i?‘lg electronics mﬁ

Article

An Efficient and Accurate Depth-Wise Separable Convolutional
Neural Network for Cybersecurity Vulnerability Assessment
Based on CAPTCHA Breaking

Stephen Dankwa *'© and Lu Yang *

check for

updates
Citation: Dankwa, S.; Yang, L. An
Efficient and Accurate Depth-Wise
Separable Convolutional Neural
Network for Cybersecurity
Vulnerability Assessment Based on
CAPTCHA Breaking. Electronics 2021,
10, 480. https://doi.org/10.3390/
electronics10040480

Received: 28 December 2020
Accepted: 15 February 2021
Published: 18 February 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Automation Engineering, University of Electronic Science and Technology of China,
Chengdu 611371, China
* Correspondence: nabistephen@gmail.com (S.D.); yanglu@uestc.edu.cn (L.Y.)

Abstract: Cybersecurity practitioners generate a Completely Automated Public Turing test to tell
Computers and Humans Apart (CAPTCHAsS) as a form of security mechanism in website applications,
in order to differentiate between human end-users and machine bots. They tend to use standard
security to implement CAPTCHAs in order to prevent hackers from writing malicious automated
programs to make false website registrations and to restrict them from stealing end-users’ private
information. Among the categories of CAPTCHAs, the text-based CAPTCHA is the most widely
used. However, with the evolution of deep learning, it has been so dramatic that tasks previously
thought not easily addressable by computers and used as CAPTCHA to prevent spam are now
possible to break. The workflow of CAPTCHA breaking is a combination of efforts, approaches, and
the development of the computation-efficient Convolutional Neural Network (CNN) model that
attempts to increase accuracy. In this study, in contrast to breaking the whole CAPTCHA images
simultaneously, this study split four-character CAPTCHA images for the individual characters with
a 2-pixel margin around the edges of a new training dataset, and then proposed an efficient and
accurate Depth-wise Separable Convolutional Neural Network for breaking text-based CAPTCHAs.
Most importantly, to the best of our knowledge, this is the first CAPTCHA breaking study to use
the Depth-wise Separable Convolution layer to build an efficient CNN model to break text-based
CAPTCHAs. We have evaluated and compared the performance of our proposed model to that of
fine-tuning other popular CNN image recognition architectures on the generated CAPTCHA image
dataset. In real-time, our proposed model used less time to break the text-based CAPTCHAs with
an accuracy of more than 99% on the testing dataset. We observed that our proposed CNN model
has efficiently improved the CAPTCHA breaking accuracy and streamlined the structure of the
CAPTCHA breaking network as compared to other CAPTCHA breaking techniques.

Keywords: deep learning; convolutional neural network; depth-wise separable; captcha; cybersecu-
rity; vulnerability assessment; internet

1. Introduction

Presently, numerous daily life activities which include communication, travel and
tours, education, online E-commerce, entertainment, and most importantly money transac-
tions are carried out by connecting to the internet. In order to perform such website tasks,
legitimate end-users have to provide their private information by registering to the website.
In creating a website account or registering, some hackers tend to write malicious programs
which waste the website resources by making automatic false registrations called bots.
These false registrations may affect the website and make it vulnerable to hackers, where
they can go further to steal end-users’ private information or intercept their transactions.
Therefore, in order to differentiate between human end-users and machine bots, cyber-
security practitioners generate CAPTCHAs as a form of security mechanism in website
applications to defend end-users’ private information from automated malicious attacks.

Electronics 2021, 10, 480. https://doi.org/10.3390/ electronics10040480 https:/ /www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8329-5398
https://doi.org/10.3390/electronics10040480
https://doi.org/10.3390/electronics10040480
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10040480
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/4/480?type=check_update&version=3

Electronics 2021, 10, 480

2 of 20

CAPTCHA, which stands for (Completely Automated Public Turing test to tell Com-
puters and Humans Apart), provides a way for web service providers to make some
assumptions about whether an end-user is human or robot [1]. The most famous way
of protecting internet forms is to create a special image made up of letters and numbers
and then require the user to enter it in a special textbox, as seen in Figure 1. CAPTCHAs
serve as a network security approach, which are used for websites to avoid automatic form
entering, spamming, automatic voting, etc. [2].

Input thiscode: ¢ L VX

Figure 1. Sample text-based completely automated public turing test to tell computers and humans
apart (CAPTCHAS) to be input into a textbox.

The majority of text-based CAPTCHAs consist of English uppercase letters (A to Z),
English lowercase letters (a to z), and numerals (0 to 9) [3]. These text-based CAPTCHAs
are distorted text images which can be misrecognized by computers or robots but can
highly be recognized by humans. The letters in text-based CAPTCHASs are sometimes
overlapped, rotated, or an addition of curvature to the text image [4].

The recognition accuracy based on humans for effective CAPTCHAs is at least 80%,
while less than 0.01% recognition accuracy is based on computers [2,5]. Sometimes, since
some companies or website owners want to satisfy their customers to easily recognize
these CAPTCHAs, they are quickly compelled to generate loose CAPTCHAs, especially
text-based CAPTCHAs with white backgrounds.

The CAPTCHA recognition technology in the area of traditional image processing,
is divided into image preprocessing, positioning, character segmentation, and character
recognition. This traditional approach, however, is difficult to form an accurate template
set as a result of the adhered and complex CAPTCHA images such as rotation and over-
lapping [2]. Any CAPTCHA is vulnerable to hackers, regardless of the image-generating
algorithm [1]. However, with a constant ethical vulnerability assessment, the loopholes in
the CAPTCHA security can be assessed and then reduced.

The pipeline of CAPTCHA breaking consists of efforts, approaches, and a model that
attempts to increase accuracy [1]. According to Kolupaev et al. [1], a neural network could
recognize a single letter easier than a human could, and this fact did not depend on font
style, rotation, or distortion. This means that if a hacker is well invested in building a
neural network, the only defense mechanism is to make the characters hard to separate,
but with the possibility to separate in order to provide good training data for the CNN to
train on and then break these CAPTCHAs with high accuracy. This is a goal we want to
achieve in the current study.

Recently, deep learning, which is a subfield in machine learning [6], is one of the
demanded areas in artificial intelligence research. Deep learning has achieved good per-
formance and great success in many applications such as scene recognition [7], image
recognition [8], object detection [9-13], and image restoration [14-16]. In contrast to the
traditional pattern recognition technique, the huge advantage of deep learning is its effec-
tiveness in learning features actively without artificial design [2].

The advancement of deep learning has been so dramatic that tasks previously thought
not easily addressable by computers and used as CAPTCHA to prevent spam are now
possible to solve. Based on this observation, we are motivated to develop an efficient and
accurate CNN architecture to break text-based CAPTCHAs with white backgrounds. The
main idea is to perform a vulnerability assessment by developing a faster and high accuracy

Electronics 2021, 10, 480

30f20

model. The significance of this study will create an awareness for the CAPTCHA-generating
practitioners to assess the strengths and weaknesses of their generating algorithms in order
to first observe if they can detect security loopholes in the text-based CAPTCHAs before
deploying on websites.

