Numerical Simulations of Light Scattering in Soft Anisotropic Fibrous Structures and Validation of a Novel Optical Setup from Fibrous Media Characterization
Abstract
:1. Introduction
2. Theoretical Background
3. Materials and Methods
3.1. In-Silico Model
3.2. Experimental Validation Test
4. Results
4.1. In-Silico Simulations
4.2. Experimental Validation Test
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SALS | Small Angle Light Scattering |
FS | Fraunhofer Scattering |
MS | Multiple Scattering |
EM | extracellular matrix |
EF | embedded fibers |
References
- Chow, M.J.; Turcotte, R.; Lin, C.; Zhang, Y. Arterial Extracellular Matrix: A Mechanobiological Study of the Contributions and Interactions of Elastin and Collagen. Biophys. J. 2014, 106, 2684–2692. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.S.; Bersi, M.R.; Li, G.; Humphrey, J.D. Correlation of wall microstructure and heterogeneous distributions of strain in evolving murine abdominal aortic aneurysms. Cardiovasc. Eng. Technol. 2017, 8, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Aghamohammadzadeh, H.; Newton, R.H.; Meek, K.M. X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus. Structure 2004, 12, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Tadimalla, S.; Tourell, M.C.; Knott, R.; Momot, K.I. Assessment of collagen fiber orientation dispersion in articular cartilage by small-angle X-ray scattering and diffusion tensor imaging: Preliminary results. Magn. Reson. Imaging 2018, 48, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostyuk, O.; Brown, R.A. Novel spectroscopic technique for in situ monitoring of collagen fibril alignment in gels. Biophys. J. 2004, 87, 648–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belghasem, M.E.; A’amar, O.; Roth, D.; Walker, J.; Arinze, N.; Richards, S.M.; Francis, J.M.; Salant, D.J.; Chitalia, V.C.; Bigio, I.J. Towards minimally-invasive, quantitative assessment of chronic kidney disease using optical spectroscopy. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tower, T.T.; Tranquillo, R.T. Alignment maps of tissues: I. Microscopic elliptical polarimetry. Biophys. J. 2001, 81, 2954–2963. [Google Scholar] [CrossRef] [Green Version]
- Ávila, F.J.; Del Barco, O.; Bueno, J.M. Quantifying external and internal collagen organization from Stokes-vector-based second harmonic generation imaging polarimetry. J. Opt. 2017, 19, 105301. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Feng, J.; Jones, C.A.; Mao, X.; Sander, L.M.; Levine, H.; Sun, B. Stress-induced plasticity of dynamic collagen networks. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Guilbert, M.; Roig, B.; Terryn, C.; Garnotel, R.; Jeannesson, P.; Sockalingum, G.D.; Manfait, M.; Perraut, F.; Dinten, J.M.; Koenig, A.; et al. Highlighting the impact of aging on type I collagen: Label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model. Oncotarget 2016, 7, 8546. [Google Scholar] [CrossRef]
- Okoro, C.; Kelkar, V.; Sivaguru, M.; Emmadi, R.; Toussaint, K.C. Second-harmonic patterned polarization-analyzed reflection confocal microscopy of stromal collagen in benign and malignant breast tissues. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hristu, R.; Stanciu, S.G.; Tranca, D.E.; Stanciu, G.A. Improved quantification of collagen anisotropy with polarization-resolved second harmonic generation microscopy. J. Biophotonics 2017, 10, 1171–1179. [Google Scholar] [CrossRef]
- Goth, W.; Yang, B.; Lesicko, J.; Allen, A.; Sacks, M.S.; Tunnell, J.W. Polarized spatial frequency domain imaging of heart valve fiber structure. Int. Soc. Opt. Photonics 2016, 9710, 971019. [Google Scholar]
- Sacks, M.S.; Smith, D.B.; Hiester, E.D. A small angle light scattering device for planar connective tissue microstructural analysis. Ann. Biomed. Eng. 1997, 25, 678–689. [Google Scholar] [CrossRef]
- Robitaille, M.C.; Zareian, R.; DiMarzio, C.A.; Wan, K.T.; Ruberti, J.W. Small-angle light scattering to detect strain-directed collagen degradation in native tissue. Interface Focus 2011, 1, 767–776. [Google Scholar] [CrossRef] [Green Version]
