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Abstract: Due to their distinctive presence in everyday life and the variety of available built-in
sensors, smartphones have become the focus of recent indoor localization research. Hence, this
paper describes a novel smartphone-based sensor fusion algorithm. It combines the relative inertial
measurement unit (IMU) based movements of the pedestrian dead reckoning with the absolute
fingerprinting-based position estimations of Wireless Local Area Network (WLAN), Bluetooth
(Bluetooth Low Energy—BLE), and magnetic field anomalies as well as a building model in real
time. Thus, a step-based position estimation without knowledge of any start position was achieved.
For this, a grid-based particle filter and a Bayesian filter approach were combined. Furthermore,
various optimization methods were compared to weigh the different information sources within the
sensor fusion algorithm, thus achieving high position accuracy. Although a particle filter was used,
no particles move due to a novel grid-based particle interpretation. Here, the particles’ probability
values change with every new information source and every stepwise iteration via a probability-map-
based approach. By adjusting the weights of the individual measurement methods compared to a
knowledge-based reference, the mean and the maximum position error were reduced by 31%, the
RMSE by 34%, and the 95-percentile positioning errors by 52%.

Keywords: indoor localization; sensor fusion; smartphone sensors; hybrid positioning system; grid
model; Bayesian filter; particle filter; optimization strategy; genetic algorithm; iterative learning

1. Introduction

The automatic determination of a location in an earth-related reference system is
essential in many areas of life and economy. This is the reason why global navigation satel-
lite systems (GNSS), such as GPS, GLONASS, or Galileo, have become of high economic
importance. The range of applications for automatic position determination extends from
ascertaining the location of a person in the leisure sector (e.g., for hiking or sailing) up to
locating people (e.g., for rescue and emergency forces) and tracking objects (e.g., goods
and merchandise) to determine the position and orientation of air, water, and land vehicles
for navigation and autonomous navigation purposes.

Whereas GNSS is typically used outdoors, its application is usually limited due to
shading or attenuation as well as other propagation effects (fading, multipath) of the electro-
magnetic signals within buildings, underground, or in built-up areas (“indoor”). However,
most of the aforementioned applications would also benefit from automatic indoor posi-
tioning [1,2]. As a result, numerous local positioning systems have been developed in the
past to enable the automatic localization of people or objects in “GNSS-free” space [3,4]. In
contrast to outdoor areas, however, there is no positioning technology analogous to GNSS.
Instead, different technologies are used depending on the specific application.

For pedestrian indoor localization, smartphones have increasingly gained attention
due to their distinctive presence in everyday life and the variety of available built-in sensors
and communication technologies.

Electronics 2021, 10, 618. https://doi.org/10.3390/electronics10050618 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1165-9594
https://orcid.org/0000-0002-5700-8818
https://doi.org/10.3390/electronics10050618
https://doi.org/10.3390/electronics10050618
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10050618
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/5/618?type=check_update&version=2


Electronics 2021, 10, 618 2 of 23

Therefore, this work is based on the fusion of smartphone sensor data like accelerom-
eter, gyroscope, Wireless Local Area Network (WLAN) and Bluetooth (Bluetooth Low
Energy—BLE) signals, and magnetic field anomalies with the non-sensory digital model of
the building. Thus, no complex nor expansive infrastructure is needed.

To fuse the information sources, a Bayesian filter approach is used (Section 3). With
this filter, the probability distributions of various location estimations are superimposed to
get the current position and to consider the respective sensor inaccuracies.

This work’s novelty is the combined use of a grid-based representation of the particle
filter (PF) and the optimization scheme Genetic Algorithm (GA) for weighing multiple
information sources. Furthermore, the grid-based PF is realized on a multiple hypothesis
testing approach. In this work, the particles of the PF are not moving freely in contrast to a
classic PF [5]. Instead, they are represented by localized grid cells of the building model
and only the values they associated with can change (Section 4).

