMSG runs around a mean frequency of 7 Hz with a constant load
torque. The variation margin is between 2 Hz and 12 Hz. The speed cycle period is 7 s
corresponding to a frequency of fcycle= 0.14 Hz.

The identification algorithm provides the instantaneous amplitude of the current,
IA(t), which is a signal of frequency fcycle. The parameter m1 fixes the estimate of IA(t).
In this test, it is tuned at m1 = 20 which corresponds to a cutoff frequency F1 = 0.5 Hz.
Figure 7 shows the current i1(t) and estimated IA(t). tests are realized with the first record
(record 1) with and without defect.

0 5 10 15 20

-4

-3

-2

-1

0

1

2

3

4

Figure 7. Phase current i1(t) and IA(t), m1 = 20.

The maximum mechanical frequency is equal to fm = 12 Hz which corresponds to
an electric frequency fe = 48 Hz or we = 300 rad/s. The parameters m2 and m3 are fixed
respectively at m2 = 7200 and m3 = 6.7× 10−3 which corresponds to a second order filter
of proper pulsation ωo = 300 rad/s and a damping coefficient m = 1. Figure 8 shows
shows the estimated frequency compared to the frequency calculated from the position
measurement. The machine speed is correctly estimated, but we note the presence of
measurement noise on the two signals. We could reduce the bandwidth of the H2 filter but
we risk filtering the component linked to the fault and sought. Figure 9 gives the frequency
sampled as a function of the mechanical angle at the output of the block of the Figure 5.
The angular sampling step chosen for this test is ∆θ = 0.2 rad.

This signal can now be analyzed by a classical harmonic analysis (FFT). We define

an angular sampling frequency equal to gs =
1

∆θ
= 5 rad−1. The number of samples

used to calculate the FFT is N = 8192 so the resolution is ∆g =
5

8192
= 6.1× 10−4 rad−1.

The spectrum is calculated from 0 to gmax =
gs

2
= 2.5 rad−1. The unit generally used

to represent spectra of angulary sampled signals is not rad−1 but the number of events
per revolution. This unit is obtained by multiplying the scale of angular frequencies
(g) by 2π. The spectrum is now represented from 0 to 15.7 ev.t/rev with the resolution
∆g = 3.8× 10−3 ev.t/rev.



Electronics 2021, 10, 418 9 of 16
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Figure 8. Generator mechanical frequencies, m2 = 7200, m3 = 6.7× 10−3.

0 200 400 600 800 1000 1200

0
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Figure 9. Frequency as a function of mechanical position.

Figures 10 and 11 show the spectra obtained from the signal in Figure 9. The following
analysis can be proposed:

• Components g2 and g3 are always detected even in the absence of a fault. They are
generated by the gearbox between the emulator and the PMSG.

• The g1 component is isolated only by the identification algorithm. It does not corre-
spond to a multiple of the default fundamental gd. It is consequence of aliasing in the
angular domain.

• The component ge relates to the frequency of power supply. It is only detected by the
identification algorithm because it uses current as the analysis signal.

• In this procedure we are interested in the component corresponding to the impacts
generated by the emulator on the generator currents. However, on our test bench, this
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emulator is placed before the gearbox. So 9 impacts per revolution on the motor side
generate, in theory, 9/4.57 = 1.97 impacts per revolution on the generator side. This
is what we verify experimentally on the calculated spectra. The fundamental of the
defect gd = 1.97 is correctly isolated by the measurement and by the algorithm. By
contrast, harmonic 2 is lost in the measurement noise and filtered during identification.

0.5 1 1.5 2
0

0.1

0.2

0.3
a
)

4 4.5 5 5.5 6
0

0.2

0.4

0.6

b
)

Figure 10. Angular spectrum of mechanical frequency. (a) between 0.5 and 2 ev.t/rev, (b) between 0
and 6 ev.t/rev.

1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2
0

0.05

0.1

0.15

a
)

3.8 3.85 3.9 3.95 4 4.05 4.1 4.15 4.2
0

0.1

0.2

0.3

0.4

b
)

Figure 11. Zooms of angular spectrum of mechanical frequency around fault components. (a) be-
tween 1.8 and 2.2 ev.t/rev, (b) between 3.8 and 4.2 ev.t/rev.

On Figure 12, several records are compared. Healthy spectra (blue and black) are
stemmed from record 1. Faulty spectra are calculated from records 2 to 5. For all these tests,
the component gd can be detected and its amplitude is comparable with that calculated
from measurement.
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Figure 12. Comparison for different records. (a) to (d) respectively records 2 to 5.

In this section, we have shown that it is possible to estimate the frequency of rotation
and the mechanical position of the generator by identifying the model of the electric current.
This information can be used to perform angular sampling and obtain a stationary spectrum
whose components no longer vary with speed. With the design chosen for the filter H2,
only the fundamental of the fault can be detected in the angular spectrum. However,
this information is sufficient to carry out an effective detection if it is associated with a
statistical approach.

5. Statistical Indicators
5.1. Principle for Constant Speed Functioning

Statistical approach is a robust method requiring a learning phase and making it pos-
sible to build a reference for healthy behavior. In [48], a diagnosis strategy was developed
using a statistical indicator. The procedure is as follows:

Step 1: choice of signature S f ault.
In the case of diagnosis, this can be the amplitude of the spectral component at the

frequency of the fault ( fd) in the estimated mechanical frequency ( f̂m).