- Pant, A.D.; Thomas, V.S.; Black, A.L.; Verba, T.; Lesicko, J.G.; Amini, R. Pressure-induced microstructural changes in porcine tricuspid valve leaflets. Acta Biomater. 2018, 67, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Gaul, R.; Nolan, D.; Lally, C. Collagen fibre characterisation in arterial tissue under load using SALS. J. Mech. Behav. Biomed. Mater. 2017, 75, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Vignali, E.; di Bartolo, F.; Gasparotti, E.; Malacarne, A.; Concistré, G.; Chiaramonti, F.; Murzi, M.; Positano, V.; Landini, L.; Celi, S. Correlation between micro and macrostructural biaxial behavior of ascending thoracic aneurysm: A novel experimental technique. Med Eng. Phys. 2020, 86, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Großkopf, S.; Tiersch, B.; Koetz, J.; Mix, A.; Hellweg, T. Shear-Induced Transformation of Polymer-Rich Lamellar Phases to Micron-Sized Vesicles. Langmuir 2019, 35, 3048–3057. [Google Scholar] [CrossRef]
- Vignali, E.; Gasparotti, E.; Landini, L.; Celi, S. Development and Realization of an Experimental Bench Test for Synchronized Small Angle Light Scattering and Biaxial Traction Analysis of Tissues. Electronics 2021, 10, 386. [Google Scholar] [CrossRef]
- Gaul, R.; Nolan, D.; Lally, C. The use of small angle light scattering in assessing strain induced collagen degradation in arterial tissue ex vivo. J. Biomech. 2018, 81, 155–160. [Google Scholar] [CrossRef]
- Schmitt, J.M.; Kumar, G. Optical scattering properties of soft tissue: A discrete particle model. Appl. Opt. 1998, 37, 2788–2797. [Google Scholar] [CrossRef]
- Tuchin, V.V. Laser light scattering in biomedical diagnostics and therapy. J. Laser Appl. 1993, 5, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Sacks, M.S. Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J. Biomech. Eng. 2003, 125, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Vyavahare, N.; Ogle, M.; Schoen, F.J.; Zand, R.; Gloeckner, D.C.; Sacks, M.; Levy, R.J. Mechanisms of bioprosthetic heart valve failure: Fatigue causes collagen denaturation and glycosaminoglycan loss. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. 1999, 46, 44–50. [Google Scholar] [CrossRef]
- Linder, T.; Löfqvist, T.; Wernersson, E.L.; Gren, P. Light scattering in fibrous media with different degrees of in-plane fiber alignment. Opt. Express 2014, 22, 16829–16840. [Google Scholar] [CrossRef]
- Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, R37. [Google Scholar] [CrossRef] [PubMed]
- Fukutomi, D.; Ishii, K.; Awazu, K. Determination of the scattering coefficient of biological tissue considering the wavelength and absorption dependence of the anisotropy factor. Opt. Rev. 2016, 23, 291–298. [Google Scholar] [CrossRef]
- Kienle, A.; Wetzel, C.; Bassi, A.L.; Comelli, D.; Taroni, P.; Pifferi, A. Determination of the optical properties of anisotropic biological media using an isotropic diffusion model. J. Biomed. Opt. 2007, 12, 1–9. [Google Scholar] [CrossRef]
- Leino, A.A.; Pulkkinen, A.; Tarvainen, T. ValoMC: A Monte Carlo software and MATLAB toolbox for simulating light transport in biological tissue. OSA Contin. 2019, 2, 957–972. [Google Scholar] [CrossRef]
- Gasparotti, E.; Vignali, E.; Losi, P.; Scatto, M.; Fanni, B.; Soldani, G.; Landini, L.; Positano, V.; Celi, S. A 3D printed melt-compounded antibiotic loaded thermoplastic polyurethane heart valve ring design: An integrated framework of experimental material tests and numerical simulations. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 1–10. [Google Scholar] [CrossRef]
- Vignali, E.; Gasparotti, E.; Capellini, K.; Fanni, B.M.; Landini, L.; Positano, V.; Celi, S. Modeling biomechanical interaction between soft tissue and soft robotic instruments: Importance of constitutive anisotropic hyperelastic formulations. Int. J. Robot. Res. 2020. [Google Scholar] [CrossRef]
- Di Puccio, F.; Celi, S.; Forte, P. Review of Experimental Investigations on Compressibility of Arteries and Introduction of a New Apparatus. Exp. Mech. 2012, 52, 895–902. [Google Scholar] [CrossRef]
