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Abstract: The integrated navigation of inertial navigation systems (INS) and the Global Positioning
System (GPS) is essential for small unmanned aerial vehicles (UAVs) such as multicopters, providing
steady and accurate position, velocity, and attitude information. Nevertheless, decreasing navigation
accuracy is a serious threat to flight safety due to the long-term drift error of INS in the absence
of GPS measurements. To bridge the GPS outage for multicopters, this paper proposes a novel
navigation reconstruction method for small multicopters, which combines the vehicle dynamic
model and micro-electro-mechanical system (MEMS) sensors. Firstly, an induced drag model is
introduced into the dynamic model of the vehicle, and an efficient online parameter identification
method is designed to estimate the model parameters quickly. Secondly, the body velocity can be
calculated from the vehicle model and accelerometer measurement. In addition, the nongravitational
acceleration estimated from body velocity and radar height are utilized to yield a more accurate
attitude estimate. Fusing the information of the attitude, body velocity, magnetic heading, and
radar height, a navigation system based on an error-state Kalman filter is reconstructed. Then, an
adaptive measurement covariance algorithm based on a fuzzy logic system is designed to reduce the
weight due to the disturbed acceleration. Finally, the hardware-in-loop experiment is carried out to
demonstrate the effectiveness of the proposed method. Simulation results show that the proposed
navigation reconstruction algorithm aided by the vehicle model can significantly improve navigation
accuracy during a GPS outage.

Keywords: unmanned aerial vehicles; GPS outage; vehicle model; navigation reconstruction; fuzzy
logic system

1. Introduction

Unmanned aerial vehicles (UAVs) are increasingly used in civil and military appli-
cations, such as structural inspection [1], law enforcement [2], transportation [3], and
monitoring [4]. Reliable and accurate estimation of attitude, velocity, and position are im-
portant feedback signals for UAVs to perform an autonomous flight and ensure flight safety.
For small UAVs, inertial measurement units (IMUs) based on the micro-electro-mechanical
system (MEMS) sensors, which consist of three-axis accelerometers, three-axis gyroscopes,
and three-axis magnetometers, are generally adopted in navigation system to provide high-
frequency attitude, angular velocity, and acceleration information [5,6]. The Global Position-
ing System (GPS) or some external reference sensors need to be utilized to correct long-term
drift of the IMU-based inertial navigation system (INS) [7,8]. However, the inherent short-
coming of GPS is that it may be invalid or even lost due to some challenging environments,
such as highway tunnels and environments with harsh electromagnetic interference.

Researchers have proposed several methods to solve the state estimation problem
without a GPS signal. An artificial neural network (NN)-based technology has recently
been used to approximately estimate the growing INS errors during a GPS outage [9,10],
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while [11] presents a Gaussian process regression approach to address the state estimation
of GPS outages. The autoregressive integrated moving average model is applied to predict
the INS-only solution [12]. Some similar works can also be found in [13,14]. However, a
drawback of these approaches is that a large amount of time and data is required for offline
learning, and lot of memory capacity is required for storing the learning parameters. Thus,
it may not be a practical solution for small UAVs.

As alternatives to these methods based on artificial NNs, approaches based on hard-
ware redundancy (also called sensor redundancy) have been researched in recent years.
Laser and stereo camera [15] have been used to map and navigate in unknown environ-
ments. In addition, Qi et al. [16] and Zhao et al. [17] have put forward a vision-aided
inertial navigation to estimate position, velocity, and attitude for UAVs in GPS-denied
environments. However, such kinds of external sensor configurations increase the cost
and complexity of the navigation system, which is not practical for small UAVs limited by
the requirements of size, weight, and cost. Contrasting with hardware redundancy ideas,
the inclusion of a vehicle model into the navigation system has no need for additional
external sensors. The possibility of vehicle-model-aided INS is first introduced by [18]. An
attitude estimator combining aircraft kinematics and GPS is proposed for fixed-wing UAVs
in [19,20]. However, these algorithms mainly concentrate on fixed-wing UAVs and do not
take position and velocity estimation into consideration. Some works [21–24] prove that
a more detailed vehicle model of a quadrotor could improve the estimation accuracy of
attitude. Thus, it is necessary to design a more effective navigation algorithm for small
multicopters to perform safe flight or emergency landing after GPS failure.