This will assist them in generating an improved text-based CAPTCHA in the area of an
automated challenge and respond against attacks dispensed by automated machines or bots.
This study recognizes and acknowledges the previous CAPTCHA breaking techniques
which have implemented their proposed CNN architectures using standard convolution
layers. However, since a wide range of websites still use text-based CAPTCHAs, the trust
of the end-users must not be betrayed through malicious attacks. CAPTCHA-generating
practitioners must imitate the hackers through ethical means to perform a cybersecu-
rity vulnerability assessment by developing faster, robust, and efficient algorithms than
can outperform.

Therefore, we propose an efficient and accurate Depth-wise Separable Convolutional
Neural Network to break text-based CAPTCHAs. Several CAPTCHA breaking practition-
ers have implemented their CNN architectures using standard CNNs. However, to the
best of our knowledge, this is the first CAPTCHA breaking study to adopt the Depth-wise
Separable CNN to break text-based CAPTCHAs.

In this current work, we are not utilizing the whole CAPTCHA image as an input for
training the network, but we are rather splitting the images for the individual characters.
We prove that, with a good and practical approach for creating the right training data for
the Convolutional Neural Network (CNN), one may not require to fine-tune the existing
state-of-the-art models to break CAPTCHAs, especially with a white background. This is
due to the fact that these existing CNN architectures have a high number of parameters,
may take a longer time to train, and the model sizes may relatively increase, which may
consume a lot of memory and resources.

Therefore, this study makes the problem simple by extracting all the single letters
from the CAPTCHA images with a 2-pixel margin around the edges, annotate, and then
label them automatically for the CNN architecture to be trained on. The CNN has to
use these single letters as inputs rather than the whole CAPTCHA image relative to the
current problem at hand. A detailed description of the technique used to extract the single
characters is given in the next section.

In this approach, with a small number of convolution layers in a well-developed CNN
architecture, as proposed in this work, the experimental results show that the proposed
technique performed better to break text-based CAPTCHAs with rotation, overlapping,
and with a white background. One of the importance of CAPTCHA breaking research is to
find security loopholes in CAPTCHAs, as a form of a vulnerability assessment technique, to
assist CAPTCHA generating practitioners in generating improved text-based CAPTCHAs.

2. Materials and Methods

This section presents the dataset used in this work, the problem definition, and a
practical way to tackle it. In addition, it provides the idea behind the proposed CAPTCHA
breaking algorithm, the internal structure of the proposed computation-efficient CNN
model, and its evaluation metrics.

2.1. Data Description

The CAPTCHA breaking research is very sensitive, and for that matter, there are no
publicly available standard datasets of CAPTCHA images to be used. As a result, we are
motivated to obtain CAPTCHA images either by retrieving them from real websites or
generating them using libraries. Therefore, we adopted a low-cost approach to generate
CAPTCHA images using the open source python CAPTCHA library (https:/ /pypi.org/
project/captcha/ (accessed on 20 December 2020)). We obtained 10,000 CAPTCHA images,
which are similar to real world CAPTCHA images such as the Weibo CAPTCHA scheme.
The images contain four characters consisting of numerals and uppercase English letters.

https://pypi.org/project/captcha/
https://pypi.org/project/captcha/

Electronics 2021, 10, 480

4 0f 20

We excluded the [0,1,0,I] characters to avoid confusion to both humans and machines.
The sample of the generated CAPTCHA images can be seen from Figure 2a. The dataset
poses a challenge where some of the characters are overlapping as seen in Figure 2b. The
approach for mitigating the problem is discussed in the next section. The dataset and codes
used for implementing this current research study are available at (https://github.com/
sm-multimedia/ Text-based-CAPTCHA-Breaking- (accessed on 27 January 2021)).

D6 A7 D6 AO D AE D6C6 De E3
DeAT DeAS DeAE DecCe DeE3

JX7 X JXLo JXLS JXN3 J XNj

TXJE J¥LS TELS JXEM3 TEMI
(a)
3 MM 3WM9 5] M 68 WT
3MPH 4] M 5 MLN 73 H8
3P Wl 4 Mpg2 6 WA H LWSR

(b)

Figure 2. (a) Sample CAPTCHA images used in this work; (b) sample rotated and overlapped
CAPTCHA images, which pose a challenge for splitting.

2.2. Problem Definition

The problem definition in this current study is to input a text-based CAPTCHA image
which has rotated, overlapping characters, and especially with a white background, and
then break the same CAPTCHA with a high accuracy rate, as illustrated in Figure 3a. The
problem can be solved by using deep learning to break the characters in the CAPTCHA
image simultaneously, as shown in Figure 3b.

However, in contrast to the approach in Figure 3b, the problem is made simple by
splitting the images for each single character, annotating, and labelling them to generate a
new training dataset for a simple and efficient proposed CNN architecture. The graphical
representation of this scenario is illustrated in Figure 3c.

2.3. Basic Idea of the Single Character Extraction (SCE) Algorithm

Based on Figure 3c, the SCE algorithm was developed which helped generate a new
training dataset. The original text-based CAPTCHA images are loaded from the disk and
split for the individual characters to output a single character. The general formula for the
new training dataset set is expressed as:

T=CXN 1)

where T represents the new number of training dataset, C represents the number of charac-
ters in each CAPTCHA image, and N represents the total number of CAPTCHA images.

https://github.com/sm-multimedia/Text-based-CAPTCHA-Breaking-
https://github.com/sm-multimedia/Text-based-CAPTCHA-Breaking-

Electronics 2021, 10, 480

50f 20

input

6 L VX

CAPTCHA image

(a)
input

6 LVX Depth-wise g LVX”
Separable CNN

CAPTCHA image

(b)

Split eriginal
CAPTCHA image

%

DEFIt h-wise Decode recognition
Separable CNN fromabinary S

number to a
character

Expected Output

Training Input

(c)

Figure 3. (a) The problem definition is to input a CAPTCHA image and output the same characters
in the image, (b) the problem can be solved by passing the input image through the convolutional
neural network (CNN) model to break the same characters simultaneously, (c) the pipeline of the
proposed CAPTCHA breaking algorithm.

The main concept backing the proposed technique is to make the problem simple,
especially when dealing with four-character CAPTCHA images with white backgrounds.
The original text-based CAPTCHA images are loaded and converted to grayscale images
for faster preprocessing. The base filenames of the original CAPTCHA images contain
the labels which can be extracted, the images are then binarized through a thresholding
technique. Thresholding the images ensures that the backgrounds of the images are black,
while the foregrounds are white. This part of the preprocessing is a critical step in the
workflow since it assists in finding the outlines of each of the characters in the CAPTCHA
images. The contours of the characters in the threshold images are looped over and located.
The bounding boxes for the contours are computed with a 2-pixel margin around the edges
to extract each single letter. In the course of the extraction, the overlapping characters are
detected. This part is as critical as the thresholding, if not handled well, it will end up
generating a bad training dataset.

