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Abstract: In this article, we tackle the question of evaluating the dimension of the data space in the
phase retrieval problem. With the aim to achieve this task, we first exploit the lifting technique to
recast the quadratic model as a linear one. After that, we evaluate analytically the singular values
of the lifting operator, and we quantify the dimension of the data space by counting the number of
“significant” singular values. In the last part of the article, we show some numerical results in order
to corroborate our analytical prediction on the singular values’ behavior of the lifting operator and
on the dimension of the data space. The analysis is performed for a 2D scalar geometry consisting of
an electric current strip whose square magnitude of the radiated field is observed on multiple arcs of
circumference in Fresnel zone.

Keywords: phase retrieval; nonlinear inversion; data space dimension; independent data

1. Introduction

Inverse problems cover a wide range of applications in the electromagnetic and
optical literature [1–6]. However, especially when the frequency increases, accurate phase
measurements may become difficult; hence, the need to perform reconstructions from only
intensity data may arise. Such a task falls into the realm of the phase retrieval problem.

Phase retrieval arises in many fields of applied sciences like crystallography, diffraction
microscopy, ptychography, quantum mechanics, astronomy, optics, and electromagnetism.
In electromagnetism, it finds applications in the radiation pattern reconstruction of an an-
tenna under test [7–13], in array or antenna diagnosis [14–19], and in the inverse scattering
problem [20–24].

From a mathematical perspective, phase retrieval is an inverse problem that consists
of retrieving the unknown from the square magnitude (or from the magnitude) of its trans-
formation. In its quadratic formulation, it can be formalized as recovering the unknown
function f from the equation:

|T f |2 = |g|2 (1)

where T is an operator such that f ∈ X −→ g ∈ Y with X and Y denoting two func-
tional spaces.

As can be seen from (1), the absence of the phase knowledge makes the problem
nonlinear also when the operator T is linear. The nonlinearity of the problem implies
that the corresponding least squares problem involves a quartic cost functional [25] that
generally is non-convex. Indeed, the latter may contain trap points like local minima and
saddle points, which make the task of finding the actual solution harder.

In this framework, deterministic optimization techniques do not ensure the recovery
of the actual solution, since they converge to the closest stationary point. To overcome
this drawback, globally convergent techniques like genetic algorithms, particle swarm
optimization, and simulated annealing can be exploited. Despite this, such approaches
exhibit a very slow converge speed that makes them unsuitable for large-scale problems.
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To overcome the traps issue, the lifting technique was introduced [26]. The latter
exploits a redefinition of the unknown space, which allows recasting the phase retrieval
problem as a linear one. However, since in all lifting-based methods, the new number
of unknowns is equal to the square of the original number of unknowns, their range of
applicability is restricted to small-size problems.

In light of the previous considerations, the reduced computational burden and the low
memory requirements of the approach based on the minimization of the quartic functional
have led to a revival of such a method and have prompted researchers to investigate the
conditions under which it is possible to ensure the convergence. In particular, in these
studies, it has been shown that the convergence to the actual solution can be ensured by
exploiting two different strategies. The first one is that of using a special initialization,
which provides a starting point in the attraction basin of the cost functional, if some
mathematical conditions involving the ratio between the dimension of the data space (M)
and the dimension of the unknowns space (N) are satisfied [27–29]. The second strategy is
based on the observation that a sufficiently high value of the ratio M/N makes the quartic
functional free from traps [30–32]. In such a case, no special initialization is required, and
the starting point can be chosen at random.

From the previous discussion, it is evident that the dimension of the data space (M)
plays a key role for convergence guarantees; hence, after recalling its definition, it is worth
investigating how to estimate it from an analytical point of view.

The dimension of the data space can be defined as the number of independent func-
tions that allow representing the data with a given degree of accuracy. It can be estimated
in two steps. The first one is that of exploiting the lifting technique to obtain a linear
representation of the data. Once such a task has been achieved, the dimension of the data
space can be computed by employing different tools like Singular-Value Decomposition
(SVD) [1], the Gram–Schmidt orthogonalization (GSO) [25], or Principal Component Anal-
ysis (PCA) [33,34]. The main difference between such methods is that the SVD and GSO
estimate the dimension of the data space studying the lifting operator, instead, PCA reaches
the same goal studying the data of the problem.