In this paper, a practical navigation reconstruction algorithm aided by vehicle model
is proposed for small multicopters to bridge the GPS outage with a minimum number of
sensors, such as an IMU and a radar. From the analysis of induced drag caused by the
blade flapping, the body velocity can be calculated by the accelerometer measurement.
Thus, we develop a more detailed vehicle model including propeller model and blade
flapping, and these model parameters are able to be identified online as long as the GPS
signal is available. During a GPS outage, nongravitational acceleration estimated from
the vehicle model is used to compensate raw accelerometer measurements to obtain an
accurate attitude estimation. Depending on the attitude, body velocity, magnetic heading,
and radar height measurement, the navigation system based on an error-state Kalman
Filter (ESKF) is reconstructed in combination with a fuzzy logic adaptive measurement
covariance algorithm to provide a reliable navigation result during a GPS outage. Com-
pared with the conventional observers, such as complementary filters [7,25] or traditional
extended Kalman Filters [26], the ESKF [27] usually estimates the error states around the
equilibrium point to guarantee the validity of linearization, which can often achieve a better
performance. Thus, the ESKF is used for the state estimate during a GPS outage. Finally,
the performance of the proposed method is verified by the real-time hardware-in-loop
simulation platform.

The main contributions of this paper are as follows:

(1) A more detailed vehicle model including propeller model and blade flapping is de-
veloped. An efficient online parameter identification method is designed to estimate
the model parameters quickly.

(2) The body velocity is derived from the established vehicle model and accelerometer
output, and then the nongravitational acceleration is estimated and extracted from
the raw accelerometer outputs to yield an accurate attitude estimation.

(3) Combining the attitude, body velocity, magnetic heading, and radar height measure-
ments, the navigation system based on ESKF is reconstructed during a GPS outage.
Besides this, an adaptive measurement covariance algorithm based on a fuzzy logic
system is designed to reduce the impact of disturbed acceleration.

This paper’s outline is as follows: In Section 2, the detailed vehicle model including
propeller model and blade flapping is presented, and the online parameter identification
method is introduced. Section 3 formulates the measurement models, and the navigation
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system based on ESKF is reconstructed in combination with the fuzzy logic adaptive
measurement covariance. The experimental setup and results are presented in Section 4.
Conclusions and future work are discussed in Section 5.

2. Modeling and Parameter Identification

Figure 1 illustrates the flow diagram of the navigation reconstruction method aided by
vehicle model during a GPS outage that we designed. The GPS/INS integrated navigation
results are used to estimate the vehicle parameters. If GPS signal breaks down, these
estimated parameters are utilized to calculate the body velocity and attitude angle. Then,
fusing the attitude, body velocity, magnetic heading, and radar height measurement, the
navigation system is reconstructed to provide navigation information for multicopters to
perform safe flight or emergency landing after GPS failure.
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Figure 1. The flow diagram of the navigation reconstruction method.

This section introduces the detailed vehicle model including propeller model and
blade flapping, which is helpful for the subsequent navigation reconstruction. Besides
this, an efficient and lightweight parameter identification method based on a Kalman filter
(KF) is developed, and we further discuss the condition of observability for the proposed
parameter identification method.



Electronics 2021, 10, 528 4 of 20

2.1. Propeller Modeling

Fixed-pitch propellers are commonly used for multicopters. As shown in Figure 2, the
blade element theory of [28,29] are utilized to model the thrust force T (unit: N) and torque
M (unit: N·m) of the propeller.
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In Figure 2, the blade section AA∗ in 0.5r is taken as an example to analyze the force of

the propeller. VI is the incoming flow speed and Ua =
√
(ωrp)

2 + V2
I is the flow velocity

of section AA∗. βp is the propeller blade angle, which is determined by the shape of the
blade. Thus, the real attack angle of the propeller is

αp = βp − tan−1(
VI

ωrp
) (1)

According to the blade element theory, the blade section AA∗ can be taken as a small
wing, and the lift and drag can be calculated as

dL = 1
2 ρU2

a αpLpds

dD = 1
2 ρU2

a αpDpds
(2)

where ρ is the air density, Lp and Dp are the lift and drag coefficient, and ds is the small
blade area of AA∗. Then, the real pull force of this blade section AA∗ can be written as

dTz = dL cos φp − dD sin φp (3)

where φp = tan−1( VI
ωrp

) is the flow angle. Combining the above equation, the pull force
dTz can be rewritten as

dTz =
1
2

ρLpds
√
(ωrp)

2 + V2
I ωrpαp −

1
2

ρDpds
√
(ωrp)

2 + V2
I VIαp (4)

Considering that the small multicopter usually flies at low altitude and does not make
high maneuvers, the incoming flow VI is small enough to be ignored compared to the high
speed of blade. By defining CL = 1

2 ρLpdsβpr2
p, we can get

dTz =
1
2

ρLpdsβp(ωrp)
2 = CLω2 (5)

The whole thrust of the propeller can be described as

T = 2
r∫

0

dTz =

r∫
0

ρLpdsβp(ωrp)
2drp (6)

As shown in Equation (6), the thrust of the propeller is proportional to the square
of propeller speed. For simplifying the calculation, the thrust force T produced by the
propeller is expressed as

T = kTω2 (7)
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where kT is the propeller thrust coefficient related to the shape of a propeller [30]. Since the
blade shapes for a certain propeller are the same, kT can be treated as a constant value.