Therefore, this study checked the problem by comparing the width and height of the
contour, if the width divided by the height is greater than a certain number of threshold,
in the case of this study, the threshold was 1.25 based on the experiments, then the letter
is too wide to be a single letter, which is then split into two. Finally, the extracted single
letters are annotated and labelled for training. The single characters can be resized to a
desirable input size for the Convolutional Neural Network (CNN) architecture. The result
of the Single Character Extraction (SCE) algorithm is used to train a computation-efficient
Convolutional Neural Network model to break the CAPTCHA characters. A graphical
description of the SCE algorithm is illustrated in Figure 4.

Electronics 2021, 10, 480

6 0f 20

Resize the

Grab the labels Extracteach extracted letters
from the base single letter to 20 x 20 pixel
filename Locate the with a 2-pixel for CNN input
Original captcha Convertfo contours from ~ ATEN
image grayscale the grayscale
image TWSR—> 2z o™ .
(72 x24) image z
LWSR— w i
TWSR = LWSR = = DWSIR]= [=
ZWSR— S s
TWSR—» R EI R
6LVX — 6 6] 6
6LVX — 1 L
6va ‘—76va% E,'}@ =
6LVX — v v

¢Lvx — X X

Figure 4. The description of the main concept of the proposed technique algorithm.

2.4. Network Structure and Parameters of the Proposed CAPTCHA Breaking Depth-Wise
Saparable CNN

The proposed CNN architecture is inspired by MobileNets [17], but in contrast to
MobileNets, we introduce a lot of dropout layers and without a pointwise convolutional
layer. The architecture of our proposed CNN model consists of six Depth-wise Separable
Convolutional layers, seven Batch Normalization layers, seven ReLU activation function
layers, four Dropout layers, three Max-pooling layers, one flatten layer, one fully connected
layer, and one output Softmax layer.

The network architecture uses exclusively 3 x 3 Depth-wise Separable Convolutional
filters, stacked on top of each other preceding the performed max-pooling. This current
research work adopted the Depth-wise Separable Convolution rather than the standard
convolution layers. Since it is more efficient, it requires less memory, less computation,
and at some situation, can perform better than the standard convolution. In simplicity,
the architecture of the proposed CNN model uses three (DEPTHWISE_CONYV => ReLU
=> POOL) blocks with an increasing stacking number of filters. The first block consists
of one Depth-wise Separable Convolution layer with 32 filters, followed by the Rectified
Linear Unit (ReLU) activation function, which is popularly used in deep learning for faster
and effective training, Batch Normalization, Max-pooling, and Dropout, which regularize
the network by adding noise to the output feature maps of each layer. The second block
consists of two Depth-wise Separable Convolution layers with 64 filters each, followed
by two Rectified Linear Unit (ReLU) activation functions at the end of each Convolution
layer, two Batch-Normalizations at the end of each ReLU, a Max-pooling, and a Dropout.
The third block consists of three Depth-wise Separable Convolution layers with 64 filters
each, followed by three Rectified Linear Unit (ReLU) activation functions at the end of each
Convolution layer, three (3) Batch Normalization layers at the end of each ReLU layer, a
Max-pooling, and a Dropout layer. The Batch Normalization and Dropout layers ensure the
stability of the model and prevent over-fitting, respectively. The proposed architecture has
only one fully-connected layer which consists of a flattened layer, followed by 256 hidden
neurons, Rectified Linear Unit (ReLU) activation function, Batch Normalization, Max-
pooling, and Dropout. The output layer consists of 32 nodes, which include the number of
characters to be predicted by the network with a Softmax layer.

In the Depth-wise Separable operation, convolution is applied to a single channel
at a time as compared to the standard CNN, in which it is done for all the M channels.
Therefore, in the depth-wise convolution, the filters or kernels will be of Dk x Dk x 1 in size.
Suppose there are M channels in the input image, then the M filters are needed. As a result,

Electronics 2021, 10, 480

7 of 20

the output will be of Dp x Dp x M in size. The operation of a single convolution needs
Dk x Dk multiplications. As the filters slide by Dp x Dp times across all the M channels,
then the total number of multiplications is equal to M x Dp x Dp x Dk x Dk. Therefore,
for the Depth-wise Separable Convolution, the cost operation can be expressed as:

Total number of multiplication = M x Dk* x Dp2)

The network architecture of the proposed CNN model can be seen in Figure 5, and
the full description of the proposed CAPTCHA Breaking CNN is illustrated in Figure 6.

2.5. Evaluation Metrics

The proposed CAPTCHA breaking CNN model was evaluated using Accuracy, Preci-
sion, and Recall. The formulas for Accuracy, Precision, and Recall are given as:

Accuracy = (TP + TN)
Y= (TP +FP+FN + IN)
TP TP
Precision = ———— Recall = ———
recision (TP + FP)’ eca TP+ FP)

where TP is true positive, FP is false positive, TN is true negative, and FN is false negative
based on the model’s prediction.

Electronics 2021, 10, 480

8 of 20

SeparableComv2D

Kemel (3x3x=1x1)
bias (1=1=1=32)
bias (32)

-

Activation

Batch-Normalization

gamma (20
beta (20)

Moving mean (20)
Moving variance (20)

Maxpooling2

SeparableConv2D

Kernel (3x3x32x1)
bias (1x1x32x64)
bias (64)

Activation

Batch-Normalization
gamma (10
beta (20)

Moving mean (20)

Moving variance (20}

SeparableConv2D
Kernel (3x3x64x1)
bias (1=1=64=64)
bias (64)

Batch-Nommalization

gamma (10
beta (20)

Moving mean (20}

Moving variance (20}

Mazxpooling2 D

SeparableConv2D

Kernel (3x3x64x1)
bias (1x1x64x128)
bias (128)

Activation

Batch-Normalization
gamma ()
beta (%)

woving mean (3)

\Mm"ing variance (3)

ernel (3x3x128x1
bias (1x1x128x128
bias (128)

Activation

Batch-Nommalization
gamma

beta (5)
Moving mean (5)
\Mm'iﬂg variance (3)

SeparableComv2D

Kernel (3=3=128=1)
bias (1x1x128%128)
bias (128)

Activation

Batch-Normalization
gamma (5)
beta (5)

Mowving mean (5)

.\%Mm'iﬂg variance (3)

Maxpooling2D

Kermel (512x256)
bias (256)

Activation

Batch-Normalization
gamma (256)
beta (256)
Moving mean (236}

Moving variance (256)

Kernel (256x32)

bias (32)

Figure 5. The network architecture of the proposed depth-wise separable CNN.

Electronics 2021, 10, 480 9 of 20

Resize the

Crab the labels Extract each extracted letters

from the base single letter to 20 = 20 pixel

filename Locate the witha 2-pixel for CNN input
Original captcha Convert to margin
B sy .