In this article, we choose to evaluate the dimension of the data space by exploiting the
approach introduced in [35]; hence, we estimate such a parameter by counting the number
of “significant” singular values of the lifting operator. For such a reason, with reference
to a 2D scalar geometry concerning a strip current observed on multiple arcs in Fresnel
zone, we will provide an approximate expression of the singular values of the pertinent
lifting operator.

Let us remark that analytical results regarding the singular values of the linear operator
that links the source current with the radiated field in amplitude and phase are already
available in the literature [36–38]. Conversely, to the best of our knowledge, this is the first
time that analytical results concerning the singular values’ behavior of the lifting operator
are provided.

The paper is structured as follows. In Section 2, we sketch the geometry of the
problem and recall some preliminary results on the corresponding problem with the
data in amplitude and phase. In Sections 3 and 4, we study respectively the singular
values’ behavior of the lifting operator in the case of one and more observation arcs. In
Section 5, we validate the theoretical results by means of some numerical experiments. The
conclusions follow.

2. Geometry of the Problem and Preliminary Results

In this article, we consider the 2D scalar geometry depicted in Figure 1 where the
y-axis represents the axis of invariance.



Electronics 2021, 10, 606 3 of 15

Figure 1. Geometry of the problem.

An electric current J(x) = J(x) îy supported on the set [−a, a] of the x-axis radiates
within a homogeneous medium with wavenumber β.

The electric field E radiated by such a strip source has one component directed along
the y-axis; hence, E(x, z) = E(x, z) îy. The square amplitude of the electric field is observed
in the Fresnel zone on P arcs whose radii are denoted by r1, r2, ... , rP. Such arcs subtend the
same angle; indeed, they extend along the polar coordinate θ on the same set [−θmax, θmax].

For the geometry at hand, the radiated electric field on the i-th arc of circumference
can by expressed in the variable u = sin(θ) by the equation:

Ei(u) = Ti J(x) (2)

where ∀i = {1, 2, .., P}, Ti is the linear integral operator that realizes the mapping:

Ti : J ∈ L2(SD) −→ Ei ∈ L4(ODi) (3)

with L2(SD) denoting the space of square-integrable functions on the set SD = [−a, a]
and L4(ODi) indicating the space of functions whose amplitude to the fourth power is
integrable on the set ODi = [−umax, umax] = [−sin θmax, sin θmax]. Under the paraxial
Fresnel approximation, the operator Ti can be explicitly written in the form:

Ti J = e−jβri(1+ 1
2 u2)

∫ +a

−a
gi (x, u ) J(x)dx (4)

where:

gi(x, u) =
1√
βri

e−j β
2ri

x2
e jβux (5)

With the aim to simplify the discussion of the next sections, let us recall some results
on the linear integral operator TiT†

i where T†
i stands for the adjoint of Ti. Such an operator

can be expressed as below:

TiT†
i Ei(u) =

∫ +umax

−umax
Kii(u, u) Ei(u) du (6)

where:

Kii(u, u) =
∫ +a

−a
gi(x, u) g∗i (x, u)dx =

2a
βri

sinc
(

βa(u− u)
)

(7)

Accordingly, the operator TiT†
i is convolution, and its kernel is a band-limited function of

the sinc type.
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3. Singular Values of the Lifting Operator in the Case of One Observation Arc

Before addressing the case of P observation arcs, let us analyze the configuration
where the observation domain is made up by one arc of radius r1.

The square amplitude of the electric field over such an arc, |E1(u)|2, is given by:

|E1|2 = |T1 J|2 (8)

Starting from the quadratic model in (8), at first, we provide a linear representation of
|E1|2. After, by studying the singular values of such linear operator, we find the dimension
of the data space.