2.2. Blade Flapping
The propeller of a multicopter is not actually fully rigid. As seen in Figure 3, the

velocity of a blade with contrary wind is higher than that of a blade with following wind
due to the flying velocity of the quadrotor. The higher velocity will produce a larger thrust
force, which generates an upward flapping velocity. Thus, it generates an imbalanced force
between the two blades of the same propeller and causes the two blades to flap up and
down (called blade flapping) when the multicopter moves [21]. The blade flapping causes
the propeller disk to be tilted, which produces an induced drag opposite to the motion of
the quadrotor. According to [22], the induced drag can be estimated by the following:

→
D = −η

4

∑
i=1

ωi
→
V (8)

where η is a positive constant, ωi is the rotational velocity of the ith motor, and
→
V = [u, v, w]T

is the inertial velocity expressed in body frame. For a more intuitive understanding of the
induced drag, the force schematic of a multicopter after moving can be seen in Figure 4. As
we described before, the imbalanced torque generated by the translational velocity of the
multicopter causes the propeller disk to be tilted, which will also cause the thrust force of
propeller to be tilted in a direction. Considering that the imbalanced torque depends on
the magnitude of translational velocity, the component of the thrust force (called induce
drag) is also a function of horizontal velocity. Thus, we use a linear coefficient η and the
summation of propeller rotational rates to estimate this drag according to [22–24].
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2.3. Vehicle Modeling

In the mathematical model of the quadrotor, two corresponding coordinate frames (see
Figure 5) are considered. Ob − XbYbZb denotes the body frame, where Ob is at the center of
gravity, Xb pointing front, Yb pointing left, and Zb pointing up. On−XnYnZn represents the
navigation frame which coincides with the geographic frame (east, north, east, upwards).
The translational motion equation that will be utilized in navigation reconstruction later is
introduced here as

m

( .
→
V +

→
Ω×

→
V

)
= Cb

nmg
→
e 3 − kTωss

→
b 3 −

→
D (9)

where m is the mass of the multicopter,
→
Ω = [p, q, r]T are the body rotational velocity

expressed in body frame, D = diag
(

η1∑4
i=1 ωi·u, η2∑4

i=1 ωi·v, 0
)

is the induced drag, and

ωss = ∑4
i=1 ω2

i is the sum of the squared motor speeds. g is the magnitude of the gravity
vector. Cb

n is the rotation matrix from the navigation frame to the body frame, which is
defined as

Cb
n = Ry(φ)Rx(θ)Rz(ψ)

=

 cos φ 0 − sin φ
0 1 0

sin φ 0 cos φ

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

 (10)

where [φ, θ, ψ] is the roll, pitch, and yaw angle of the vehicle. Equation (5) can then be
rewritten as  .

u
.
v
.

w

 =

 −g sin θ + (vr− wq)− d1
m u

g sin φ cos θ + (wp− ur)− d2
m v

g cos φ cos θ + (uq− vp)− kTωss
m

 (11)

where
[ .
u,

.
v,

.
w
]

are components of motion acceleration along the body-axis, and d1 = η1∑4
i=1 ωi

and d2 = η2∑4
i=1 ωi are induced drag coefficients of axes Yb and Xb, respectively. We

assume d1 and d2 are constants due to a fact that the summation of propeller rotational
rates for multicopters are fairly stable during smooth flight. Another reason is that most
small multicopters lack complex rotational speed measurement sensors, thus we can save
these sensors by this simplification.
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2.4. Parameter Identification and Observability Analysis

Before using the vehicle model to aid navigation reconstruction, some vehicle model
parameters [d1, d2, kT ] need to be acquired. Considering that these parameters are affected
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by the characteristics of the propulsion system and the external environment such as battery
voltage, air density, and so on, we design an efficient and lightweight estimator based on a
KF to acquire these parameters online. It should be noted that nonlinear Coriolis terms in
Equation (11) are small enough for a multicopter to be neglected. Therefore, Equation (11)
can be rewritten as  amx

amy
amz

 =

 .
u + g sin θ

.
v− g sin φ cos θ
.

w− g cos φ cos θ

 ≈
 − d1

m u
− d2

m v
− kTωss

m

 (12)

where
[
amx, amy, amz

]T are the accelerometer outputs in the body frame. The motor speeds
ωi, i = 1, 2, 3, 4 can be measured by rotating speed sensors, which are mounted on the

airframe. When GPS signal is available,
→
V = [u, v, w]T can be calculated from the integrated

navigation of INS and GPS. Thus, we have noticed that the model parameters are directly
observable from the accelerometer outputs.