Thus, this grid represents a position matrix that changes its values regarding to the
relative information of the pedestrian dead reckoning (PDR), the absolute information
of WLAN and BLE fingerprinting, and the magnetic field anomaly map. For this, the
walls’ structure and the fingerprinting maps are discretized to a grid. Also, the step sizes
are cropped to fit into this grid. Due to reasoning using the building model, particle
movements through walls or false positions inside walls are attenuated. Consequently,
some building positions are more likely to represent the actual location than others for
every recognized step. As a result, this sequence of probable and unlikely positions will
increase some grid cells’ value. Finally, the high gird cell values will converge, and the cell
with the highest value represents the current position.

The convergence speed and the overall accuracy of the estimated position to represent
the real position can be influenced by weighting the probability distributions. Instead
of a knowledge-based approach, this work investigates the GA and compares it with
other optimization strategies (Section 5) to achieve optimal weights and, thereby, a higher
position accuracy.

The experimental method and data collection are discussed in Section 6, whereas in
Section 7, the optimization results for the grid-based PF are shown. In summary (Section 8),
by adjusting the different uncertainty sensor profiles, the accuracy was improved by about
34% compared to the equally weighted sensor probability distributions.

2. State of the Art and Related Work

Generally, local positioning systems for automatic indoor position determination
of people can be implemented based on various technologies. These are often divided
into infrastructure-based, infrastructure-less (inertial measurement units—IMU; camera-
based [6] or passive magnetic fields [7]), and hybrid systems, which fuses multi-source
information [8,9]. Especially for pedestrian localization, smart devices such as smartphones
are predominantly used because of their mass-market availability and sensor-richness.

Infrastructure-based positioning systems (e.g., radio systems such as WLAN [10–13],
radio-frequency identification—RFID [14–16], or Bluetooth [17,18]) needs additional hard-
ware that has to be set up, calibrated, and maintained. Therefore, various techniques
are applied, which can estimate the distance between transmitter and receiver via the
signal propagation characteristics. Thus, if enough transmitters are available, the actual
position can be estimated via lateration. Otherwise, the position can also be determined
via fingerprinting. Therefore, in the offline phase, the received signal strength at various
building positions has to be measured. Thereafter, the position in the online phase can be
estimated based on the received signal strength in comparison to the offline fingerprinting
database. Numerous works on BLE and WLAN-based fingerprinting are presented in the
extensive meta-reviews of [19,20].

The infrastructure-less localization systems are often based on a dead reckoning ap-
proach via IMU, which are now already integrated into many devices. The IMU can provide
heading and speed information via self-contained sensors like accelerometers, gyroscopes,
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and magnetometers for relative continuous localization [21,22]. Since IMU are embedded
as Micro-Electro-Mechanical Systems (MEMS) in smartphones, they can be directly used
for pedestrian dead reckoning. However, the sole use of MEMS-IMU for pose estimation
is only feasible for a short period of time due to its drift behavior [23,24]. Alternatively,
high-performance IMU sensors with high weight and power consumption could achieve
high-quality measurements, but these are unsuitable for pedestrian localization.

Besides infrastructure-based and infrastructure-less systems, hybrid systems are be-
coming a standard for pedestrian localization with smartphones. In these systems, multi-
source information like IMU data and additional infrastructure-based systems (e.g., WLAN
fingerprinting, BLE beacons, building model) are fused [25].

In [26], the hybrid multi-source information fusion of a small low-cost inertial nav-
igation system (INS) with GPS, barometer, and a camera is described. In [27–29], the
data of low-cost smartphone sensors (IMU, magnetometer, barometer) and approximate
estimation methods (fingerprinting) based on communication technologies (WLAN, BLE)
are combined with digital building models for pedestrian localization. In [30], fuzzy logic
was used with an abstracted building model with 90 degree turns and BLE signals as
landmarks. Furthermore, in ref. [31] the authors used fuzzy logic to consider the noisy
and uncertain WLAN or BLE data. Moreover, robust multi-source information fusion
positioning technology is shown in [32,33], while [34] identifies hybrid systems as most
suited to mass-market applications and [35,36] explicitly focuses on IPS solutions applica-
ble to smartphones. In the most recent work of [37], a survey of the different positioning
techniques for collaborative localization is given.