In order to obtain a linear representation of |E1|2, let us rewrite (8) as:

|E1|2 =
(
T1 J
) (

T1 J
)∗

=
∫ +a

−a

∫ +a

−a
g1 (x, u) g∗1 (x, u) J(x)J∗(x)dxdx (9)

where (·)∗ denotes the conjugate of the function (·). From Equation (9), it is evident that if
we redefine the unknown space and consider as unknown the function:

F(x, x) = J(x) J∗(x) (10)

then the operator A1 that links the unknown function F(x, x) with the data function
|E1(u)|2 is linear. The latter is known in the literature as the lifting operator, and it is
defined as:

A1 : F ∈ L2 (SD× SD) −→ |E1|2 ∈ L+
2 (OD1) (11)

with:
A1F =

∫ +a

−a

∫ +a

−a
g1(x, u ) g∗1(x, u ) F(x, x) dxdx (12)

Accordingly, the square amplitude distribution |E1|2 can be written through the following
linear model:

|E1|2 = A1F (13)

By Equation (12), it follows that the adjoint operator A†
1 is given by:

A†
1(·) =

∫ +umax

−umax
g∗1 (x, u ) g1 (x, u ) (·) du (14)

where (·) denotes the function of the variable u on which the adjoint operator acts.
In order to evaluate the singular values σm of the lifting operator A1, we find the

eigenvalues λm of the operator A1 A†
1, which are related to each other by the equation:

σm(A1) =
√

λm(A1 A†
1) ∀m ∈ N (15)

The operator A1 A†
1 can be expressed as:

A1 A†
1(·) =

∫ +umax

−umax
H1(u, u) (·) du (16)

where:

H11(u, u) = |K11(u, u)|2 =

∣∣∣∣∫ a

−a
g1(x, u) g∗1(x, u)dx′

∣∣∣∣2 (17)

Hence, the kernel of A1 A†
1 is the square of the kernel of T1T†

1 . Taking into account (7),
H11(u, u) can be written as:

H11(u, u) =
4a2

β2r2
1

sinc2 (βa(u− u)
)

(18)
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Accordingly, the operator A1 A†
1 can be expressed in the following form:

A1 A†
1(·) ≈

4a2

β2r2
1

∫ umax

−umax
sinc 2(βa(u− u))(·)du (19)

The eigenvalues of a convolution operator with a a sinc-squared kernel are known in
the closed-form [39]. Hence, the eigenvalues of A1 A†

1 can be analytically evaluated, and
they are given by:

λm(A1 A†
1) =


4aπ

β3 r2
1

(
1− m

M1

)
for m ≤ M1

0 for m > M1

(20)

where:

M1 =

[
4
π

βa umax

]
(21)

with [ 4
π βa umax] denoting the integer nearest to 4

π βa umax.
Consequently, the singular values of A1 are given by:

σm(A1) =


√

4aπ

β3 r2
1

√
1− m

M1
for m ≤ M1

0 for m > M1

(22)

The value of M1 provides the number of relevant singular values of the lifting operator;
hence, it can be taken as an evaluation of the dimension of the data space.

4. Singular Values of the Lifting Operator in the Case of P Observation Arcs

In this section, we consider a configuration where the observation domain is an
ensemble of P observation arcs in the Fresnel zone. In such a case, the square amplitude
distributions |E1|2, |E2|2, ..., |EP|2 are related to the current distribution J by the quadratic
model:

|E1|2 = | T1 J|2 , ... , |EN |2 = |TP J|2 (23)

With reference to such a configuration, at first, we introduce a linear operator that
represents the phaseless data |E1|2, ..., |EP|2. After, we evaluate analytically the singular
values of such an operator and the dimension of the data space.

As already done in Section 3, here, we consider as unknown the function F(x, x) =
J(x) J∗(x). This redefinition of the unknown function allows expressing the square ampli-
tude distributions of the radiated field through the following linear model:

|E1|2 = A1F , ... , |EP|2 = APF (24)

where ∀i ∈ {1, ..., P}

AiF =
∫ +a

−a

∫ +a

−a
gi(x, u ) g∗i (x, u ) F(x, x) dxdx (25)

Accordingly, the linear operator A, which represents the phaseless data in the case of P
observation arcs, is defined as:

A : F(x, x) ∈ L2 (SD× SD) −→ {|E1|2, ..., |EP|2} ∈ L+
2 (OD1)× ...× L+

2 (ODP) (26)
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Such an operator is still called the lifting operator, and it can be expressed as:

A =

 A1
:

AP

 (27)

The adjoint operator A† is given by:

A† =
[

A†
1 ... A†

P
]

(28)

where ∀i = {1, ..., P}

A†
i (·) =

∫ +umax

−umax
g∗i (x, u ) gi (x, u ) (·) du (29)

To estimate the singular values σm of the lifting operator A, let us find the eigenvalues
λm of the operator AA†. The latter is given by:

AA† =

 A1
:

AP

[ A†
1 ... A†

P
]
=


A1 A†

1 · · · A1 A†
P

...
. . .

