Reduction of Losses and Operating Costs in Distribution Networks Using a Genetic Algorithm and Mathematical Optimization
Abstract
:1. Introduction
1.1. General Context
1.2. Motivation
1.3. Review of the State of the Art
1.4. Contributions
- ✓
- The fixed-step capacitor banks siting and sizing problem is represented via an integer codification and the classic optimization method is applied based on the CBGA, which reaches the optimal solution of the problem in minimum computational times when compared with the results reported in [11].
- ✓
- The solution developed from the interaction between the CBGA and the successive approximations method can be implemented in any radial or meshed distribution system. The selection and location of capacitor banks are not restricted in regard to the size (reactive power supplied) and the number to be installed.
1.5. Paper Setting
2. Mathematical Formulation
3. Methodology Proposed
3.1. Codification
3.2. IP
3.3. Fitness Function Assessment
3.4. Selection
3.5. Crossing
3.6. Mutation
3.7. Replacement of Individual in the Population
3.8. Stopping Criteria
3.9. Successive Approximations Method
3.10. Implementation of the Proposed Methodology
4. Test Systems
4.1. Characteristics of Capacitor Banks
4.2. 10-Node Test System
4.3. 33 Nodes Test System
4.4. 69-Node Test System
4.5. 69-Node Meshed Test System
5. Simulation Results
5.1. Computational Implementation
5.2. Results of the 10-Node Test System
5.3. Results of the 33-Node Test System
5.4. Results of the 69-Node Test System
5.5. Results of the 69-Node Meshed Test System
5.6. Analysis of the Processing Times
6. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
References
- Alvarado-Barrios, L.; Alvarez-Arroyo, C.; Escano, J.M.; Gonzalez-Longatt, F.M.; Martinez-Ramos, J.L. Two-Level Optimisation and Control Strategy for Unbalanced Active Distribution Systems Management. IEEE Access 2020, 8, 197992–198009. [Google Scholar] [CrossRef]
- Orosz, T.; Sleisz, A.; Tamus, Z.A. Metaheuristic Optimization Preliminary Design Process of Core-Form Autotransformers. IEEE Trans. Magn. 2016, 52, 1–10. [Google Scholar] [CrossRef]
- Lohia, S.; Mahela, O.P.; Ola, S.R. Optimal capacitor placement in distribution system using genetic algorithm. In Proceedings of the 2016 IEEE 7th Power India International Conference (PIICON), Bikaner, India, 25–27 November 2016. [Google Scholar] [CrossRef]
- Montoya, O.D.; Molina-Cabrera, A.; Chamorro, H.R.; Alvarado-Barrios, L.; Rivas-Trujillo, E. A Hybrid Approach Based on SOCP and the Discrete Version of the SCA for Optimal Placement and Sizing DGs in AC Distribution Networks. Electronics 2020, 10, 26. [Google Scholar] [CrossRef]
- Ramírez, S. Electric Distribution Networks; Universidad Nacional de Colombia: Manizales, Colombia, 2009; pp. 653–843. (In Spanish) [Google Scholar]
- Bula, I.; Hoxha, V.; Shala, M.; Hajrizi, E. Minimizing non-technical losses with point-to-point measurement of voltage drop between “SMART” meters. IFAC-PapersOnLine 2016, 49, 206–211. [Google Scholar] [CrossRef]
- Fragkioudaki, A.; Cruz-Romero, P.; Gómez-Expósito, A.; Biscarri, J.; de Tellechea, M.J.; Arcos, Á. Detection of Non-technical Losses in Smart Distribution Networks: A Review. In Advances in Intelligent Systems and Computing; Springer: Berlin/Heisenberg, Germany, 2016; pp. 43–54. [Google Scholar] [CrossRef]
- Devi, S.; Geethanjali, M. Optimal location and sizing determination of Distributed Generation and DSTATCOM using Particle Swarm Optimization algorithm. Int. J. Electr. Power Energy Syst. 2014, 62, 562–570. [Google Scholar] [CrossRef]
