Thermoelectric Sensor Coupled Yagi–Uda Nanoantenna for Infrared Detection
Abstract
:1. Introduction
2. Antenna Designs and Simulation
3. Fabrication Methodology
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Howell, J.R.; Menguc, M.P.; Siegel, R. Thermal Radiation Heat Transfer; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Guan, Q.; Yin, X.; Guo, X.; Wang, G. A novel infrared motion sensing system for compressive classification of physical activity. IEEE Sens. J. 2016, 16, 2251–2259. [Google Scholar] [CrossRef]
- Bean, J.A.; Tiwari, B.; Szakmány, G.; Bernstein, G.H.; Fay, P.; Porod, W. Antenna length and polarization response of antenna-coupled MOM diode infrared detectors. Infrared Phys. Technol. 2010, 53, 182–185. [Google Scholar] [CrossRef]
- Caniou, J. Passive Infrared Detection: Theory and Applications; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Abbasi, Q.H.; Alomainy, A.; Jornet, J.M.; Han, C.; Chen, Y. Ieee Access Special Section Editorial: Nano-Antennas, Nano-Transceivers and Nano-Networks/Communications. IEEE Access 2018, 6, 8270–8272. [Google Scholar] [CrossRef]
- Nouri-Novin, S.; Sadatgol, M.; Zarrabi, F.B.; Bazgir, M. A hollow rectangular plasmonic absorber for nano biosensing applications. Optik 2019, 176, 14–23. [Google Scholar] [CrossRef]
- Sethi, W.T.; De Sagazan, O.; Vettikalladi, H.; Fathallah, H.; Himdi, M. Yagi-Uda nantenna for 1550 nanometers optical communication systems. Microw. Opt. Technol. Lett. 2018, 60, 2236–2242. [Google Scholar] [CrossRef]
- Barreda, A.I.; Saleh, H.; Litman, A.; González, F.; Geffrin, J.M.; Moreno, F. Scattering directionality of high refractive index dielectric particles: A note for solar energy harvesting. Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VII. Int. Soc. Opt. Photonics 2018, 10527, 105270. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, F.; Coello, V.; Bozhevolnyi, S.I. On-Chip Spectropolarimetry by Fingerprinting with Random Surface Arrays of Nanoparticles. ACS Photon 2018, 5, 1703–1710. [Google Scholar] [CrossRef] [Green Version]
- Jayaswal, G.; Belkadi, A.; Meredov, A.; Pelz, B.; Moddel, G.; Shamim, A. A Zero-Bias, Completely Passive 28 THz Rectenna for Energy Harvesting from Infrared (Waste Heat). In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium—IMS, Philadelphia, PA, USA, 10–15 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 355–358. [Google Scholar]
- El-Toukhy, Y.M.; Hussein, M.; Hameed, M.F.O.; Heikal, A.M.; Abd-Elrazzak, M.M.; Obayya, S.S.A. Optimized tapered dipole nanoantenna as efficient energy harvester. Opt. Express 2016, 24, A1107–A1122. [Google Scholar] [CrossRef]
- Yan, S.; Tumendemberel, B.; Zheng, X.; Volskiy, V.; VandenBosch, G.A.; Moshchalkov, V.V. Optimizing the bowtie nano-rectenna topology for solar energy harvesting applications. Sol. Energy 2017, 157, 259–262. [Google Scholar] [CrossRef]
- Jayaswal, G.; Belkadi, A.; Meredov, A.; Pelz, B.; Moddel, G.; Shamim, A. Optical rectification through an Al2O3 based MIM passive rectenna at 28.3 THz. Mater. Today Energy 2018, 7, 1–9. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Zhu, G.; Lee, S.; Lin, Z.-H.; Wang, Z.L. Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies. ACS Nano 2013, 7, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Wang, X.L. Application and Development of Thermostat on Thermocouple Temperature Measurement. Available online: https://en.cnki.com.cn/Article_en/CJFDTotal-DILY200805022.htm (accessed on 26 July 2020).