...
AP A†

1 · · · AP A†
P

 (30)

where ∀(i, j) ∈ {1, ... , P}:

Ai A†
j (·) =

∫ +umax

−umax
Hij(u, u) (·) du (31)

with:

Hij(u, u) =
∣∣∣∣∫ a

−a
gi(x, u) g∗j (x, u) dx

∣∣∣∣2 =
1

β2rirj

∣∣∣∣∣∣
∫ +a

−a
e

j β
2

(
1
rj
− 1

ri

)
x2

e jβ(u−u)xdx

∣∣∣∣∣∣
2

(32)

With the aim to evaluate Hij(u, u), let us distinguish the case i = j from the case i 6= j.
For i = j, the integral in (32) can be easily evaluated, and it results that:

Hii(u, u) =
4a2

β2r2
i

sinc2 (βa(u− u)
)

(33)

Differently, for i 6= j, the kernel Hij cannot be expressed in terms of elementary functions. In
such a case, a closed-form expression of the integral (32) can be provided by resorting to the
imaginary error function, which will is denoted by erfi (for further details, see Appendix A).
In particular, as shown in [40], it results that:

∫
e jbxe jcx2

dx = − (−1)3/4√π e−j b2
4c

2
√

c
er f i

(
(−1)1/4 b + 2cx

2
√

c

)
+ const (34)

Accordingly, for i 6= j, Hij(u, u) can be expressed as:

Hij(u, u) =
π

2β3|ri − rj|
·∣∣∣ er f i

(
(−1)1/4 (p (u− u)− q

))
− er f i

(
(−1)1/4 (p (u− u) + q

))∣∣∣2 (35)

where:

p =

√√√√ β

2
(

1
rj
− 1

ri

) q =

√√√√ β a2

2

(
1
rj
− 1

ri

)
. (36)
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Let us point out that:

• the operators along the main diagonal of (30) and those off-diagonal are both convolu-
tions.

• ∀(i, j) ∈ {1, ..., P} the kernel of Ai A†
j becomes more and more similar to Ai A†

i when rj
approaches ri.

As said before, our goal is that of evaluating the singular values of the lifting operator
A by computing the eigenvalues of AA†. Naturally, the behavior of such eigenvalues
depends on the distance between the arcs on which the square amplitude of the electric
field is observed.

In particular, if the radii of the arcs are very similar (r1 ≈ r2 ≈ ... ≈ rP), then all the
operators in (30) have approximately the same kernel. Accordingly, the number of relevant
eigenvalues of AA† is approximately equal to the case of one observation arc.

The situation changes completely when the radii of the observation arcs are sufficiently
different from each other. Indeed, in this case, each scanning increases the number of
relevant eigenvalues and, consequently, the dimension of the data space.

With the aim to evaluate the number and the value of the relevant eigenvalues of
AA†, let us remark that if the norm of the off-diagonal terms in (30) is negligible with
respect to the norm of the terms along the main diagonal, then the eigenvalues of AA† are
approximately given by the union of the eigenvalues of A1 A†

1, A2 A†
2, ..., AP A†

P.
From the previous discussion, it is evident that ∀(i, j) ∈ {1, ..., P}, the norm of Ai A†

j
plays a key role; hence, it is worth evaluating such a quantity. Since ∀(i, j) ∈ {1, ..., P}, the
operator Ai A†

j is self-adjoint, and its norm can be computed according to the equation:

||Ai A†
j || =

√
∑
n

(
λ
(ij)
n

)2
(37)

Hence, to compute the norm of Ai A†
j , it is necessary to estimate its eigenvalues.