- Rafael Lozano, C.; Jaimes, S.; Obando, J.D. Assessment Methodology Energy Efficiency: A Proposal. Rev. Teinnova 2016, 1, 22–41. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W.; Orozco-Henao, C. Vortex search and Chu-Beasley genetic algorithms for optimal location and sizing of distributed generators in distribution networks: A novel hybrid approach. Eng. Sci. Technol. Int. J. 2020. [Google Scholar] [CrossRef]
- Gil-González, W.; Montoya, O.D.; Rajagopalan, A.; Grisales-Noreña, L.F.; Hernández, J.C. Optimal Selection and Location of Fixed-Step Capacitor Banks in Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Energies 2020, 13, 4914. [Google Scholar] [CrossRef]
- Almabsout, E.A.; El-Sehiemy, R.A.; An, O.N.U.; Bayat, O. A Hybrid Local Search-Genetic Algorithm for Simultaneous Placement of DG Units and Shunt Capacitors in Radial Distribution Systems. IEEE Access 2020, 8, 54465–54481. [Google Scholar] [CrossRef]
- Tamilselvan, V.; Jayabarathi, T.; Raghunathan, T.; Yang, X.S. Optimal capacitor placement in radial distribution systems using flower pollination algorithm. Alex. Eng. J. 2018, 57, 2775–2786. [Google Scholar] [CrossRef]
- Dixit, M.; Kundu, P.; Jariwala, H.R. Optimal integration of shunt capacitor banks in distribution networks for assessment of techno-economic asset. Comput. Electr. Eng. 2018, 71, 331–345. [Google Scholar] [CrossRef]
- Mousavi-Khademi, M.R.; Chamorro, H.R.; Mousavi-Khademi, M.; Zareian-Jahromi, M.; Sood, V.K.; Guerrero, J.M.; Martinez, W. Optimal Value-based Prices Placement of DER and V2G using Planet Search Algorithm. In Proceedings of the 2020 IEEE Electric Power and Energy Conference (EPEC), Edmonton, AB, Canada, 9–10 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Lima Pérez, L.; Vasquez Stanescu, C. An intelligent strategy of power utilities for efficient detection of residential customers under fraudulent conditions. REDIP Rev. Digit. Investig. Postgrado 2014, 3, 501–521. [Google Scholar]
- Comisión de Regulación de Energía y Gas. Gestión del Flujo de Potencia Reactiva; Comisión de Regulación de Energía y Gas, Ministerio de Minas y Energia: Bogotá D.C., Colombia, 2005; p. 43.
- Ministerio de Minas y Energia. Resolucion CREG 015 del 2018; Ministerio de Minas y Energia: Bogotá D.C., Colombia, 2018.
- Gil-González, W.; Garces, A.; Montoya, O.D.; Hernández, J.C. A Mixed-Integer Convex Model for the Optimal Placement and Sizing of Distributed Generators in Power Distribution Networks. Appl. Sci. 2021, 11, 627. [Google Scholar] [CrossRef]
- Estrada Soria, G.; Tovar Hernández, J.H.; Gutiérrez Alcaraz, G. Metodology for Capacitor Placement in Distribution Systems using Linear Sensitivity Factors. IEEE Lat. Am. Trans. 2005, 3, 185–192. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, Z.Y.; Wong, K.P.; Liu, E.; Yue, B. Optimal capacitor placement to distribution transformers for power loss reduction in radial distribution systems. IEEE Trans. Power Syst. 2013, 28, 4072–4079. [Google Scholar] [CrossRef]
- Joyal Isac, S.; Suresh Kumar, K. Optimal capacitor placement in radial distribution system to minimize the loss using fuzzy logic control and hybrid particle swarm optimization. Lect. Notes Electr. Eng. 2015, 326, 1319–1329. [Google Scholar] [CrossRef]
- Vuletić, J.; Todorovski, M. Optimal capacitor placement in distorted distribution networks with different load models using Penalty Free Genetic Algorithm. Int. J. Electr. Power Energy Syst. 2016, 78, 174–182. [Google Scholar] [CrossRef]
- Mohammedi, R.D.; Mosbah, M.; Hellal, A.; Arif, S. An efficient BBO algorithm for optimal allocation and sizing of shunt capacitors in radial distribution networks. In Proceedings of the 2015 4th International Conference on Electrical Engineering (ICEE), Boumerdes, Algeria, 13–15 December 2015. [Google Scholar] [CrossRef]