- Di Achille, P.; Celi, S.; Di Puccio, F.; Forte, P. Anisotropic AAA: Computational comparison between four and two fiber family material models. J. Biomech. 2011, 44, 2418–2426. [Google Scholar] [CrossRef]
- Sacks, M.S.; Gloeckner, D.C. Quantification of the fiber architecture and biaxial mechanical behavior of porcine intestinal submucosa. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. 1999, 46, 1–10. [Google Scholar] [CrossRef]
- Mishchenko, M.I. Electromagnetic Scattering by Particles and Particle Groups: An Introduction; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Whelan, A.; Williams, E.; Nolan, D.R.; Murphy, B.; Gunning, P.S.; O’Reilly, D.; Lally, C. Bovine Pericardium of High Fibre Dispersion Has High Fatigue Life and Increased Collagen Content; Potentially an Untapped Source of Heart Valve Leaflet Tissue. Ann. Biomed. Eng. 2020. [Google Scholar] [CrossRef]
- Yang, B.; Lesicko, J.; Sharma, M.; Hill, M.; Sacks, M.S.; Tunnell, J.W. Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures. Biomed. Opt. Express 2015, 6, 1520–1533. [Google Scholar] [CrossRef] [Green Version]
- Jett, S.V.; Hudson, L.T.; Baumwart, R.; Bohnstedt, B.N.; Mir, A.; Burkhart, H.M.; Holzapfel, G.A.; Wu, Y.; Lee, C.H. Integration of polarized spatial frequency domain imaging (pSFDI) with a biaxial mechanical testing system for quantification of load-dependent collagen architecture in soft collagenous tissues. Acta Biomater. 2020, 102, 149–168. [Google Scholar] [CrossRef] [PubMed]
Case | ||
---|---|---|
1 | 45° | - |
2 | 20° | - |
3 | 45° | −45° |
4 | 20° | −20° |
5 | 0° | - |
6 | 90° | - |
7 | 0° | 90° |
Set | thk | |||||
---|---|---|---|---|---|---|
0° | - | 100% | - | 26% | 0.2–2 mm | |
0° | - | 100% | - | 0.5–26% | 0.2–2 mm | |
0° | 90° | 100–50% | 0–50% | 26% | 1.3 mm |
Case | ||||
---|---|---|---|---|
1 | 20° | - | 100% | - |
2 | 20° | −20° | 50% | 50% |
3 | 45° | - | 100% | - |
4 | 45° | −45° | 50% | 50% |
Case | thk 0.2 mm | thk 1.3 mm | |||
---|---|---|---|---|---|
45° | 100% | 0.63 | 134.3° | 0.68 | 44.2° |
20° | 100% | 0.68 | 111.2° | 0.71 | 20.5° |
±45° | 50%/50% | 0.31 | isotropic | 0.31 | isotropic |
±20° | 50%/50% | 0.60 | 91.4° | 0.64 | 2.0° |
0° | 100% | 0.79 | 89.4° | 0.92 | 0.7° |
90° | 100% | 0.80 | 0.3° | 0.91 | 88.9° |
0°/90° | 50%/50% | 0.22 | isotropic | 0.29 | isotropic |
Case | Experimental | Numerical () | Error | |||
---|---|---|---|---|---|---|
20° | 0.75 | 20.5° | 0.71 | 19.0° | 0.04 | 0.5° |
±20° | 0.62 | 2.0° | 0.64 | 3.6° | 0.02 | 1.6° |
45° | 0.65 | 44.2° | 0.68 | 46.0° | 0.03 | 1.8° |
±45° | 0.24 | isotropic | 0.31 | isotropic | 0.07 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
di Bartolo, F.; Vignali, E.; Gasparotti, E.; Malacarne, A.; Landini, L.; Celi, S. Numerical Simulations of Light Scattering in Soft Anisotropic Fibrous Structures and Validation of a Novel Optical Setup from Fibrous Media Characterization. Electronics 2021, 10, 579. https://doi.org/10.3390/electronics10050579
di Bartolo F, Vignali E, Gasparotti E, Malacarne A, Landini L, Celi S. Numerical Simulations of Light Scattering in Soft Anisotropic Fibrous Structures and Validation of a Novel Optical Setup from Fibrous Media Characterization. Electronics. 2021; 10(5):579. https://doi.org/10.3390/electronics10050579
Chicago/Turabian Styledi Bartolo, Francesco, Emanuele Vignali, Emanuele Gasparotti, Antonio Malacarne, Luigi Landini, and Simona Celi. 2021. "Numerical Simulations of Light Scattering in Soft Anisotropic Fibrous Structures and Validation of a Novel Optical Setup from Fibrous Media Characterization" Electronics 10, no. 5: 579. https://doi.org/10.3390/electronics10050579
APA Styledi Bartolo, F., Vignali, E., Gasparotti, E., Malacarne, A., Landini, L., & Celi, S. (2021). Numerical Simulations of Light Scattering in Soft Anisotropic Fibrous Structures and Validation of a Novel Optical Setup from Fibrous Media Characterization. Electronics, 10(5), 579. https://doi.org/10.3390/electronics10050579