For each i = j, the eigenvalues of Ai A†
j can be analytically evaluated, since the

eigenvalues of a convolution operator with a sinc squared kernel are provided in [39].
Conversely, for each i 6= j, the eigenvalues of Ai A†

j are not known in the closed-form.
Despite this, the following considerations can be made to understand the eigenvalue
behavior of such an operator.

The kernel of Ai A†
j is provided by (35). The latter exhibits an oscillating behavior

with a main lobe and a number of side lobes. The parameters p and q that appear in the
arguments of the erfi functions are related respectively to the width of the main lobe and to
the level of the side lobes of Hij(u, u). In particular, it happens that if the distance between
ri and rj increases, then:

• the parameter p decreases,
• the parameter q increases.

Consequently, the main lobe of Hij(u, u) enlarges, while the level of the side lobes rises.
Such changes make the original main lobe indistinguishable by the first side lobes; hence,
the total effect of increasing the distance |ri − rj| is to raise the width of the main lobe of
Hij(u, u). Since the eigenvalue behavior of a convolution operator is asymptotically given
by the Fourier transform of its kernel, when the main lobe of the kernel becomes wider,
the support of its Fourier transform is restricted, and the number of relevant eigenvalues
decreases. From the previous discussion, it follows that if the distance between the radii ri
and rj increases, then the eigenvalues of Ai A†

j decay more quickly, and consequently, the

norm of Ai A†
j is reduced.
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Hence, for each i 6= j, a minimum value of the distance |ri− rj| exists such that ||Ai A†
j ||

is negligible with respect to ||Ai A†
i || and ||Aj A†

j ||. In such a condition, the operator AA†

in (30) can be approximated as:

AA† ≈


A1 A†

1
0
...
0

0
A2 A†

2
...
0

· · ·
· · ·
. . .
· · ·

0
0
...

AP A†
P

 (38)

Now, it is relevant to quantify the minimum distance between the radii such that
the operator AA† can be approximated as in (38). To this end, it is worth noting that
if we introduce a weighted adjoint A † and we repeat for the considered geometry the
same reasoning made in [41], we obtain that the (i, j) entry of the operator AA † can be
approximated as below:

Ai A
†
j (·) ≈

8a3

β2 rirj
sinc

(
βa2

2

(
1
ri
− 1

rj

)) ∫ umax

−umax
sinc(2βa(u− u)) (·) du (39)

From Equation (39), it is evident that the off-diagonal terms of AA † are negligible with
respect to the terms on the main diagonal when the condition:

βa2

2

(
1
ri
− 1

rj

)
≥ π. (40)

is fulfilled.
Let us remark that the use of the weighted adjoint changes only the dynamics of

the eigenvalues, but not the critical index at which they become negligible. For such a
reason, the last equation also works for the operator Ai A†

j . Accordingly, we can state

that if Condition (40) is satisfied, then ||Ai A†
j || is negligible with respect to ||Ai A†

i || and

||Aj A†
j ||. From Equation (40), it is clear that the fulfillment of such an equation is more

critical when j = i + 1. Therefore, we can conclude that if the quantity ∆ri = ri+1 − ri
satisfies the inequality:

βa2

2

(
1
ri
− 1

ri + ∆ri

)
≥ π. (41)

∀i = 1, .., P− 1, then the operator AA† can be approximated as in (38). In such a case, the
eigenvalues of AA† are given by:{

λm(AA†)
}
≈
{

λm(A1 A†
1)
}
∪ ... ∪

{
λm(AP A†

P)
}

(42)

where ∀i ∈ {1, 2, ..., P}:

λm(Ai A†
i ) =


4aπ

β3 r2
i

(
1− m

Mi

)
for m ≤ Mi

0 for m > Mi

(43)

with Mi =
[

4
π βa umax

]
.