- Szultka, A.; Malkowski, R. Selection of optimal location and rated power of capacitor banks in distribution network using genetic algorithm. In Proceedings of the 2017 18th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic, 17–19 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Tolba, M.A.; Tulsky, V.N.; Vanin, A.S.; Diab, A.A. Comprehensive analysis of optimal allocation of capacitor banks in various distribution networks using different hybrid optimization algorithms. In Proceedings of the 2017 17th IEEE International Conference on Environment and Electrical Engineering and 2017 1st IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2017, Milan, Italy, 6–9 June 2017; pp. 16–22. [Google Scholar] [CrossRef]
- George, T.; Youssef, A.R.; Ebeed, M.; Kamel, S. Ant lion optimization technique for optimal capacitor placement based on total cost and power loss minimization. In Proceedings of the 2018 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 19–21 February 2018; pp. 350–356. [Google Scholar] [CrossRef]
- Shwehdi, M.H.; Mohamed, S.R.; Devaraj, D. Optimal capacitor placement on West–East inter-tie in Saudi Arabia using genetic algorithm. Comput. Electr. Eng. 2018, 68, 156–169. [Google Scholar] [CrossRef]
- Abdelsalam, A.A.; Gabbar, H.A. Shunt Capacitors Optimal Placement in Distribution Networks Using Artificial Electric Field Algorithm. In Proceedings of the 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 12–14 August 2019; pp. 77–85. [Google Scholar] [CrossRef]
- Quezada, C.; Torres, J.; Quizhpi, F. Optimal Location of Capacitor Banks by Implementing Heuristic Methods in Distribution Networks. In Proceedings of the 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Valparaiso, Chile, 13–27 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Montoya, O.D.; Ramírez, C.A.; Grisales, L.F. Location and Optimal Sizing of Distributed Generators and Banks Capacitors in Distribution Systems. Sci. Tech. 2018, 23, 308–314. [Google Scholar] [CrossRef]
- Abul’Wafa, A.R. Optimal capacitor allocation in radial distribution systems for loss reduction: A two stage method. Electr. Power Syst. Res. 2013, 95, 168–174. [Google Scholar] [CrossRef]
- Wilson, J.M. A Genetic Algorithm for the Generalised Assignment Problem. J. Oper. Res. Soc. 1997, 48, 804. [Google Scholar] [CrossRef]
- Dunn, A.M.; Hofmann, O.S.; Waters, B.; Witchel, E. Cloaking Malware with the Trusted Platform Module. In Proceedings of the 20th USENIX Security Symposium, San Francisco, CA, USA, 8–12 August 2011. [Google Scholar]
- Gallego-Londoño, J.P.; Montoya-Giraldo, O.D.; Hincapié-Isaza, R.A.; Granada-Echeverri, M. Optimal location of reclosers and fuses in distribution systems. ITECKNE 2016, 13, 113. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electr. Power Syst. Res. 2020, 187, 106454. [Google Scholar] [CrossRef]
- Montoya, O.D.; Grisales-Noreña, L.F.; Amin, W.T.; Rojas, L.A.; Campillo, J. Vortex Search Algorithm for Optimal Sizing of Distributed Generators in AC Distribution Networks with Radial Topology. Commun. Comput. Inf. Sci. 2019, 1052, 235–249. [Google Scholar] [CrossRef]
- Da Rosa, W.M.; Rossoni, P.; Teixeira, J.C.; Belati, E.A.; Asano, P.T.L. Optimal allocation of capacitor banks using genetic algorithm and sensitivity analysis. IEEE Lat. Am. Trans. 2016, 14, 3702–3707. [Google Scholar] [CrossRef]
- Osorio Cruz, F.A. Optimal Location of Electric Power Recharging Stations for Exchange of Batteries for Electric Vehicles; Universidad Tecnológica de Pereira: Pereira, Colombia, 2017; Available online: http://repositorio.utp.edu.co/dspace/handle/11059/8019 (accessed on 5 February 2021). (In Spanish)
- Serna, M.A.; Marín, J.L. Genetic Algorithms: An Alternative Solution to Optimize the Inventory Model (Q; r). Master’s Thesis, Universidad Eafit, Medellín, Colombia, 2009. Available online: https://repository.eafit.edu.co/handle/10784/125 (accessed on 5 February 2021). (In Spanish).