—_— Z : .

i image LWSR i [z] z

TWSR— w

LWSR = LWSR = »ZASIR]= [+ -~ |

LWSR—

IMR-—-ﬁR E] :R

Y

H{-]_'.-.'H at 'r]L‘r._.- I.::-rl'-u'l]‘.l

Activation

Kemel (3x3x1x1) Kemel (3=3=32x1) Kemel (3%3=64x1)
bias (11x1x32) bias (1x1x32x64) bias (1x1%64x12
\ bias (32) _ bias (64) |, bias (128) o) Batch-Normakzation

gamma (5)
beta (5)

Moving mean (5)

Activation

| Moving variance (5))

Batch-Normalzation
gamma (20)
beta (20}

Moving mean (20)
\ Moving vanance (20) J

Batch-Normakization
gamma (5)

beta (5)
mMoving mean (5)

Batch-Normahration
gamma (10)
beta (20}
Moving mean (20}
L\?{m:ing variance (IL'I}/

- Moving variance {5};.

Maxpookng2 D SeparableCom2D

: Kemel (3x3x64x1)
Dropout bias {1=1=64=64)
biaz (64)

gamma (10}
beta (IU)
Moving mean (20)

Kemel (512x256)
bias (256)

beta (256)
Moving mean (256)

Moving variance (20)

4 Meoving vanance (5)

Maxpoolng2D

Moving variance (256) ;

ernel (3x3%128x1)
bias (1=1x128128)

| bias (128)
O | [P e

Dropout

Kemel (256=31)

bias (32))
Figure 6. The network architecture of the proposed CAPTCHA breaking CNN. The legend shows the various component-
layers in the proposed depth-wise separable CNN. BN: Batch Normalization.

Electronics 2021, 10, 480 10 of 20

3. Results

This section presents the training process of the proposed CAPTCHA breaking Depth-
wise Separable CNN algorithm, the experiment results of our proposed model, and the
evaluation of the proposed CNN on the testing dataset. The competitive result performance
of the proposed CAPTCHA breaking CNN model is compared to other notable fine-tuned
CNN architectures. Our proposed CNN model was implemented using the Python 3.6 pro-
gramming language, executed, and trained on the GPU based on the Google Collaboratory
environment (https://colab.research.google.com/ (accessed on 16 December 2021)).

3.1. Training Process Phase

This study obtained a dataset of about 40,000 single-character images, which was
annotated and labelled using the SCE algorithm. With robust experiments, the dataset was
partitioned into training, validation, and testing using 75% of the data for training, 10%
for validation, and 15% for testing. The input single images have a width of 20 pixels, a
height of 20 pixels, and a single channel. Based on the experiments, a 25% Dropout was
added at the end of each three (DEPTHWISE_CONYV => ReLLU => POOL) blocks. While
a fifty percent Dropout was added at the end of the fully-connected dense layer. The
network had an output Softmax layer of 32 neurons, one for each character prediction.
In the training process of our proposed CNN model, the categorical cross-entropy loss
function was to measure the difference between the predicted and actual classes since it is
a multi-classification problem. The network used Adam [17] optimizer to optimize the loss
function based on the experiment. With vigorous testing, a batch size of 32 and 10 epochs
assisted the network to perform better.

3.2. Our Proposed CNN Model Performance on the CAPTCHA Dataset

There was a total parameter of 192,229 based on the proposed Depth-wise Separable
CNN model. The trainable and non-trainable parameters were 191,607 and 622, respectively.
Figure 7a,b shows the accuracies and losses based on the proposed CNN, respectively. The
training time lasted for 7s and 7 ms/step on the GPU. The proposed CNN model showed a
good performance on the individual characters based on precision, recall, and f1-score on
the testing dataset. Our proposed CNN model obtained accuracy (100%), precision (100%),
recall (100%), and F1-score (100%) on the testing dataset. As seen from Figure 7a, it could
be observed that, after six epochs, the training and validation accuracies began to match
each other. The same applied to the training and validation losses after six epochs. These
observations showed stability in the proposed model.

100 08 = ftrain_loss
val_loss
5, 095
g 0.6
5 Iy
v w
< 090 s
< S 04
o w
8 3
o 085
< 0.2
0.80 — ftrain_acc
val_acc
T T T T T 00
0 2 B 6 8 0 2 4 6 8
Epoch # Epoch #
(@) (b)

Figure 7. (a) The training and validation accuracies after training the proposed CNN model on the CAPTCHA dataset;
(b) the training and validation losses after training the proposed CNN model on the CAPTCHA dataset.

https://colab.research.google.com/

Electronics 2021, 10, 480

11 of 20

3.3. Comparison Results

In order to show the strength and weakness of the proposed CAPTCHA breaking
CNN model, this study fine-tuned notable state-of-the-art image recognition CNN archi-
tectures on the same dataset. These popular CNN architectures were MobileNets [18],
DenseNet [19], ShuffleNet [20], and Xception [21]. Based on extensive experiments and the
problem at hand, this study chose these CNN architectures in terms of the small number of
their parameters compared to VGGNet [22] and ResNets [23]. In addition, notably, residual
networks are difficult to train.

Firstly, in the mobileNets architecture, all the layers are followed by a Batch Nor-
malization and RELU nonlinearity. The network architecture begins with the (Conv =>
BatchNorm => Relu) block and continues with a series of MobileNets blocks before the
Average Pool and fully connected layers. The MobileNets block consists of six layers,
which follow as: a 3 x 3 Depth-wise separable convolution layer, a Batch Normalization
layer, a Rectified Linear Unit (ReLU) activation layer, a 1 x 1 convolution layer, a Batch
Normalization layer, and a Rectified Linear Unit (ReLU) activation layer. The Depth-wise
Separable Convolution has a lesser number of parameters to adjust as compared to the
standard CNN which reduces over-fitting. It is computationally cheaper due to fewer
computations which makes it suitable for mobile vision applications.

Furthermore, this current study evaluated the performance of the proposed CNN
model through the transfer learning approach. In addition, the MobileNets architecture
was fine-tuned and then trained on the same CAPTCHA dataset. The old classifier of the
MobileNets architecture was removed, and a new classifier was replaced with 32 nodes.
As shown in Figure 8, the network summary of the fine-tuned MobileNets showed a
total parameter of 3,272,032. The total number of trainable parameters and non-trainable
parameters showed 3,250,144 and 21,888, respectively.

batch _normalization 16 (Bat (None, 1, 1, 1824) 4096

re lu 186 (RelLU) (None, 1, 1, 1824) e
conv2d 55 (Conv2D) (None, 1, 1, 1824) 1049600
batch _normalization_ 107 (Bat (None, 1, 1, 1824) 4096

re lu 187 (RelLU) (None, 1, 1, 1824) e
flatten (Flatten) (None, 1024) e

dense (Dense) (None, 32) 32800

Total params: 3,272,032
Trainable params: 3,250,144
Non-trainable params: 21,888

Figure 8. The summary of the MobileNets architecture on the CAPTCHA dataset.

Figure 9a,b shows the accuracies and losses based on the fine-tuned MobileNets,
respectively. The training time lasted for 10 s and 11 ms/step on the GPU.

Electronics 2021, 10, 480 12 of 20
——— — ftrain_loss
o /_/ 040 1 val loss
> oo 0.35
g)
El 0.30 4
g 9
<< S 025
-r; 094 =
wv -
g L:v" 0.20
2 092 0.15 1
= \
0.10
0.90 1 —) —_— e
train_acc 0.05
val_acc
0.88 : . . E T 2 4 6 8
0 2 4 6 B Epoch #
Epoch #
(a) (b)

Figure 9. (a) The training and validation accuracies after training MobileNets on the CAPTCHA dataset; (b) the training
and validation losses after training MobileNets on the CAPTCHA.