- Sarma, U.; Boruah, P. Design and development of a high precision thermocouple based smart industrial thermometer with on line linearisation and data logging feature. Measurement 2010, 43, 1589–1594. [Google Scholar] [CrossRef]
- Alekseev, S.; Ziskin, M. Distortion of millimeter-wave absorption in biological media due to presence of thermocouples and other objects. IEEE Trans. Biomed. Eng. 2001, 48, 1013–1019. [Google Scholar] [CrossRef]
- Neikirk, P.D.; Rutledge, D.B. Self-heated thermocouples for far-infrared detection. Appl. Phys. Lett. 1982, 41, 400–402. [Google Scholar] [CrossRef] [Green Version]
- Atkeson, P.L.C. Thermocouple-Triggered Igniter. U.S. Patent 5,166,468, 24 November 1992. [Google Scholar]
- Mendez-Lozoya, J.; de León-Zapata, R.D.; Guevara, E.; González, G.; González, F.J. Thermoelectric efficiency optimization of nanoantennas for solar energy harvesting. J. Nanophotonics 2019, 13, 026005. [Google Scholar] [CrossRef]
- Ghanim, A.; Hussein, M.; Hameed, M.F.O.; Obayya, S.S.A. Design considerations of super-directive nanoantennas for core-shell nanowires. J. Opt. Soc. Am. B 2017, 35, 182–188. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, H.; Li, B. Theory and method for large electric field intensity enhancement in the nanoantenna gap. Appl. Opt. 2019, 58, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, K.R.; Hussein, M.; Hameed, M.F.O.; Obayya, S.S.A. Super directive Yagi–Uda nanoantennas with an ellipsoid reflector for optimal radiation emission. J. Opt. Soc. Am. B 2017, 34, 2041. [Google Scholar] [CrossRef]
- Szakmany, G.P.; Orlov, A.O.; Bernstein, G.H.; Porod, W. Polarization-dependent response of single-and bi-metal antenna-coupled thermoelectrics for infrared detection. IEEE Trans. Terahertz Sci. Technol. 2015, 6, 884–891. [Google Scholar] [CrossRef]
- Russer, J.A.; Jirauschek, C.; Szakmany, G.P.; Orlov, A.O.; Bernstein, G.H.; Porod, W.; Lugli, P.; Russer, P. Antenna-coupled terahertz thermocouples. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Mubarak, M.H.; Sidek, O.; Abdel-Rahman, M.; Mustaffa, M.T.; Kamal, A.S.M.; Mukras, S.M.S. Nano-antenna coupled infrared detector design. Sensors 2018, 18, 3714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo, H.D.; Chen, K.; Ørjan, H.S.; Doan, A.T.; Ngo, T.D.; Dao, T.D.; Ikeda, N.; Ohi, A.; Nabatame, T.; Nagao, T.; et al. Nanoantenna structure with mid-infrared plasmonic niobium-doped titanium oxide. Micromachines 2019, 11, 23. [Google Scholar] [CrossRef] [Green Version]
- Briones, E.; Ruiz-Cruz, R.; Briones, J.; Simon, J. Optimization of Seebeck nanoantenna-based infrared harvesters. Opt. Express 2019, 28, 116. [Google Scholar] [CrossRef] [PubMed]
- Chekini, A.; Neshat, M.; Sheikhaei, S. Infrared rectification based on electron field emission in nanoantennas for thermal energy harvesting. J. Mod. Opt. 2019, 67, 179–188. [Google Scholar] [CrossRef]
- Pinho, P. Optical Communication Technology; BoD–Books on Demand: Norderstedt, Germany, 2017. [Google Scholar]
- Taminiau, T.H.; Stefani, F.D.; van Hulst, N.F. Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. Opt. Express 2008, 16, 10858–10866. [Google Scholar] [CrossRef]
- Computer Simulation Technology Version 2019. Available online: https://www.3ds.com/products-services/sim-ulia/products/cst-studio-suite/ (accessed on 10 June 2020).