- Montoya, O.D.; Gil-González, W.; Orozco-Henao, C. On the convergence of the power flow methods for DC networks with mesh and radial structures. Electr. Power Syst. Res. 2021, 191, 106881. [Google Scholar] [CrossRef]
- Shen, T.; Li, Y.; Xiang, J. A graph-based power flow method for balanced distribution systems. Energies 2018, 11, 511. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.S.; Narasimham, S.V.; Ramalingaraju, M. Optimal capacitor placement in a radial distribution system using Plant Growth Simulation Algorithm. Int. J. Electr. Power Energy Syst. 2011, 33, 1133–1139. [Google Scholar] [CrossRef] [Green Version]
- Vita, V. Development of a decision-making algorithm for the optimum size and placement of distributed generation units in distribution networks. Energies 2017, 10, 1433. [Google Scholar] [CrossRef] [Green Version]
- Taher, S.A.; Afsari, S.A. Optimal location and sizing of UPQC in distribution networks using differential evolution algorithm. Math. Probl. Eng. 2012, 2012, 838629. [Google Scholar] [CrossRef]
- Davoudi, M.; Cecchi, V.; Aguero, J.R. Investigating the ability of meshed distribution systems to increase penetration levels of Distributed Generation. In Proceedings of the Conference Proceedings—IEEE SOUTHEASTCON, Lexington, KY, USA, 13–16 March 2014. [Google Scholar] [CrossRef]
- Savier, J.S.; Das, D. Impact of network reconfiguration on loss allocation of radial distribution systems. IEEE Trans. Power Deliv. 2007, 22, 2473–2480. [Google Scholar] [CrossRef]
- Das, B.; Kumar, A. Cost optimization of a hybrid energy storage system using GAMS. In Proceedings of the 2017 International Conference on Power and Embedded Drive Control (ICPEDC), Chennai, India, 16–18 March 2017; pp. 89–92. [Google Scholar] [CrossRef]
- Montoya, O.D.; Garrido, V.M.; Grisales-Noreña, L.F.; Gil-González, W.; Garces, A.; Ramos-Paja, C.A. Optimal Location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMS. In Proceedings of the 2018 IEEE 9th Power, Instrumentation and Measurement Meeting (EPIM), Salto, Uruguay, 14–16 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Hijazi, H.; Thiébaux, S. Optimal distribution systems reconfiguration for radial and meshed grids. Int. J. Electr. Power Energy Syst. 2015, 72, 136–143. [Google Scholar] [CrossRef]
Optimization Method | Objective Fucntion | Reference | Year |
---|---|---|---|
Linear sensitivies to reduce the set of nodes | NPV (i.e., energy losses and investment costs) | [20] | 2005 |