Again, in the DenseNet research paper, the input tensor in every dense block passes
through a series of convolutional operations with a fixed number of filters (k) and the
outcome of each is then concatenated to the original tensor. The initial Convolution Layer
comprises 2 k convolutions of size 7 x 7 with stride 2. In their experiments, they let each

1 x 1 convolution produce 4 k feature-maps.

This present study evaluated the performance of the proposed Depth-wise Separa-
ble CNN model by adopting a transfer learning approach. In addition, the DenseNet
architecture was fine-tuned and then trained on the CAPTCHA dataset. The Dense-121
(k = 32) version of the model was implemented since it was very easy to modify and
train. The old classifier of the DenseNet architecture was removed, and a new classifier
was replaced with 32 nodes. As shown in Figure 10, the result network summary of the
fine-tuned DenseNet showed a total parameter of 7,069,920. The trainable parameters and
non-trainable parameters were 6,988,448 and 81,472, respectively. Figure 11a,b shows the
accuracies and losses based on the fine-tuned DenseNet, respectively.

conv2d 558 (Conv2D) (None, 1, 1, 128) 127104 re_lu 237[@][@]
batch normalization 343 (Batchn (None, 1, 1, 128) 512 conv2d 558[0][@]
re lu 238 (RelU) (None, 1, 1, 128) 2 batch normalization 343[e][@]
conv2d 559 (Conv2D) (None, 1, 1, 32) 36896 re lu 238[e][@]
concatenate_ 115 (Concatenate) (None, 1, 1, 1824) @ concatenate_114[@][0]
conv2d 559[@][@]
global average pooling2d 1 (Glo (None, 1@24) @ concatenate 115[@][0]
dense 29 (Dense) (None, 32) 32800 global average pooling2d 1[e][@]

Total params: 7,069,920
Trainable params: 6,988,448
Non-trainable params: 81,472

Figure 10. The summary of the DenseNet architecture on the CAPTCHA dataset.

Electronics 2021, 10, 480

13 of 20

0] _— —_——
= frain_loss
B val_loss
0.8
> 30
m
E 5
-t:t? 0.6 1 8 .
3 >
g & 15
® g
= 04 =
o
Y 10
0.2 4 _
— frain_acc 3
val_acc 0
; : : : ; o 2 : e e
Epoch # Epoch #
(a) (b)

Figure 11. (a) The training and validation accuracies after training DenseNet on the CAPTCHA dataset; (b) the training and
validation losses after training DenseNet on the CAPTCHA dataset.

Thirdly, in the notable ShuffleNet architecture research paper, the first building block
in each stage is applied with stride 2, and other hyper-parameters within a stage stay the
same, and for the next stage the output channels are doubled. They set the number of
bottleneck channels to 1/4 of the output channels for each ShuffleNet unit. They added a
Batch Normalization layer after each of the convolutions to make the end-to-end training
easier. For stage 2, they did not apply the group convolution on the first pointwise layer
since the number of inputs is relatively small.

In this current study, the performance of the proposed CNN model was evaluated
through the transfer learning approach. In addition, the ShuffleNet architecture was fine-
tuned and then trained on the CAPTCHA dataset. The old classifier part of the ShuffleNet
architecture was removed and replaced with a new classifier with 32 nodes or classes. As
shown in Figure 12, which is a network summary of the fine-tuned ShuffleNet, there was a
total parameter of 1,003,256. The trainable and non-trainable parameters were 964,088 and
39,168, respectively. Figure 13a,b shows the accuracies and losses based on the fine-tuned
ShuffleNet, respectively. The training time lasted for 57 s and 63 ms/step on the GPU.

aroa

conv2d_336[0][0]
conv2d 337[e][@]
conv2d 338[0][@]

batch_normalization 156 (Batchn (None, 1, 1, 1536) 6144 concatenate 34[0][@]

add_12 (Add)

(None, 1, 1, 1536) @ re lu 138[0@][@]
batch_normalization_156[@][@]

re lu 140 (RelLU) (None, 1, 1, 1536) @ add 12[e][e]
global average pooling2d (Globa (None, 1536) 2 re lu 140[@][e]
dense_4 (Dense) (None, 32) 49184 global average pooling2d[e][e]

Total params: 1,003,256
Trainable params: 964,088
Mon-trainable params: 39,168

Figure 12. The summary of the ShuffleNet architecture on the CAPTCHA dataset.

Electronics 2021, 10, 480 14 of 20

'%/\‘\/_' = ftrain_loss
0.95 - 12 4 |
val_loss
Z 090 10 1
é 0.8
"]
< 085 - 8
3 >
z 2 06
£ 080 3
-
§ 04 1
0.75
= ftrain_acc 0.2 1 = /\\k
0.70 1 val_acc
. 0 2 4 6 8
0 2 4 6 B Epoch #
Epoch #
(a) (b)

Figure 13. (a) The training and validation accuracies after training ShuffleNet on the CAPTCHA dataset; (b) the training
and validation losses after training ShuffleNet on the CAPTCHA dataset.

Lastly, in the Xception architecture paper, all the Convolution and Separable Convolu-
tion layers are followed by Batch Normalization, and all the Separable Convolution layers
contain a depth multiplier of 1. The Xception network architecture is separated in three
flows, which are the entry flow, middle flow with eight repetitions of the same block, and
the exit flow.

In this current study, in order to evaluate the performance of the proposed CNN
model, the transfer learning approach was adopted. In addition, the Xception architecture
was fine-tuned and then trained on the CAPTCHA dataset. The classifier part of the
Xception network architecture was removed and replaced with a new one with 32 nodes or
classes. As shown in Figure 14, which is the network summary of the fine-tuned Xception,
there was a total parameter of 20,926,472. The trainable and non-trainable parameters were
20,871,944 and 54,528, respectively.

batch normalization 195 (Batchn (None, 1, 1, 1536) 6144 separable conv2d 32[e][@]

re lu 174 (RelU) (None, 1, 1, 1536) @ batch_normalization 195[@][@]
separable conv2d 33 (SeparableC (None, 1, 1, 2048) 3159552 re lu 174[@][e]

batch normalization 196 (Batchn (None, 1, 1, 2048) 8192 separable conv2d 33[e][@]

re lu 175 (RelLu) (None, 1, 1, 2048) @ batch normalization 196[@][@]
global average pooling2d 1 (Glo (None, 2048) 2 re lu 175[@][@]

dense 5 (Dense) (None, 32) 65568 global average pooling2d 1[e][e]

Total params: 20,926,472
Trainable params: 20,871,944
Non-trainable params: 54,528

Figure 14. The summary of the Xception architecture on the CAPTCHA dataset.

Figure 15a,b shows the accuracies and losses based on the fine-tuned Xception, respec-
tively. The training time lasted for 28 s and 31 ms/step on the GPU.