Defining the state vector as xd = [d1, d2, kT ]
T , we get the following state propagation

equation and measurement equations:
.
xd = Adxd + Bdud
yacc = Caccxd

(13)

where outputs yacc =
[
amx, amy, amz

]T are the accelerometer outputs, with inputs ud = [0, 0, 0]T .
The Jacobian matrix Ad = 03×3 ∈ R3×3, Bd = 03×1 ∈ R3×1, Cacc = diag

(
− u

m ,− v
m ,−ωss

m
)
∈

R3×3, combined with system model (13) and a common KF algorithm, can be used to
estimate the vehicle model parameters.

Observability is a necessary condition for KF convergence. Thus, we analyze the
condition of observability for the model parameters [d1, d2, kT ] based on the theory of linear
observability. According to the theory of linear observability, the sufficient and necessary
condition of state observability for system (13) is that

rank(Ad, Cacc) = rank


C

Cacc Ad
...

Cacc An−1
d

 = n (14)

Substituting Equation (13) into (14), we can obtain the following:

rank(Ad, Cacc) = rank


C

Cacc Ad
...

Cacc An−1
d

 =

 − u
m 0 0

0 − v
m 0

0 0 −ωss
m

 (15)

It is obvious that ωss = ∑4
i=1 ω2

i is usually a positive value in a normal flight. If
u = v = 0, then rank(Ad, Cacc) = 1, which means that system (13) is unobservable when
the multicopter is in hover flight. Therefore, the parameters [d1, d2, kT ] are observable when
the velocity of the multicopter is unequal to zero.

3. Vehicle-Model-Aided Navigation Reconstruction Method

In this section, the IMU-based navigation system is reconstructed with the aid of the
aforementioned vehicle model during a GPS outage. The ESKF is utilized to estimate the
INS drift errors, which are subsequently used to compensate the INS results.

3.1. State Model

The dynamic navigation equations of multicopters for attitude, velocity, and position
are written as



Electronics 2021, 10, 528 8 of 20



.
qb

n = 0.5

 0 −→ω
T

→
ω −

[→
ω
]×

·qb
n

.
V

n
= f n −

(
2ωn

ie + ωn
en
)
×Vn + gn

.
L = VN

Ryt+H
.
λ = VE sec L

Rxt+H
.

H = VU

(16)

where qb
n denotes the attitude quaternion, ω denotes the angular rate of UAV, f n is the

output of accelerometer expressed in the navigation frame, and Vn = [VE, VN , VU ]
T are

flying velocity expressed in the navigation frame. Rxt and Ryt are the radiuses of the prime
plane and meridian plane, respectively. L, λ, and H are the latitude, longitude, and altitude,
respectively. ωn

ie denotes the angular rate of the earth expressed in the navigation frame,
and ωn

en is the angular rate of the navigation frame with respect to the Earth-Centered-
Earth-Fixed frame.

ωn
ie = [ωie cos L, 0, ωie sin L]T (17)

ωn
en =

[
− VN

Ryt + H
,

VE
Rxt + H

,
VE

Rxt + H
tan L

]T
(18)

By linearizing equation (16), the linear error propagation model is obtained as

δ
.
ϕ = δϕ×ωn

in + δωn
in + Cn

b ξb
g

δ
.

V
n
= f n × δϕ + δVn ×

(
2δωn

ie + δωn
en
)
−
(
2ωn

ie + ωn
en
)
× δVn + Cn

b ξb
a

δ
.
L = 1

Ryt+H δVN − VN

(Ryt+H)
2 δH

δ
.
λ = sec L

Rxt+H δVE + VE sec L tan L
Rxt+H δL− VE sec L

(Rxt+H)2 δH

δ
.