Mixed-integer linear programming formulation | NPV | [21] | 2013 |
Hybrid approach between fuzzy logic and particle swarm optimization | NPV | [22] | 2014 |
Penalty-free genetic algorithm | NPV | [23] | 2016 |
Biogeography-based optimization | NPV | [24] | 2015 |
Binary genetic algorithm | Improve the grid voltage level | [25] | 2017 |
Hybrid optimization algorithms based on heuristics | Active power losses, voltage profile improvements, and NPV | [26] | 2017 |
Ant lion optimizer | Energy losses and investment costs | [27] | 2018 |
Genetic algorithm | Voltage profile improvement and power losses reduction | [28] | 2018 |
Artificial electric field algorithm | NPV and voltage profile improvement | [29] | 2019 |
Heuristic method based on grid sensitivities | Power factor and voltage profile improvement | [30] | 2019 |
Mixed-integer nonlinear programming model solved in the GAMS optimization package | Power losses minimization | [31] | 2018 |
Discrete vortex search algorithm | NPV | [11] | 2020 |
Chu and Beasley genetic algorithm | |
Size of IP | 20 |
Number of iterations | 200 |
Successive approximations method | |
Number of iterations | 100 |
Tolerance | 1 × 10−10 |
Tests performed by system | |
Number of evaluations of the CBGA | 100 |
Option | (kvar) | Cost (US$/kvar-Year) | Option | (kvar) | Cost (US$/kvar-Year) |
---|---|---|---|---|---|
1 | 150 | 0.500 | 8 | 1200 | 0.170 |
2 | 300 | 0.350 | 9 | 1350 | 0.207 |
3 | 450 | 0.253 | 10 | 1500 | 0.201 |
4 | 600 | 0.220 | 11 | 1650 | 0.193 |
5 | 750 | 0.276 | 12 | 1800 | 0.870 |
6 | 900 | 0.183 | 13 | 1950 | 0.211 |
7 | 1050 | 0.228 | 14 | 2100 | 0.176 |
Node i | Node j | () | () | (kW) | (kvar) |
---|---|---|---|---|---|
1 | 2 | 0.1233 | 0.4127 | 1840 | 460 |
2 | 3 | 0.0140 | 0.6051 | 980 | 340 |
3 | 4 | 0.7463 | 1.2050 | 1790 | 446 |
4 | 5 | 0.6984 | 0.6084 | 1598 | 1840 |
5 | 6 | 1.9831 | 1.7276 | 1610 | 600 |
6 | 7 | 0.9053 | 0.7886 | 780 | 110 |
7 | 8 | 2.0552 | 1.1640 | 1150 | 60 |
8 | 9 | 4.7953 | 2.7160 | 980 | 130 |
9 | 10 | 5.3434 | 3.0264 | 1640 | 200 |
Node i | Node j | () | () | (kW) | (kvar) | Node i | Node j | () | () | (kW) | (kvar) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 0.0922 | 0.0477 | 100 | 60 | 17 | 18 | 0.7320 | 0.5740 | 90 | 40 |
2 | 3 | 0.4930 | 0.2511 | 90 | 40 | 2 | 19 | 0.1640 | 0.1565 | 90 | 40 |
3 | 4 | 0.3660 | 0.1864 | 120 | 80 | 19 | 20 | 1.5042 | 1.3554 | 90 | 40 |
4 | 5 | 0.3811 | 0.1941 | 60 | 30 | 20 | 21 | 0.4095 | 0.4784 | 90 | 40 |
5 | 6 | 0.8190 | 0.7070 | 60 | 20 | 21 | 22 | 0.7089 | 0.9373 | 90 | 40 |