Electronics 2021, 10, 480

15 of 20

Accuracy/V-Accuracy

o
w
(==

=]
Vel
~

(=]
w
(=]

=}
(=}
w

o
w
4

o
el
L

-, val_loss

— 05 — ftrain_loss

0.4 1

0.3

Loss/V-loss

0.2

N

— ftrain_acc —— e -
val_acc 0.0
! ! ! 0 2 4 6 8
4 . 6 B Epoch #
Epoch #
(@) (b)

Figure 15. (a) The training and validation accuracies after training Xception on the CAPTCHA dataset; (b) the training and

validation losses after training Xception on the CAPTCHA dataset.

4. Discussion

CAPTCHA breaking is an ethical and essential form of the vulnerability assessment
technique to evaluate the strength of security in text based CAPTCHASs before being
deployed on web applications. Text-based CAPTCHA breaking algorithms can be grouped
into two main divisions, segmentation-based and segmentation-free. The segmentation-
based algorithms are categories of segmentation [24] and character recognition [25]. When
it comes to CAPTCHA breaking research, it may not always matter which kind of algorithm
category it may fall under. However, what matters most is the speed and high accuracy
which can be achieved by the proposed algorithm to break the CAPTCHA.

Based on previous works, Simard et al. [26] and Jaderberg et al. [27] used a traditional
technique such as image processing to locate a single number or character regions in an
image, and then segment them in order to recognize the individual characters. Yan et al. [28]
used the segmentation technique to segment Microsoft CAPTCHAs with a 60% rate of
recognition [2].

Furthermore, CAPTCHA image segmentation has been implemented using the verti-
cal projection [29-31] approach based on the work of Zhang et al. [32]. In their work, they
enhanced the vertical projection to treat the characters with a combination of size features
of the characters and their locations with a vertical projection histogram [3]. The connected
component algorithm has been used to segment Yahoo and Google CAPTCHA schemes [5].
However, according to Thobhani et al. [3], the vertical projection and connected compo-
nent algorithms require massive preprocessing procedures, which are computationally
expensive and consume a lot of time.

In the work of Yu et al. [33], they adopted a low-cost approach based on open source
python libraries to generate CAPTCHA images, and then proposed a peak segmentation
algorithm together with the Convolutional Neural Network (CNN) to recognize their
generated CAPTCHAs. They defined their peak segmentation as one which relies on the
writing order of CAPTCHA from left to right. The whole CAPTCHA is compressed into the
x-axis by summing up the values in the y-axis. In their character recognition of the CNN
architecture, they constructed a convolutional input layer using the ReLU activation layer
of 28 x 34 in input size. Their CNN model consisted of standard CNN layers, max-pooling
layer, 20% dropout layer, a flatten layer, and an output layer with Softmax activation. Their
model obtained a 99.32% training accuracy and 92.37% validation accuracy.

Hu et al. [2] proposed a technique based on the Convolutional Neural Network to
recognize CAPTCHA and avoided the traditional image processing technology including
location and segmentation [2]. Stark et al. [34] also used the segmentation-free algo-
rithm based on the Convolutional Neural Network to recognize CAPTCHAs. Another
CAPTCHA recognition study based on the combination of Convolutional Neural Network

Electronics 2021, 10, 480

16 of 20

and attention-based Recurrent Neural Network has been achieved under the segmentation-
free algorithm. In this kind of network architecture, the CNN serves as the feature extractor
to obtain meaningful information from the CAPTCHA image such as feature vectors, and
a variant of RNN, such as the Long- Short Term Memory (LSTM) network, which is used
to transform the feature vectors into a text sequence. Even though this kind of model has a
high recognition rate, according to Thobhani et al. [3], the architecture of the CNN-RNN
model is relatively complicated and could also result in increased memory and storage size.

In the work of Kwon et al. [4], they generated their CAPTCHA images using a two-step
style-transfer learning in deep neural networks. Then, they tried to break the generated
CAPTCHAs using a fine-tuned VGGNet Convolutional Neural Network based on the
transfer learning approach.

In the work of Thobhani et al. [3], they proposed an attached binary image algorithm.
In their ABI algorithm, they made a specific number of copies of the input CAPTCHA
image, which is equal to the number of characters in the input CAPTCHA image. Then, they
attached unique binary images to each copy. Thereafter, they built a CNN architecture to
use their ABI algorithm to recognize CAPTCHAs with a white background and CAPTCHAs
with a noisy background. Their CNN architecture consisted of 17 standard convolutional
layers, five max-pooling layers, one flatten layer, one dropout layer, and one output Softmax
layer. After training their model on the CAPTCHA dataset of four characters with a white
background, which is from the Weibo website for 120 epochs with a 128 batch size, their
model obtained accuracies for training, validating, and testing of 98.45%, 93.26%, and
92.68%, respectively.

This current study is inspired by the above observed assumptions, and is motivated to
contribute to CAPTCHA breaking research in order to detect the loopholes in cybersecurity
based on text-based CAPTCHASs which are loosely generated. The significance of our
research will assist website owners or companies to think twice and generate CAPTCHAs
which are hard to break by machines in order to protect the private information of their
end-users.

Therefore, in this current work, rather than using the whole text-based CAPTCHA
image as the training input, the original CAPTCHA image is split for the individual
characters based on the SCE algorithm. As a result, a single character of 20 x 20 pixels in
input shape is used as a training input.

The competitive results of the proposed text-based CAPTCHA breaking Depth-wise
Separable CNN model have been compared with notable image recognition CNN architec-
tures such as MobileNets, DenseNet, ShuffleNet, and Xception through transfer learning.
This study has made the problem simple, and for that matter, a network with a complex
number of parameters may not be necessary.

After training the fine-tuned mobileNets architecture for 10 epochs, the model ob-
tained training and validation accuracies of 98.3% and 99.4%, respectively. The training
and validation losses were 0.0657 and 0.0211, respectively. The size of the fine-tuned Mo-
bileNets model obtained was 37.76 MB. Based on the fine-tuned DenseNet, after 10 epochs,
the model obtained training and validation accuracies of 99.1% and 99.6%, respectively.
The training and validation losses were 0.0487 and 0.0122, respectively. The size of the
DenseNet model after training on the custom CAPTCHA dataset was 82.43 MB. For the
same 10 epochs, the fine-tuned ShuffleNet model obtained training and validation accu-
racies of 97.9% and 98.4%, respectively. The training and validation losses were 0.1156
and 0.0790, respectively. The size of the ShuffleNet model after training on the custom
CAPTCHA dataset was 14.25 MB. After training the fine-tuned Xception for 10 epochs, the
model obtained training and validation accuracies of 99.3% and 99.6%, respectively. The
training and validation losses were 0.0256 and 0.0115, respectively. The size of the Xception
model after training on the custom CAPTCHA dataset was 239.79 MB.

Based on the transfer learning models observed above, all the models performed good
on the training and validation sets. However, we also noticed a lot of parameters in the

Electronics 2021, 10, 480

17 of 20

fine-tuned CNN architectures and that may demand unnecessary storage and memory
sizes relative to the current problem at hand.