Consequently, the singular values of the lifting operator A can be computed by exploiting
the equation: {

σm(A)
}
≈
{

σm(A1)
}
∪ ... ∪

{
σm(AP)

}
(44)
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where ∀i ∈ {1, 2, ..., P}:

σm(Ai) =
√

λm(Ai A†
i ) =


√

4aπ

β3 r2
i

√
1− m

Mi
for m ≤ Mi

0 for m > Mi

(45)

From the previous discussion, it follows that if the spacing ∆ri between the observation
arcs satisfies the inequality (40) ∀i = {1, 2, .., P}, then the number of relevant singular values
of the lifting operator A or, in other words, the dimension of the data space is approximately
given by:

M ≈
P

∑
i=1

[Mi] =

[
4P
π

βa umax

]
(46)

5. Numerical Verification of the Theoretical Results

In this section, we check the results on the singular values’ behavior provided in
Sections 3 and 4 by means of some numerical simulations.

As test cases, we consider a strip current of semi-extension a = 10λ whose square
amplitude of the radiated field is observed on 1, 2, or 3 observation arcs of radii r1,
r2, and r3. Furthermore, we assume that the observation arcs subtend an angular sector
[−θmax, θmax] = [−π/6, π/6]; hence, the variable u = sin θ changes on the set [−umax, umax]
= [−0.5, 0.5].

5.1. Numerical Verification in the Case of One Observation Arc

In this section, we check the analytical results provided in Section 3 for the case of one
observation arc of radius r1 = 25λ. To this end, in Figure 2, we compare the numerical
evaluation of the singular values of the lifting operator A1 with the theoretical prediction
provided by (22).

Figure 2. Numerical evaluation and theoretical prediction of the singular values of A1 for the
configuration a = 10λ, r1 = 25λ. The two diagrams are in dB, and they are normalized with respect
to the maximum of the numerical evaluation.

As can be seen from Figure 2, the two diagrams exactly overlap until the index
M1 = 40, which provides an accurate estimation of the dimension of the data space.
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5.2. Numerical Verification in the Case of Two Observation Arcs

In this section, we verify the analytical results of Section 4 in the case of two observa-
tion arcs. In such a case, the operator AA† is a two by two matrix given by:

AA† =

[
A1 A†

1

A2 A†
1

A1 A†
2

A2 A†
2

]
(47)

In Figures 3 and 4, with reference to the case where r1 = 25λ, we show respectively:

• a cut of the kernel of A1 A†
2,

• the eigenvalues of A1 A†
2,

for three different values of the radius r2. In particular, in the two figures, the black diagram
refers to the case r2 = 27λ, while the red and the blue diagrams refer respectively to the
configurations r2 = 30λ and r2 = 35λ.

Figure 3. Amplitude of H12(u, u = 0) related to the configuration a = 10λ, umax = 0.5, r1 = 25λ for
three different values of the radius r2.

Figure 4. Eigenvalues of A1 A†
2 related to the configuration a = 10λ, umax = 0.5, r1 = 25λ for three

different values of the radius r2.
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In perfect agreement with the theoretical discussion, from Figures 3 and 4, it is evident
that when the distance ∆r1 = r2 − r1 increases, then:

1. the width of the main lobe of H12 is larger,
2. the eigenvalues of A2 A†

1 decay more quickly, and consequently, ||A2 A†
1|| is lower.

For the considered configuration (a = 10λ, umax = 0.5, r1 = 25λ), the inequality (41)
is satisfied if ∆r1 ≥ 8.33λ. In Figure 5, we sketch the singular values of A numerically
computed and the theoretical prediction of such singular values provided by (44) in the
case where r2 = 27λ (∆r1 = 2λ). Instead, in Figure 6, we show the same quantity with
reference to the case r2 = 35λ (∆r1 = 10λ).

Figure 5. Numerical evaluation and theoretical prediction of the singular values of A for the con-
figuration a = 10λ, r1 = 25λ, r2 = 27λ. The two diagrams are in dB, and they are normalized with
respect to the maximum of the numerical evaluation.

Figure 6. Numerical evaluation and theoretical prediction of the singular values of A for the con-
figuration a = 10λ, r1 = 25λ, r2 = 35λ. The two diagrams are in dB, and they are normalized with
respect to the maximum of the numerical evaluation.