While the localization in the outdoor areas is solved, there are numerous problems
to solve in indoor areas. Therefore, to categorize the performance and compare different
localization algorithms, the authors of [38] identified six key challenges of positioning.
These challenges are accurate and continuous localization, scaling to multi-story buildings,
signal bias adaptation at scale, upscaling to large numbers of measurements, identifying
varying walking profiles, and observing signal delays. They also evaluated their localiza-
tion algorithm based on these challenges for a shopping mall, including three multi-story
buildings and a large open underground passageway.

To solve the problem of accurate and continuous localization, multi-source informa-
tion fusion positioning from different sensors often uses Recursive Bayesian Estimation
methods. Their basic idea is to estimate the current state of the system, taking into ac-
count all previous state measurements up to this point in time and represent the state
estimation by a probability density function (PDF) [39,40]. Well-known forms of Recursive
Bayesian Estimation algorithms are the Kalman filter (KF) [41] with its variants (Iterative
Kalman Filter (IKF), Adaptive Kalman Filter (AKF)) and extensions (e.g., Extended Kalman
Filter (EKF), Unscented Kalman Filter (UKF)) [42–46], or Sequential Monte-Carlo (SMC)
methods [47].

The KF predicts the actual state based on the previous system state and linear func-
tions, but the state transitions are often nonlinear. Therefore, the state transitions are
approximated in the EKF with the tangent of a nonlinear function and Gaussian noise [39].
In contrast, the UKF uses a weighted, statistical, linear regression process for lineariza-
tion. Thus, instead of the tangent, so-called sigma points are extracted from the input
distribution and transformed using a nonlinear function.

The sigma points are based on the mean value and are symmetrically oriented using
the covariance [46]. However, the KF and its variants are based on a Gaussian probability
distribution. Alternatively, SMC filters, also known as PF [48], can be applied for state
estimation since they can approximate any (non-Gaussian) distribution as well as linear and
non-linear system models. The PF also often uses Gaussian functions to reflect the sensor
uncertainties [49,50]. In particular, PF, in the context of (robot) localization also referred
to as Monte Carlo Localization (MCL), has proven as a suitable method for multi-source
information fusion for pedestrian localization, e.g., [8,12]. In [51–54], the digital building
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model was integrated into a PF to evaluate the particles against the building structure,
while [55–57] used an abstracted discretized grid-based building representation.

Because of the digital building model’s nonlinearities in combination with nonlinear
pedestrian moving patterns and stochastically intricate representations of the measurement
signals of the hybrid positioning systems, this work weights its information sources explic-
itly to improve the localization accuracy. Therefore, it aims to reproduce a system’s PDF by
weighted particles and reflect the sensor uncertainties with Gaussian functions, while a
detailed grid-based building representation and a novel particle interpretation as localized
grid cells are investigated. Thereby, the number of particles was drastically increased and
the performance was enhanced via fast and efficient 2D matrix multiplications.

The input information sources (position data, sensor observations, building models)
are weighted using optimization methods to determine the actual position with high
accuracy. Therefore, classical optimization methods (e.g., hill climbing or gradient descend
algorithms like the Nelder–Mead method) require good initial guesses for the global
extreme estimation [58]. Otherwise, a convergence against local extrema may occur and the
algorithm fails to estimate the global optimum. Classical optimization schemes like Gauss–
Newton [59] or Levenberg–Marquart [60] show the problem that they need continuously
differentiable functions for optimization, which are not available due to the complexity of
the environment described in this work.

Thus, to avoid local minima in the search process, global optimization strategies can be
used. One common strategy known for its robustness end flexibility is the GA [61–65]. GA
can be assigned to heuristic optimization methods. These algorithms are used specifically if
the functions that have to be optimized are nonlinear or the calculations are computationally
intensive. This could be the case if the amount of data is either complex or extensive.
Moreover, there are no restrictive requirements for the target function, which does not
need to be differentiable or continuous. Furthermore, the GA’s basic functionality is easy
to understand, the algorithm can be applied even with little knowledge of the problem
structure, and functions with numerous dependent and independent parameters can be
optimized [66].