Therefore, this study proposed an efficient and accurate CAPTCHA breaking CNN
architecture which is flexible, less complex, and above all, has a high breaking accuracy.
Our proposed CNN architecture consisted of six Depth-wise Separable Convolutional
layers, seven Batch Normalization layers, seven ReLU activation function layers, four
Dropout layers, three Max-pooling layers, one flattened layer, one fully connected layer,
and one output Softmax layer. The number of parameters in our proposed model is far less
than the fine-tuned CNN architectures, as shown in Table 2. Our proposed CNN model is
the first CNN architecture research work to utilize a Depth-wise Separable Convolution to
perform text-based CAPTCHA breaking. After 10 epochs, our proposed model achieved
training and validation accuracies of 99.5% and 99.8%, respectively. The training and
validation losses were 0.0164 and 0.0090, respectively. The size of our proposed model after
training on the custom CAPTCHA dataset was 2.36 MB.

As shown in Table 1, we observed that, our proposed model has lesser number of
trainable and non-trainable parameters as compared with the fine-tuned CNN models.
The training and validation accuracies of our proposed model were higher as compared
with the fine-tuned CNN models. It took less time to train our proposed model for 7 s
and 7 ms/step for 10 epochs on the GPU. And lastly, after training, the model size of our
proposed CNN model was lesser as compared with the fine-tuned CNN models.

Table 1. Our proposed CNN model performance compared with the fine-tuned CNN models based on the training and

validation sets.

Trainable Non- Training Validation . .
Model Parameters Trainable Accuracy Accuracy Epoch Time/Step Model Size
Fine-tuned 10 s and
MobileNets 3,250,144 21,888 98.3 99.4 10 11 ms/step 37.76 M
Fine-tuned 46 s and
DenseNet 6,988,448 81,472 99.1 99.6 10 51 ms/step 8243 M
Fine-tuned 57 s and
ShuffleNet 964,088 39,168 97.9 98.4 10 63 ms/step 14.25M
Fine-tuned Xception 20,871,944 54,528 99.3 99.6 10 28 s and 239.79 M
31 ms/step
7 sand
CNN (Proposed) 191,607 622 99.5 99.8 10 236 M
7 ms/step

By performing inference on the testing datasets, the results are shown in Table 2.
We observed that, all the models obtained accuracies of more than 90% on the testing
dataset. However, in terms of the breaking time, our proposed model is simple, flexible,
efficient, and used lesser time to break the text-based CAPTCHAs as compared with the
fine-tuned CNN models. Examples of text-based CAPTCHA breaking by our proposed
model are shown in Figure 16. The limitation of our proposed CAPTCHA breaking model
is that it performs better on CAPTCHA images with rotated, overlapping characters, and
with a white background. It has not been tested on CAPTCHA images with distortion,
strikethrough, and with a complex noisy background.

Electronics 2021, 10, 480

18 of 20

Table 2. Our proposed CNN model performance compared with the fine-tuned CNN models based on the testing set.

Model Ngi);l:l Precision (%) Recall (%) F1-Score (%) Accuracy (%) Breaking Time (ms)
Fine-tuned MobileNets 37.76 M 99 99 99 99 15 ms
Fine-tuned DenseNet 8243 M 100 100 100 100 19 ms
Fine-tuned ShuffleNet 14.25M 98 98 98 98 21 ms
Fine-tuned Xception 239.79 M 100 100 100 100 20 ms
(Proposed) 236 M 100 100 100 100 10 ms
CAPTCHA text is: SMPU CAPTCHA text is: Y62
5 MP g Y Xig|2
CAPTCHA text is: DEGD CAPTCHA text is: TAAX
DE6D TIAAX
CAPTCHA text is: GUAJ CAPTCHA text is: MB&G
GUAT NB6G
CAPTCHA text is: G983 CAPTCHA text is: E3UL
Go8l) EPR UL
CAPTCHA text is: PKGS CAPTCHA text is: 97NQ
I~
PK G5 917N}

Figure 16. Examples of text-based CAPTCHAs broken by our proposed CNN model.

5. Conclusions

Cybersecurity practitioners sometimes generate text-based CAPTCHAs as a form of
standard security mechanism in websites, through which end-users are connected to the
internet to perform their daily life activities. In this current study, we have assessed a
vulnerability in cybersecurity through CAPTCHA breaking. We achieved this objective by
developing a simple, flexible, and computation-efficient Depth-wise Convolutional Neural
Network model to accelerate the CAPTCHA breaking time as compared with fine-tuned
models with a high accuracy. This current research work will assist cybersecurity practition-
ers develop and generate robust text-based CAPTCHAs with their security mechanisms,
which are capable of resisting malicious attacks.

Author Contributions: All the authors contributed significantly to this current research work; S.D.
and L.Y. conceptualized the idea; S.D. implemented the methodology and wrote the paper; L.Y.
supervised the work and assisted in the acquisition of the funds. All authors have read and agreed to
the published version of the manuscript.

Funding: This reseach was partially supported by NSFC (No. 61871074).

Data Availability Statement: The data and codes presented in this current study are publicly avail-
able at https:/ /github.com /sm-multimedia/Text-based-CAPTCHA-Breaking- (accessed on 13 Febru-
ary 2021).

https://github.com/sm-multimedia/Text-based-CAPTCHA-Breaking-

Electronics 2021, 10, 480 19 of 20

Acknowledgments: First of all, we thank God for His strength and wisdom. We express our sincere
thanks to the graduate school of University of Electronic Science and Technology of China for
providing us the experimental resources. And lastly, we thank all the Lab mates in 905Lab of School
of Automation Engineering for their encouragements.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kolupaev, A.; Ogijenko,]. CAPTCHAs: Humans vs. Bots. IEEE Secur. Priv. 2008, 6, 68-70. [CrossRef]

2. Hu, Y, Chen, L; Cheng,]. A CAPTCHA recognition technology based on deep learning. In Proceedings of the 2018 13th IEEE
Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May-2 June 2018; pp. 617-620. [CrossRef]

3. Thobhani, A.; Gao, M.; Hawbani, A.; Ali, 5.T.M.; Abdussalam, A. CAPTCHA Recognition Using Deep Learning with Attached
Binary Images. Electronics 2020, 9, 1522. [CrossRef]

4. Kwon, H.; Yoon, H.; Park, K.-W. CAPTCHA Image Generation: Two-Step Style-Transfer Learning in Deep Neural Networks.
Sensors 2020, 20, 1495. [CrossRef] [PubMed]

5. Chellapilla, K; Simard, P.Y. Using machine learning to break visual human interaction proofs (HIPs). In Proceedings of the 17th
International Conference on Neural Information Processing Systems, NIPS 2004, Vancouver, BC, Canada, 13-18 December 2004;
pp. 265-272.