6 | 7 | 0.1872 | 0.6188 | 200 | 100 | 3 | 23 | 0.4512 | 0.3083 | 90 | 50 |
7 | 8 | 1.7114 | 1.2351 | 200 | 100 | 23 | 24 | 0.8980 | 0.7091 | 420 | 200 |
8 | 9 | 1.0300 | 0.7400 | 60 | 20 | 24 | 25 | 0.8960 | 0.7011 | 420 | 200 |
9 | 10 | 1.0400 | 0.7400 | 60 | 20 | 6 | 26 | 0.2030 | 0.1034 | 60 | 25 |
10 | 11 | 0.1966 | 0.0650 | 45 | 30 | 26 | 27 | 0.2842 | 0.1447 | 60 | 25 |
11 | 12 | 0.3744 | 0.1238 | 60 | 35 | 27 | 28 | 1.0590 | 0.9337 | 60 | 20 |
12 | 13 | 1.4680 | 1.1550 | 60 | 35 | 28 | 29 | 0.8042 | 0.7006 | 120 | 70 |
13 | 14 | 0.5416 | 0.7129 | 120 | 80 | 29 | 30 | 0.5075 | 0.2585 | 200 | 600 |
14 | 15 | 0.5910 | 0.5260 | 60 | 10 | 30 | 31 | 0.9744 | 0.9630 | 150 | 70 |
15 | 16 | 0.7463 | 0.5450 | 60 | 20 | 31 | 32 | 0.3105 | 0.3619 | 210 | 100 |
16 | 17 | 1.2860 | 1.7210 | 60 | 20 | 32 | 33 | 0.3410 | 0.5302 | 60 | 40 |
Node i | Node j | () | () | (kW) | (kvar) | Node i | Node j | () | () | (kW) | (kvar) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 0.0005 | 0.0012 | 0.00 | 0.00 | 3 | 36 | 0.0044 | 0.0108 | 26.00 | 18.55 |
2 | 3 | 0.0005 | 0.0012 | 0.00 | 0.00 | 36 | 37 | 0.0640 | 0.1565 | 26.00 | 18.55 |
3 | 4 | 0.0015 | 0.0036 | 0.00 | 0.00 | 37 | 38 | 0.1053 | 0.1230 | 0.00 | 0.00 |
4 | 5 | 0.0251 | 0.0294 | 0.00 | 0.00 | 38 | 39 | 0.0304 | 0.0355 | 24.00 | 17.00 |
5 | 6 | 0.3660 | 0.1864 | 2.60 | 2.20 | 39 | 40 | 0.0018 | 0.0021 | 24.00 | 17.00 |
6 | 7 | 0.3810 | 0.1941 | 40.40 | 30.00 | 40 | 41 | 0.7283 | 0.8509 | 1.20 | 1.00 |
7 | 8 | 0.0922 | 0.0470 | 75.00 | 54.00 | 41 | 42 | 0.3100 | 0.3623 | 0.00 | 0.00 |
8 | 9 | 0.0493 | 0.0251 | 30.00 | 22.00 | 42 | 43 | 0.0410 | 0.0478 | 6.00 | 4.30 |
9 | 10 | 0.8190 | 0.2707 | 28.00 | 19.00 | 43 | 44 | 0.0092 | 0.0116 | 0.00 | 0.00 |
10 | 11 | 0.1872 | 0.0619 | 145.00 | 104.00 | 44 | 45 | 0.1089 | 0.1373 | 39.22 | 26.30 |
11 | 12 | 0.7114 | 0.2351 | 145.00 | 104.00 | 45 | 46 | 0.0009 | 0.0012 | 29.22 | 26.30 |
12 | 13 | 1.0300 | 0.3400 | 8.00 | 5.00 | 4 | 47 | 0.0034 | 0.0084 | 0.00 | 0.00 |
13 | 14 | 1.0440 | 0.3450 | 8.00 | 5.50 | 47 | 48 | 0.0851 | 0.2083 | 79.00 | 56.40 |
14 | 15 | 1.0580 | 0.3496 | 0.00 | 0.00 | 48 | 49 | 0.2898 | 0.7091 | 384.70 | 274.50 |
15 | 16 | 0.1966 | 0.0650 | 45.50 | 30.00 | 49 | 50 | 0.0822 | 0.2011 | 384.70 | 274.50 |
16 | 17 | 0.3744 | 0.1238 | 60.00 | 35.00 | 8 | 51 | 0.0928 | 0.0473 | 40.50 | 28.30 |
17 | 18 | 0.0047 | 0.0016 | 60.00 | 35.00 | 51 | 52 | 0.3319 | 0.1114 | 3.60 | 2.70 |