H = −δVU

(19)

where δϕ = [δφ, δθ, δψ]T is the vector of attitude angle errors, ξb
g and ξb

a are white noise
of the gyro and accelerometer respectively, and ωn

in = ωn
ie + ωn

en is the angular rate of the
navigation frame with respect to the inertial frame. δωn

in and δωn
en are the differentiations

of the ωn
in and ωn

en respectively, which are obtained as

δωn
ie = [−ωie sin L·δL, 0, ωie cos L·δL]T (20)

δωn
en =


− 1

Ryt+H δVN + VN

(Ryt+H)
2 δH

1
Rxt+H δVE − VE

(Rxt+H)2 δH

tan L
Rxt+H δVE + VE sec2 L

Rxt+H δL− VE tan L
(Rxt+H)2 δH

 (21)

Thus, the nine-dimensional state variables are chosen as three attitude angle, velocity,
and position errors Xs = [δφ, δθ, δψ, δVN , δVE, δVU , δL, δλ, δH]T. According to Equation (19),
the state model of the navigation reconstruction method can be expressed as

.
Xs(t) = Fs(t)Xs(t) + Gs(t)Ws(t) (22)

Ws(t) =
[
ξb

g, ξb
a

]T
(23)

where Fs(t) is the linear transfer matrix of the system state, and Ws(t) is the Gaussian
white noise.
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3.2. Measurement Model

During a GPS outage, the navigation information from INS alone cannot guarantee
the estimation performance. To address this problem, a new method to observe the attitude
angles and velocities based on the established vehicle model is proposed.

3.2.1. Velocity Measurement Model

Once the model parameters [d1, d2, kT ] are obtained through the parameter identi-
fication method discussed above, the aerodynamic model velocity

[
Vb

mx, Vb
my

]
can be

extracted from the accelerometers’ outputs. It should be noted that the bias errors of the
accelerometer have been properly calibrated before the multicopter takes off.{

Vb
mx = −mab

mx/d1
Vb

my = −mab
my/d2

(24)

where ab
mx and ab

my denote the accelerometers’ outputs in the body-fixed frame.

3.2.2. Attitude Measurement Model

Roll and pitch angle can be observed from the gravity vector
[

gb
x, gb

y, gb
z

]
in the body

frame through the following equations:

φg =



π + arctan
(

gb
y/gb

z

)
if gb

y > 0, gb
z < 0

π/2 if gb
y > 0, gb

z = 0

arctan
(

gb
y/gb

z

)
if gb

z > 0

−π/2 if gb
y < 0, gb

z = 0

−π + arctan
(

gb
y/gb

z

)
if gb

y < 0, gb
z < 0

(25)

θg = −arcsin

(
gb

x/

√(
gb

x

)2
+
(

gb
y

)2
+
(

gb
z

)2
)

(26)

However, the accelerometer measures specific force, meaning the difference between

motion acceleration and gravitational acceleration. The accelerometers’ outputs
→
f

b
are

described as
→
f

b
=
→.
V

b

+

(
2
→
ω

b
ie +

→
ω

b
en

)
×
→
V

b
−→g

b
(27)

The cross-term (2
→
ω

b
ie +

→
ω

b
en)×

→
V

b

n is relatively small for a multicopter, thus it can be

ignored. Despite this, the effect of translational acceleration
→.
V

b

on measured acceleration
cannot be neglected in the situation of maneuvering. In order to obtain the individual

gravitational acceleration, the translational acceleration
→.
V

b

should be subtracted from the

raw accelerometer outputs
→
f

b
. A constant acceleration model is applied to estimate the

→.
V

b

due to the high sampling rate of IMU. The system and measurement models are expressed as

Vb
x,k

.
V

b
x,k

Vb
y,k

.
V

b
y,k

Hk

Vb
z,k

.
V

b
z,k


=



Vb
x,k−1 +

.
V

b
x,k−1·∆t

.
V

b
x,k−1

Vb
y,k−1 +

.
V

b
y,k−1·∆t

.
V

b
y,k−1

Hk−1 + Vb
z,k−1·∆t + 0.5·

.
V

b
z,k·∆t2

Vb
z,k−1 +

.
V

b
z,k−1·∆t

.
V

b
z,k−1



(28)
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 Vb
mx,k

Vb
my,k

Hradar

 =

 Vb
x,k

Vb
y,k

Hk

 (29)

where Vb
mx,k and Vb

my,k are body velocities observed from the above vehicle model, Hradar de-
notes the radar height, and ∆t denotes the sampling time. Once we obtain the translational ac-

celerations
[
Vb

x , Vb
y , Vb

z

]T
, roll and pitch angles can be estimated from Equations (25) and (26).