Electronics 2021, 10, 606 12 of 15

As can be seen from Figure 5, when ∆r1 = 2λ, the inequality (41) is not satisfied, and
the theoretical prediction of (44) does not work. Conversely, when ∆r = 10λ (see Figure 6),
the inequality (41) is satisfied, and the theoretical estimation of the singular values (44)
works very well. In this last case, also the dimension of the data space is correctly provided
by (46); indeed, as can be seen from Figure 6, the singular values of A are relevant until the
index M = [ 4P

π βa umax] = 80.

5.3. Numerical Verification in the Case of Three Observation Arcs

In this last section, we verify the analytical results of Section 4 in the case of three
observation arcs.

As regards the value of r1 and r2, we choose r1 = 25λ, r2 = 35λ. In such a case, it
results that ∆r1 = r2 − r1 = 10λ, and the condition (41) is fulfilled.

As concerns r3, we choose it in such a way that also ∆r2 = r3− r2 satisfies the condition
on the spacing of the arcs. In particular, the minimum value of ∆r2 = r3 − r2 such that
condition (41) is satisfied is 18.85λ, and this implies that r3 ≥ 53.85λ. In our numerical
experiment, we choose r3 = 55λ.

In Figure 7, we compare the singular values of A numerically computed with their
theoretical prediction provided by (44) with reference to the case a = 10λ, r1 = 25λ,
r2 = 27λ, r3 = 55λ, umax = 0.5.

Figure 7. Numerical evaluation and theoretical prediction of the singular values of A for the configu-
ration a = 10λ, r1 = 25λ, r2 = 35λ, r3 = 55λ. The two diagrams are in dB, and they are normalized
with respect to the maximum of the numerical evaluation.

As illustrated in Figure 7, the singular value behavior of the lifting operator and
the critical index at which the singular values become negligible are both predicted with
sufficient accuracy by (44) and (46), respectively.

The main difference between the two diagrams arises in correspondence with the knee
of the curve of singular values. Indeed, as can be seen from the figure, the index at which
the knee occurs in the black diagram is lower than the index at which the knee occurs in
the red one. This means that when the number of arcs increases, the theoretical estimation
of the data space dimension provided by (46) is not exactly equal to the actual value of the
dimension of the data space, but it represents a good upper-bound.
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6. Conclusions

In this paper, we introduce a strategy that allows finding the dimension of the data by
means of the singular-value decomposition of the lifting operator.

The study was done with reference to a 2D scalar configuration made up by a strip
source whose square magnitude of the radiated field is observed on multiple arcs of
circumference in the Fresnel zone.

In particular, for the considered geometry, we first introduced the lifting operator.
After that, we found its singular values, and finally, we established the dimension of
the data space by finding the index at which the singular values of the lifting operator
become negligible.

Before concluding, it is worth point out how the noise in the data affects the dimension
of the data space. To clarify this aspect, let us recall that the lifting operator is compact;
accordingly, its singular values approach zero as the index increases. Furthermore, as
shown in Sections 3 and 4, the singular values of the lifting operator are not step-like, but
they exhibit a dynamics before becoming negligible in correspondence with the critical
index [ 4P

π βa umax]. This implies that the dimension of the data space is not independent
of the noise level, but weakly dependent on it. In other words, if the SNR (Signal-to-
Noise Ratio) is high, then the data space dimension M is essentially equal to [ 4P

π βa umax].
Conversely, if the SNR is low, then the dimension of the data space M is smaller than
[ 4P

π βa umax].
Naturally, the noise in data affects not only the dimension of the data space, but

also the inversion process, making the use of a regularized inversion scheme mandatory.
However, this last issue is out of the scope of this paper.

As a final remark, let us point out that our SVD-based approach for the estimation
of the data space dimension can also be extended to near zone configurations and more
realistic scenarios involving 3D geometries.
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Appendix A

In this Appendix, we provide some details on the erfifunction. The imaginary error
function er f i(z) is an entire function defined by the equation:

er f i(z) = −j er f (jz) (A1)

with er f (z) denoting the erf function (also called the error function).
The derivative and the integral of the imaginary error function are given by:

d
dz

er f i(z) =
2√
π

ez2
(A2)

∫
er f i(z)dz = z er f i(z)− 1√

π
ez2

(A3)
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