18 | 19 | 0.3276 | 0.1083 | 0.00 | 0.00 | 9 | 53 | 0.1740 | 0.0886 | 4.35 | 3.50 |
19 | 20 | 0.2106 | 0.0690 | 1.00 | 0.60 | 53 | 54 | 0.2030 | 0.1034 | 26.40 | 19.00 |
20 | 21 | 0.3416 | 0.1129 | 114.00 | 81.00 | 54 | 55 | 0.2842 | 0.1447 | 24.00 | 17.20 |
21 | 22 | 0.0140 | 0.0046 | 5.00 | 3.50 | 55 | 56 | 0.2813 | 0.1433 | 0.00 | 0.00 |
22 | 23 | 0.1591 | 0.0526 | 0.00 | 0.00 | 56 | 57 | 1.5900 | 0.5337 | 0.00 | 0.00 |
23 | 24 | 0.3463 | 0.1145 | 28.00 | 20.00 | 57 | 58 | 0.7837 | 0.2630 | 0.00 | 0.00 |
24 | 25 | 0.7488 | 0.2475 | 0.00 | 0.00 | 58 | 59 | 0.3042 | 0.1006 | 100.00 | 72.00 |
25 | 26 | 0.3089 | 0.1021 | 14.00 | 10.00 | 59 | 60 | 0.3861 | 0.1172 | 0.00 | 0.00 |
26 | 27 | 0.1732 | 0.0572 | 14.00 | 10.00 | 60 | 61 | 0.5075 | 0.2585 | 1244.00 | 888.00 |
3 | 28 | 0.0044 | 0.0108 | 26.00 | 18.60 | 61 | 62 | 0.0974 | 0.0496 | 32.00 | 23.00 |
28 | 29 | 0.0640 | 0.1565 | 26.00 | 18.60 | 62 | 63 | 0.1450 | 0.0738 | 0.00 | 0.00 |
29 | 30 | 0.3978 | 0.1315 | 0.00 | 0.00 | 63 | 64 | 0.7105 | 0.3619 | 227.00 | 162.00 |
30 | 31 | 0.0702 | 0.0232 | 0.00 | 0.00 | 64 | 65 | 1.0410 | 0.5302 | 59.00 | 42.00 |
31 | 32 | 0.3510 | 0.1160 | 0.00 | 0.00 | 11 | 66 | 0.2012 | 0.0611 | 18.00 | 13.00 |
32 | 33 | 0.8390 | 0.2816 | 14.00 | 10.00 | 66 | 67 | 0.0470 | 0.0140 | 18.00 | 13.00 |
33 | 34 | 1.7080 | 0.5646 | 19.50 | 14.00 | 12 | 68 | 0.7394 | 0.2444 | 28.00 | 20.00 |
34 | 35 | 1.4740 | 0.4873 | 6.00 | 4.00 | 68 | 69 | 0.0047 | 0.0016 | 28.00 | 20.00 |
Node i | Node j | () | () |
---|---|---|---|
11 | 43 | 0.5 | 0.5 |
13 | 21 | 0.5 | 0.5 |
15 | 46 | 1.0 | 0.5 |
50 | 59 | 2.0 | 1.0 |
27 | 65 | 1.0 | 0.5 |
Method | Size(Node) (MVAr) | Losses (kW) |
---|---|---|
PGSA [43] | {1.20(5),1.20(6),0.20(9),0.407(10)} | 694.93 |
GAMS | {2.10(4),2.10(5),1.95(6),0.75(10)} | 692.93 |
CBGA | {2.10(4),1.95(5),1.95(6),0.75(10)} | 691.99 |
Method | C. Caps. US$ | C. Total US$ |
PGSA [43] | 15,918 | 118,340 |
GAMS | 13,576 | 117,771 |
CBGA | 13,995 | 117,655 |
Method | Size(Node) (MVAr) | Losses (kW) |
---|---|---|
FPA [13] | {0.45(13),0.45(24),0.90(30)} | 139.075 |
GAMS | {0.30(14),0.45(24),1.05(30)} | 138.799 |
DVSA [11] | {0.45(12),0.45(24),1.05(30)} | 138.416 |
CBGA | {0.45(12),0.45(24),1.05(30)} | 138.416 |
Method | C. Caps. US$ | C. Total US$ |
FPA [13] | 392.4 | 23,757.00 |
GAMS | 458.0 | 23,776.00 |
DVSA [11] | 467.1 | 23,720.99 |
CBGA | 467.1 | 23,720.99 |
Method | Size(Node) (MVAr) | Losses (kW) |
---|---|---|
FPA [13] | {0.45(11),0.15(22),1.35(61)} | 145.86 |
GAMS | {0.45(11),0.15(27),1.20(61)} | 145.58 |