6. Dankwa, S.; Zheng, W. Special Issue on Using Machine Learning Algorithms in the Prediction of Kyphosis Disease: A Comparative
Study. Appl. Sci. 2019, 9, 3322. [CrossRef]

7. Shao, X.; Zhang, X.; Tang, G.; Bao, B. Scene Recognition Based on Recurrent Memorized Attention Network. Electronics 2020, 9,
2038. [CrossRef]

8. Ren, Y,; Yang, J.; Guo, Z.; Zhang, Q.; Cao, H. Ship Classification Based on Attention Mechanism and Multi-Scale Convolutional
Neural Network for Visible and Infrared Images. Electronics 2020, 9, 2022. [CrossRef]

9. Ren, G; Dai, T,; Barmpoutis, P; Stathaki, T. Salient Object Detection Combining a Self-Attention Module and a Feature Pyramid
Network. Electronics 2020, 9, 1702. [CrossRef]

10. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017; pp. 6517-6525.

11. Ren, S.; He, K.; Girshick, R.; Sun, J. FasterR-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137-1149. [CrossRef] [PubMed]

12. Liu, Y. Improved Faster R-CNN for Object Detection. In Proceedings of the 2018 11th International Symposium on Computational
Intelligence and Design (ISCID), Hangzhou, China, 8-9 December 2018; Volume 2, pp. 119-123.

13. Yang, Y,; Deng, H. GC-YOLOV3: You Only Look Once with Global Context Block. Electronics 2020, 9, 1235. [CrossRef]

14. Dong, W.; Wang, P.; Yin, W.; Shi, G.; Wu, E; Lu, X. Denoising Prior Driven Deep Neural Network for Image Restoration. [EEE
Trans. Pattern Anal. Mach. Intell. 2019, 41, 2305-2318. [CrossRef] [PubMed]

15. Jin, Z.; Igbal, M.Z.; Bobkov, D.; Zou, W.; Li, X,; Steinbach, E. A Flexible Deep CNN Framework for Image Restoration. IEEE Trans.
Multimed. 2020, 22, 1055-1068. [CrossRef]

16. Malik, S.; Soundararajan, R. Llrnet: A Multiscale Subband Learning Approach for Low Light Image Restoration. In Proceedings
of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22-25 September 2019; pp. 779-783.

17. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

18. Andrew, G.H.; Menglong, L.; Bo, C.; Dmitry, K.; Weijun, W.; Tobias, W.; Marco, A.; Hartwig, A. MobileNets: Efficient Convolu-
tional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

19. Gao, H.; Zhuang, L.; Laurens, V.D.M.; Kilian, Q.W. Densely Connected Convolutional Networks. arXiv 2018, arXiv:1608.06993,
2018.

20. Xiangyu, Z.; Xinyu, Z.; Mengxiao, L.; Jian, S. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile
Devices. arXiv 2017, arXiv:1707.01083.

21. Francois, C. Xception: Deep Learning with Depthwise Separable Convolutions. arXiv 2017, arXiv:1610.02357.

22. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7-9 May 2015.

23. He, K,; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.

24. Abdussalam, A.; Sun, S.; Fu, M.; Sun, H.; Khan, I. License Plate Segmentation Method Using Deep Learning Techniques. In
Proceedings of the Signal and Information Processing, Networking and Computers, Guiyang, China, 13-16 August 2019; pp.
58-65. [CrossRef]

25. Abdussalam, A.; Sun, S.; Fu, M,; Ullah, Y.; Ali, S. Robust Model for Chinese License Plate Character Recognition Using Deep
Learning Techniques. In Proceedings of the CSPS 2018: Communications, Signal Processing, and Systems, Dalian, China, 14-16
July 2018; Volume 517, pp. 121-127. [CrossRef]

26. Simard, PY,; Steinkraus, D.; Platt,].C. Best practices for convolutional neural networks applied to visual document analysis. In

Proceedings of the Seventh International Conference on Document Analysis and Recognition, Edinburgh, UK, 6 August 2003; pp.
958-963.

http://doi.org/10.1109/MSP.2008.6
http://doi.org/10.1109/ICIEA.2018.8397789
http://doi.org/10.3390/electronics9091522
http://doi.org/10.3390/s20051495
http://www.ncbi.nlm.nih.gov/pubmed/32182829
http://doi.org/10.3390/app9163322
http://doi.org/10.3390/electronics9122038
http://doi.org/10.3390/electronics9122022
http://doi.org/10.3390/electronics9101702
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.3390/electronics9081235
http://doi.org/10.1109/TPAMI.2018.2873610
http://www.ncbi.nlm.nih.gov/pubmed/30295612
http://doi.org/10.1109/TMM.2019.2938340
http://doi.org/10.1007/978-981-13-1733-0_8
http://doi.org/10.1007/978-981-13-6508-9_16

Electronics 2021, 10, 480 20 of 20

27.

28.

29.

30.

31.

32.

33.

34.

Jaderberg, M.; Vedaldi, A.; Zisserman, A. Deep features for text spotting. In Proceedings of the European conference on computer
vision, Zurich, Switzerland, 6-12 September 2014; pp. 512-528. [CrossRef]

Yan, J.; Ahmad, A.S.E. A low-cost attack on a Microsoft captcha. In Proceedings of the CCS '08: Proceedings of the 15th ACM
Conference on Computer and Communications Security, Alexandria, VA, USA, 27-31 October 2008; pp. 543-554. [CrossRef]
Anagnostopoulos, C.E.; Anagnostopoulos, LE.; Psoroulas, I.D.; Loumos, V.; Kayafas, E. License Plate Recognition from Still
Images and Video Sequences: A Survey. [EEE Trans. Intell. Transp. Syst. 2008, 9, 377-391. [CrossRef]

Chen, C.J.; Wang, Y.W.; Fang, W.P. A Study on Captcha Recognition. In Proceedings of the 2014 Tenth International Conference
on Intelligent Information Hiding and Multimedia Signal Processing, Kitakyushu, Japan, 27-29 August 2014; pp. 395-398.
Wang, Q. License plate recognition via convolutional neural networks. In Proceedings of the 2017 8th IEEE International
Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 24-26 November 2017; pp. 926-929.

Zhang, L.; Xie, Y.; Luan, X.; He, J. Captcha automatic segmentation and recognition based on improved vertical projection. In
Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), Guangzhou,
China, 6-8 May 2017; pp. 1167-1172.

Yu, N.; Darling, K. A Low-Cost Approach to Crack Python CAPTCHAs Using Al-Based Chosen-Plaintext Attack. Appl. Sci. 2019,
9, 2010. [CrossRef]

Stark, F; Hazirbas,, C.; Triebel, R.; Cremers, D. CAPTCHA Recognition with Active Deep Learning. In Proceedings of the German
Conference on Pattern Recognition Workshop, Aachen, Germany, 7-10 October 2015.

http://doi.org/10.1007/978-3-319-10593-2_34
http://doi.org/10.1145/1455770.1455839
http://doi.org/10.1109/TITS.2008.922938
http://doi.org/10.3390/app9102010

	Introduction
	Materials and Methods
	Data Description
	Problem Definition
	Basic Idea of the Single Character Extraction (SCE) Algorithm
	Network Structure and Parameters of the Proposed CAPTCHA Breaking Depth-Wise Saparable CNN
	Evaluation Metrics

	Results
	Training Process Phase
	Our Proposed CNN Model Performance on the CAPTCHA Dataset
	Comparison Results

	Discussion
	Conclusions
	References