S f ault =| f̂m( fd) | (18)

Step 2: statistical reference.
The machine is considered healthy and Nre f signatures are calculated to build a

statistical reference. Once the Nre f samples have been calculated, we can then approximate
the statistical distribution that characterizes this behavior. As indicated in [48], the choice
of a Gaussian distribution is consistent with the intended application and it suffices to
estimate the mean and the standard deviation by the following formulas:

µ̂re f =
1

Nre f

Nre f

∑
k=1

S f ault(k) (19)

σ̂re f =

√√√√ 1
Nre f − 1

Nre f

∑
k=1

(S f ault(k)− µ̂re f )2 (20)
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The signature can be improved by making it independent of the machine type used.
For this, we define a Reduced Centered (RC) signature defined by:

S f ault,RC(k) =
S f ault(k)− µ̂re f

σ̂re f
(21)

Step 3: Automatic alarm threshold
From the Sde f ault indicator, an Automatic alarm threshold can be drived in the par-

ticular case of a Gaussian distribution law. The alarm threshold used is defined by the
relation (22). This definition therefore means that if, for the record nok, the value of the
random variable Sde f ault,CR is greater than the threshold t0.1%, in theory there is only 0.1%
of chance that the system functions in healthy mode.

P(S f ault,RC(k) > t0.1%) = 0.001 (22)

The above probability can be calculated by the relation:

P(S f ault,RC(k) > t) = 1−Φ(t) (23)

The value Φ(t) cannot be calculated analytically but a table of its numerically obtained
values makes it possible to find the desired result. At constant speed, this procedure is very
effective and simple to implement. But under variable speed conditions, a single statistical
reference is not sufficient for a system whose operating point changes and the creation of
the reference must take into account any change in load or speed. The solution proposed
in [48] is to create a torque-speed plane segmentation. Each sector represents a working
zone of a specific intervals of torque and speed. During the learning phase of the strategy,
the electrical system is triggered to work in each sector, then the parameters are calculated
and referred to each sector. Data are collected for healthy conditions. After collection, mean
and standard deviation are calculated for each sector and a threshold is determined. To
detect the fault, the active sector is determined according to actual speed and torque values,
then the fault indicator is calculated and compared to data of this active sector And the
decision is made. This strategy requires big amount of learning data to cover all zones.

5.2. An Alternative with Order-Tracking

If the data are sampled as a function of the mechanical position, we obtain a stationary
spectrum independent of the rotation speed. The torque-speed plane segmentation is no
longer necessary. Let’s resume the test presented in the Section 4. We choose to monitor
the spectral component located at gd = 1.97 ev.t/rev present in the mechanical frequency
estimated by the identification algorithm. The signature is then:

S f ault =| f̂m(gd) | (24)

In order to validate the proposed method, a statistical analysis is carried out. The speed
cycle of duration 7.5 s is reproduced over a recording time equal to 375 s, i.e., 50 successive
records (Nre f = 50) . Three different tests were made for different maximum (Nmax) and
minimum (Nmin) values of the rotational speed (Figure 13). For each test, the load torque
is adjusted to different values corresponding to the currents produced by the generator
(Imin and Imax). The numerical values of the different tests are given in the Table 2. Each
test is carried out with and without defect.

The mean and the standard deviation are calculated using Equations (19) and (20) from
Test 3 and used to provide the Reduced Centered signatures defined by Equation (21). By
considering (22) and (23) and choosing a probability greater than 1%, we obtain a threshold
equal to t1% = 2.33. The Figure 14 shows the results obtained. It is noted that for the two
tests 1 and 2 (healthy) the signatures remain well below the calculated threshold. For the
3 tests with defect, signatures are greater than the chosen threshold. However, in test 6, it
is noted that the signature crosses the threshold twice. We note in the Table 2 that for test 3,
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the generator operates at no load. In this case the current measurements are very noisy. It
is possible to solve this problem, by modifying the number of cycles taken into account to
calculate the detection threshold. We carry out a new experiment with two cycles of 7.5 s
per recording, i.e., a total of 25 recordings (Figure 15). Figure 16 shows the results obtained.

6

-

-� -�

t

Mechanical frequency

Record 1 Record 50

-�
Total Record = 375 s

Record 2 Record 3
-� -�

Nmax

Nmin

Figure 13. Speed profile for experimental tests.

Table 2. Tests setup.

Test Nmin (rpm) Nmax (rpm) Imin (A) Imax (A) Default

Test 1 150 450 2 6 No

Test 2 450 750 6 9.5 No

Test 3 150 750 1 4 No

Test 4 150 450 2 6 Yes

Test 5 450 750 6 9.5 Yes

Test 6 150 750 1 4 Yes
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Figure 14. Signatures, 1 period, Nre f = 50.
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Figure 16. Signatures, 2 period, Nre f = 25.

6. Conclusions

The originality of our work lies in the implementation of variable speed order-tracking
from only one current measurement, i.e., without position sensor. This approach amounts
to considering the current both as an analysis signal (signal containing the fault signature)
and as a signal for estimating the mechanical angle. We have shown that, in the particular
case of the synchronous machine, this approach was viable and gave satisfactory results.
We can rightly consider the synchronous machine as a simple case insofar as the mechanical
frequency and the electrical frequency are proportional. It would be interesting to carry
out similar work on asynchronous machines where this approach is less obvious due
to the slip. In addition, we have implemented a default detection method based on a
statistical approach. The classical statistical approach, in the case of variable speed, is
relatively complex and requires, as we have seen, to segment the speed/couple plane.
The order-tracking approach proposed in this article has made it possible to simplify the
implementation of the procedure even if its use seems a priori reduced to repetitive cycles.
One avenue of study would be to determine to what extent this approach could be applied
in a more general framework.
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