DVSA [11] | {0.30(11),0.30(18),1.20(61)} | 145.39 |
CBGA | {0.45(12),0.15(22),1.20(61)} | 145.37 |
Method | C. Caps. US$ | C. Total US$ |
FPA [13] | 468.30 | 24,972.78 |
GAMS | 392.85 | 24,851.27 |
DVSA [11] | 414.00 | 24,841.65 |
CBGA | 392.85 | 24,814.00 |
Method | Size(Node) (MVAr) | Losses (kW) |
---|---|---|
GAMS | {0.45(11),0.60(49),1.2(61)} | 55.120 |
CBGA | {0.45(21),0.45(50),1.2(61)} | 55.008 |
Method | C. Caps. US$ | C. Total US$ |
GAMS | 449.85 | 9710.2 |
CBGA | 431.66 | 9673.0 |
System | GAMS | FPA | PGSA | DVSA | CBGA |
---|---|---|---|---|---|
10 nodes | 3 | - | 11 | - | 0.20 |
33 nodes | 83 | 7.75 | - | 1.33 | 0.15 |
69 nodes (radial) | 807.26 | 18.36 | - | 4.01 | 1.07 |
69 nodes (meshed) | 750.62 | - | - | - | 1.18 |
System | Population Size | Losses (kW) | C. Total US$ | Run Time(s) |
---|---|---|---|---|
10 nodes | 20 50 100 150 | 691.99 693.55 692.42 693.66 | 117,655 117,720 117,773 117,817 | 0.20 0.21 0.21 0.46 |
33 nodes | 20 50 100 150 | 138.42 139.07 138.67 138.76 | 23,721 23,757 23,764 23,722 | 0.15 0.57 0.62 0.70 |
69 nodes (radial) | 20 50 100 150 | 145.37 145.46 145.30 145.49 | 24,814 24,830 24,834 24,836 | 1.07 1.69 1.70 1.95 |
69 nodes (meshed) | 20 50 100 150 | 55.008 55.209 55.206 55.131 | 9673.0 9706.9 9706.3 9711.9 | 1.19 1.32 1.41 1.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaño, F.E.; Cruz, J.F.; Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L. Reduction of Losses and Operating Costs in Distribution Networks Using a Genetic Algorithm and Mathematical Optimization. Electronics 2021, 10, 419. https://doi.org/10.3390/electronics10040419
Riaño FE, Cruz JF, Montoya OD, Chamorro HR, Alvarado-Barrios L. Reduction of Losses and Operating Costs in Distribution Networks Using a Genetic Algorithm and Mathematical Optimization. Electronics. 2021; 10(4):419. https://doi.org/10.3390/electronics10040419
Chicago/Turabian StyleRiaño, Fabio Edison, Jonathan Felipe Cruz, Oscar Danilo Montoya, Harold R. Chamorro, and Lazaro Alvarado-Barrios. 2021. "Reduction of Losses and Operating Costs in Distribution Networks Using a Genetic Algorithm and Mathematical Optimization" Electronics 10, no. 4: 419. https://doi.org/10.3390/electronics10040419
APA StyleRiaño, F. E., Cruz, J. F., Montoya, O. D., Chamorro, H. R., & Alvarado-Barrios, L. (2021). Reduction of Losses and Operating Costs in Distribution Networks Using a Genetic Algorithm and Mathematical Optimization. Electronics, 10(4), 419. https://doi.org/10.3390/electronics10040419