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Hoque, A.; Islam, M.T.; Almutairi, A.F.; Alam, T.; Singh, M.J.; Amin, N. A polarization independent quasi-TEM Metamaterial absorber for X and Ku band sensing applications. Sensors 2018, 18, 4209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capolino, F. Applications of Metamaterials; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Episkopou, E.; Papantonis, S.; Otter, W.J.; Lucyszyn, S. Defining material parameters in commercial EM solvers for arbitrary metal-based THz structures. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 513–524. [Google Scholar] [CrossRef]
- Wei, J.; Ren, Z.; Lee, C. Metamaterial technologies for miniaturized infrared spectroscopy: Light sources, sensors, filters, detectors, and integration. J. Appl. Phys. 2020, 128, 240901. [Google Scholar] [CrossRef]
- Szentpáli, B.; Matyi, G.; Fürjes, P.; László, E.; Battistig, G.; Bársony, I.; Károlyi, G.; Berceli, T. Thermoelectric-based THz antenna. Microsyst. Technol. 2012, 7, 849–856. [Google Scholar]
- Feng, L.; Lee, J.; Jiang, A.; Jung, S.; Belkin, M.A. Thermoelectric detector of light ellipticity. Nat. Commun. 2016, 7, 12994. [Google Scholar]
- Shimizu, Y.; Mizoshiri, M.; Mikami, M.; Ito, Y.; Sakurai, J.; Hata, S. Fabrication of flexible thermoelectric generators with a lens array for near-infrared solar light harvesting. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Belfast, UK, 21–25 January 2018. [Google Scholar]
- Szakmany, G.P.; Orlov, A.O.; Bernstein, G.H.; Porod, W. Nanoantenna arrays for infrared detection with single-metal nanothermocouples. Infrared Phys. Technol. 2017, 82, 44–49. [Google Scholar] [CrossRef]
- He, M.; Lin, Y.-J.; Chiu, C.-M.; Yang, W.; Zhang, B.; Yun, D.; Xie, Y.; Lin, Z.-H. A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nano Energy 2018, 49, 588–595. [Google Scholar] [CrossRef]
Material | Refractive Index (n) | Extinction Coefficient (k) | Dielectric Permittivity (ϵr) | Seebeck Coefficient (μV/K) |
---|---|---|---|---|
Silicon | 3.47 | 0 | 12 | 440 |
Silicon dioxide | 1.444 | 0 | 2.08 | 88 |
Gold | 0.524 | 10.742 | −126.38 | 6.5 |
Nickel | 3 | 7.7 | −97.69 | −15 |
Nanoantenna Design | Peak Percentage Voltage Hike |
---|---|
Single-element quasi-Yagi–Uda with thermoelectric | 28% |
Nano-thermoelectric junction array | 55% |
Traditional Yagi–Uda array with thermoelectric | 80% |
Ref. | Incident Wavelength (µm) | Antenna Design | Thermoelectric Material | Output Voltage in % | Dimensions (µm) |
---|---|---|---|---|---|
[39] | 7.5 | Rod antennas | Gold–Nickel | 43 | 24 × 24 |
[40] | 0.68–0.105 | 270 Circular PDMS Lens | Gold and Copper Copper–Nickel | 4 | 5000 × 5000 |
[41] | 10.6 | Dipole | Gold–Nickel | 0.009 | 25 × 25 |
[42] | 0.8 | Te Nanowires | Te/PEDOT | 1.42 | 10,000 × 10,000 |
This Work | 1.55 | Yagi–Uda array | Gold–Nickel | 80 | 5 × 55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sethi, W.T.; De Sagazan, O.; Himdi, M.; Vettikalladi, H.; Alshebeili, S.A. Thermoelectric Sensor Coupled Yagi–Uda Nanoantenna for Infrared Detection. Electronics 2021, 10, 527. https://doi.org/10.3390/electronics10050527
Sethi WT, De Sagazan O, Himdi M, Vettikalladi H, Alshebeili SA. Thermoelectric Sensor Coupled Yagi–Uda Nanoantenna for Infrared Detection. Electronics. 2021; 10(5):527. https://doi.org/10.3390/electronics10050527
Chicago/Turabian StyleSethi, Waleed Tariq, Olivier De Sagazan, Mohamed Himdi, Hamsakutty Vettikalladi, and Saleh A. Alshebeili. 2021. "Thermoelectric Sensor Coupled Yagi–Uda Nanoantenna for Infrared Detection" Electronics 10, no. 5: 527. https://doi.org/10.3390/electronics10050527
APA StyleSethi, W. T., De Sagazan, O., Himdi, M., Vettikalladi, H., & Alshebeili, S. A. (2021). Thermoelectric Sensor Coupled Yagi–Uda Nanoantenna for Infrared Detection. Electronics, 10(5), 527. https://doi.org/10.3390/electronics10050527