3.2.3. Heading Measurement Model

In addition to measuring the triaxial angular rates and specific force, common IMU
also provides the magnetic field strength in body axis as

[
mb

x, mb
y, mb

z

]
. Since the magnetic

measurement is very susceptible to electronic interference, this information should only be
used for correcting the yaw attitude. The horizontal component of the magnetic field can
be derived by using roll and pitch angles:

XH = mb
x sin φ sin θ + mb

y cos θ −mb
z cos φ sin θ

YH = mb
x cos φ + mb

z sin φ
(30)

The magnetic heading is given by the following:

ψg =


arctan(−YH/XH) if XH > 0, YH ≤ 0
π/2 if XH = 0, YH < 0
π + arctan(−YH/XH) if XH < 0
3π/2 if XH = 0, YH > 0
2π + arctan(−YH/XH) if XH > 0, YH > 0

(31)

3.3. Discrete Forms of Navigation Reconstruction Filter

According to the measurement model, the observation equations can be reconstructed
by the attitude, heading, velocity, and radar height observed from the vehicle model and
sensors during a GPS outage. The measurement vector is defined as the difference between
the INS solutions (I) and the above observations:

Zs(t) =

 Zϕ

Zv
Zh

 =



φg − φI
θg − θI
ψg − ψI

Vn
mx −Vn

Ix
Vn

my −Vn
Iy

Hradar − HI


(32)

where Zϕ is the attitude error vector, Zv is velocity error vector, and Zh is altitude error
vector. Measurement Equation (32) can be rewritten with regard to state Xs as

Zs = HsXs + Vs (33)

where Vs is the measurement covariance matrix, and Hs is the measurement matrix given as I3×3 03×2 03×4
02×3 I2×2 02×4
01×3 01×2 [000, 1]

 (34)

Combining Equations (19) and (32), the discrete model of navigation reconstruction
filter aided by vehicle model is obtained as

Xs,k = Φs,k|k−1Xs,k−1 + Γs,k−1Ws,k−1
Zs,k = Hs,kXs,k + Vs,k

(35)

where Φs,k|k−1 and Γs,k−1 are discrete forms of Fs(t) and Gs(t), which are given as
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Φs,k|k−1 = eFs∆t =
∞

∑
n=0

[Fs(tk)∆t]n/n! (36)

Γs,k−1 =

{
∞

∑
n=1

[F(tk)∆t]n−1/n!

}
G(tk)∆t (37)

where ∆t is the discrete time interval. When GPS signal fails, the reconstructed observation
vector Zs is calculated and used to correct the INS solution through the proposed ESKF.

3.4. Adaptive Fuzzy-Logic-Based Covariance Algorithm

The measurement covariance significantly affects the performance of the proposed
ESKF. Ideally, the gravitational acceleration subtracted from the raw acceleration measure-
ment should be matching with the direction and magnitude of the true gravity if the motion
acceleration is accurately estimated using the above method. However, the accelerometers’
outputs are mixed with biases and noises, which will introduce error into the estimation
of motion acceleration. Thus, an adaptive measurement covariance algorithm based on
fuzzy logic is used to improve the performance of the estimation process. A fuzzy inference
system is one approach imitating the human mind, which includes three main procedures,
namely fuzzification, fuzzy reasoning, and defuzzification [31,32]. For the attitude mea-
surement model, the following two variables are designed as the inputs to the fuzzy logic
system to represent the effectiveness of observation of the attitude measurement:

e1 = arccos
(

gm
‖gm‖ ·

g0
‖g0‖

)
e2 = ‖gm‖ − ‖g0‖

(38)

where e1 and e2 denote the inconsistency of angle and magnitude between the estimated
gm and true gravitational acceleration g0.

The velocity measurement model mainly relies on the estimated accuracy of vehicle
parameters and accelerometers’ outputs. These vehicle parameters have been proved by
the convergence. However, the accelerometers’ outputs usually couple with the sparkle
noise caused by the vibration of the airframe, which will introduce error into the esti-
mation of velocity. Thus, the deviation of magnitude between the accelerometers’ out-
puts and g0 is selected as the fuzzy input to represent the effectiveness of observation of
velocity measurement:

e3 =
√

a2
mx + a2

my + a2
mz − g0 (39)

The fuzzy rules for attitude and the velocity measurement model are shown in
Tables 1 and 2, respectively. The linguistic variable set of fuzzy inputs are described as
follows: “Negative Medium (NM)”, “Negative Small (NS)”, “Zero (Z)”, “Positive Small
(PS)”, “Positive Medium (NS)”, “Negative High (NH)”, “Zero (Z)”, and “Positive High
(PH)”, which represent the degree of e1 and e2. The linguistic variable set related to fuzzy
outputs consists of the variables “Very Small (VS)”, “Small (S)”, “Medium (M)”, “Large
(L)”, and “Very Large (VL)”, which represent the degree of fuzzy output λa. Figures 6 and 7
show the bell-shaped and Gaussian membership functions of the fuzzy system. The fuzzy
outputs λa and λv are used to adjust the measurement covariance as follows:

Ra = λa·Ra,0
Rv = λv·Rv,0

(40)

where Ra,0 and Rv,0 denote the nominal measurement covariance of the attitude and
velocity measurement model, respectively. By utilizing the proposed fuzzy inference rules,
the measurement covariance is adaptively changed with the fuzzy input parameters.
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Table 1. Fuzzy rules for λa.

e2
e1 NH Z PH

NM VL L VL
NS M S M
Z L VS L
PS M S M
PM VL L VL

Table 2. Fuzzy rules for λv.

e3 λv

NM VL
NS M
Z L
PS M
PM VL
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Figure 6. (a) Fuzzy membership functions for input e1. (b) Fuzzy membership functions for input e2.
(c) Fuzzy membership functions for output λa.
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4. Simulation Results

In order to evaluate the performance of the proposed navigation reconstruction
method, the real-time hardware-in-loop simulation platform based on PIXHAWK [33]
is presented in this section.

4.1. Hardware in Loop Simulation Platform

The experiment is implemented on our real-time hardware-in-loop simulation plat-
form, as shown in Figure 8. The simulation platform includes five parts: an embedded
master control computer, a PX4 flight controller, a quadrotor, an RC transmitter, and a
ground station. The master computer is the core of the whole simulation platform, which
contains a high-fidelity quadrotor dynamic model generated by the online toolbox of
Quan and Dai [34], and the values are listed in Table 3. The detailed dynamic model
which includes motor dynamic, propeller model, and flight environment, is developed
by S-function and Simulink. The master computer accepts the four motor commands
σ1, σ2, σ3, σ4 to produce the corresponding force, torque, and further simulated naviga-
tion information, included three-dimensional positions, velocities, attitudes, and angular
rates Px, Py, Pz, Vx, Vy, Vz, φ, θ, ψ, p, q, r. The RC transmitter generates the desired attitude
command φcmd, θcmd, ψcmd to the flight controller. The flight controller mainly accepts this
command, runs the control algorithm, and generates the four motor commands σ1, σ2, σ3, σ4
to the aircraft.
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Figure 8. The real-time hardware-in-loop simulation platform.

Table 3. Main quadrotor parameters used in experiment.

Parameter Description Value

m Mass 1.4 kg
Ixx Roll inertia 2.11 × 10−2 kg·m2

Iyy Pitch inertia 2.19 × 10−2 kg·m2

Izz Yaw inertia 3.66 × 10−2 kg·m2

Tm Time constant of motor 0.02 s
d Motor moment arm 0.225 m
Ct Thrust coefficient of motor 1.105 × 10−5 N/(rad/s)2

Cd Induced drag coefficient 7.3 × 10−2 N/(m/s)
Cm Drag moment coefficient 1.779 × 10−7 N·m/(rad/s)

In order to simulate the observability of the model parameters and assess the perfor-
mance of the proposed navigation reconstruction algorithm, we planned the trajectory
shown in Figure 9. The sensor data generated by a high-fidelity vehicle dynamic model on
the master control computer comprises 180 s of continuous recording during the whole
flight. From the observability analysis of Section 2.4, we can know that the parameters
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[d1, d2, kT ] are observable as long as the velocities of the multicopter are unequal to zero.
These vehicle parameters can be estimated from any flight phase except for the hovering
state during the whole flight when GPS signal is valid.
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Figure 9. Three-dimensional flight trajectory.

During the first 20 s, the GPS signal is unobstructed, and the model parameter estima-
tion filter is started. After 20 s, the GPS signal is assumed to be completely unavailable,
which means that the absolute position and velocity measurements from GPS are invalid.
Then the IMU-based navigation system is reconstructed with the aid of the vehicle model.
Thus, the flight data is divided into two main flight phases, as follows: vehicle model
parameter identification phase from 0 s to 20 s, and vehicle-model-aided navigation recon-
struction phase from 20 s to 180 s.

4.2. Vehicle Model Parameter Identification

Figures 10–12 depict the results of the parameter estimation and the truth parameter.
The parameter estimation begins from the start of the flight, and we can see that the
proposed parameter identification method is able to make sure the estimated parameters
converge to the truth values within less than 2 s. The final estimation accuracy of all model
parameters is within 1.5%. After the model parameters have been estimated properly, these
coefficients can be used to reconstruct the navigation system during a GPS outage.

Electronics 2021, 10, 528 17 of 25 
 

 

proposed parameter identification method is able to make sure the estimated parameters 
converge to the truth values within less than 2 s. The final estimation accuracy of all model 
parameters is within 1.5%. After the model parameters have been estimated properly, 
these coefficients can be used to reconstruct the navigation system during a GPS outage. 

 
Figure 10. Induced drag coefficient estimation value in Yb axis. 

 
Figure 11. Induced drag coefficient estimation value in Xb axis. 

0 5 10 15 20
-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Time(s)

In
du

ce
d 

D
ra

g 
C

oe
ffi

ci
en

t i
n 

Yb
 a

xi
s(

 N
/(m

/s
) )

 

 

True value
Proposed method

0 5 10 15 20
-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Time(s)

In
du

ce
d 

D
ra

g 
C

oe
ffi

ci
en

t i
n 

Xb
 a

xi
s(

 N
/(m

/s
) )

 

 

True value
Proposed method

Figure 10. Induced drag coefficient estimation value in Yb axis.
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Figure 11. Induced drag coefficient estimation value in Xb axis.
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Figure 12. Thrust coefficient estimation value.

4.3. The Reconstructed Navigation System

To verify the effectiveness of the proposed navigation reconstruction method during a
GPS outage, the INS-only solution (prediction mode of the INS/GPS filter) is implemented
for a performance comparison. Besides this, the results of the integrated navigation of INS
and GPS are regarded as the true value.

Figure 13 shows the estimated value of roll, pitch, and yaw angles during the flight.
From the beginning of 20 s, the GPS signal is obstructed artificially. The reconstructed
navigation system based on ESKF starts at this time. We can see that the attitude estimation
results of INS-only diverge quickly during a GPS outage. At 180 s, the error of the roll and
pitch angle are about 9–10◦, and the error of the yaw angle is about 5◦, while the results of
the proposed method almost track the true value (the GPS/INS solution). The root mean
square errors (RMSEs) for the attitude are summarized in Table 4. The proposed method
shows a remarkable improvement compared to the INS-only solution.
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Figure 13. Comparison of attitude results.

Table 4. Comparison of attitude estimation performance.

RMSE Proposed Method INS-Only

Roll 0.225◦ 5.6074◦

Pitch 0.249◦ 4.8616◦

Yaw 0.109◦ 2.6653◦

Figure 14 depicts the estimation results of velocity during the flight. The period
from 20 s to 180 s is enlarged. Obviously, the velocity estimation from the reconstructed
navigation system converges much better than the INS-only solution. The accuracy of east
and north velocities are about 0.219 m/s and 0.15 m/s at 180 s, respectively. Since the
velocity measurements are calculated from vehicle model and accelerometer outputs, the
estimation errors of parameters and the time-varying biases of the accelerometer will result
in an error of the velocity estimate. However, the velocity of the reconstructed navigation
system still meets the requirements of flight control.

Figure 15 shows the position results of the vehicle provided by the reconstructed
navigation system during the flight. The errors of east and north positions for the proposed
method are about −14.6 m and 12.5 m at 180 s, respectively. Since we do not involve a
horizontal position measurement in our filter, the east and north positions cannot converge
to the true value due to weak observability. However, the proposed method still effectively
mitigates the drift in the position estimation compared to the INS-only solution.
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Figure 16 illustrates the calculated fuzzy inputs e1 and e2, and the fuzzy output
λa, respectively. We can see that the fuzzy output λa, which acts as the scaling factor of
the attitude measurement model, adaptively increases with the variation of angle and
magnitude between the estimated gm and true gravitational acceleration g0. The increase
of scaling factor λa will decrease the dependency of attitude measurement in the results of
estimation, thus improving the performance of filter. The same analysis can also be used
for the fuzzy input e3 and fuzzy output λv (see Figure 17).
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5. Conclusions

This paper proposes a MEMS navigation reconstruction method aided by a vehicle
model during a GPS outage. The proposed method makes an attempt to combine the
vehicle model and MEMS sensors, which is distinguished from traditional methods, such
as artificial NN and hardware redundancy. More specifically, a more detailed vehicle model
is developed from the basis of analyzing blade flapping, and an efficient online parameter
identification method is designed to estimate the model parameters quickly when GPS
signal is available. The body velocity is derived from the established vehicle model and
accelerometer output, and then the nongravitational acceleration is estimated and sub-
tracted from the raw acceleration to yield an accurate attitude estimate. Combining the
attitude, body velocity, magnetic heading and radar height measurements, the navigation
system based on ESKF is reconstructed during a GPS outage. Besides this, we develop an
adaptive measurement covariance algorithm based on a fuzzy system to reduce the impact
of disturbed acceleration. Hardware-in-loop simulation results show that the proposed
approach gains a remarkable estimation improvement compared to the INS-only solution,
and has the potential to be a simple and robust substitution for the INS/GPS integrated
navigation system for small multicopters during a GPS outage.
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