3. Basic Localization Strategy

As described in Section 2, PF are often applied for pedestrian navigation in buildings.
In a PF implementation, the system states are discretized by numerous independent
weighted particles that approximate the PDF at each point in time. In the case of position
estimation, the particles represent possible concrete positions in space.

Applying the particle filtering process requires the following four consecutive steps [39,40,67]:

(1) Initialization;
(2) Prediction Sampling;
(3) Importance Sampling/Correction;
(4) Normalization and Resampling.

After the initialization, the recursive update steps (2) to (4) are performed continuously
for each filter epoch. As soon as the particles cluster around one point (convergence), they
indicate the current position.

The present work has been built on the approach presented in [68,69], whose PF-
based algorithm is briefly described in the following. In the initialization, numerous
(500–2000) independent particles are randomly distributed in the walkable areas of a
building and outside the walls. This step is followed by prediction sampling, which
predicts the actual location based on PDR. Therefore, the observations of the built-in
accelerometer, gyroscope, and magnetometer smartphone sensors are used. After that,
the importance sampling weights each particle concerning the difference between the
predicted and observed position in step three.

Finally, the weights are normalized in the resampling step and particles with low
weights are replaced with new and randomly distributed ones. Thus, the PDF p(xk|Zk) is
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estimated with the observations from step 0 to k, the current posteriori probability xi
k, the

individual weights wi
k, and the Dirac delta function δ:

p(xk|Zk) ≈
N

∑
i=1

wi
k·δ
(

xk − xi
k

)
. (1)

Here, the weighting is defined as a two-dimensional standard normal distribution
with (xi

s, yi
s) as the predicted and (xk,yk) as the observed position as follows:

wi
k =

1
2πσ2 exp

(
−
(
xi

s − xk
)2

+
(
yi

s − yk
)2

2σ2

)
. (2)

If a particle moves inside a wall—according to the building structure taken from a
digital building model—it is deleted, or its weight is decreased drastically.

In addition, further existing infrastructure-based positioning systems such as WLAN
fingerprinting, proximity estimates based on BLE beacons, and magnetic field anomaly
maps can be integrated. For this purpose, probability density distributions (e.g., normal or
uniform distribution) are assumed for each positioning information and fused with the PF
estimate via a Mixture model [70]. Through this approach, the probability distribution of
the sensor measurements of the PDR, BLE proximity and WLAN fingerprinting, and the
magnetic field anomalies can be approximated and fused via the Bayesian Filter approach
(described by Equation (3)) [39,71,72]. The likelihood p(zk|xk) of the measurement model
represents the system state xk and its correlation to the current observation zk at times-
tamp k. The a-priori probability p(xk|Zk−1) represents the information of the model and
p(zk|Zk−1) is used for normalization. This filter fuses the respective position estimations
of the involved localization techniques using multiplication and normalization to obtain a
single position output:

p(xk|Zk) =
p(zk|xk)·p(xk|Zk−1)

p(zk|Zk−1)
. (3)

Subsequently, this recursive plausibility test removes some particles and the majority
of the particles will group around the actual position. If the particles group in several
clusters, strategies like the kernel density estimation with mixture models can help choose
one group representing the actual position [73].

4. Extended Localization Strategy

As an essential extension of the previously described basic approach, the particle
representation was modified in this work from free-moving particles to a grid-based
interpretation with fixed possible particle locations. For this, the building model given
in vector format was transferred from its global Universal Transverse Mercator (UTM)
coordinates to a local coordinate system and discretized to a raster grid. Thus, each particle
is interpreted by a grid cell, which represents a quadratic element (or pixel) of a 2D matrix.
This representation of the building model is shown in Figure 1a. Figure 1b illustrates a
section of this model in case of an unknown starting position. Since the actual starting
position is unknown, the presented PF does not initialize the possible position via random
particles. Instead, each pixel of the initial matrix in Figure 1a (yellow cells) represents a start
hypothesis of the current position (I0), and only these pixel values can change. With this
changed particle interpretation, the number of usable particles was drastically increased
while keeping the computational load low via fast and efficient 2D matrix multiplications
on the Graphical Processing Unit (GPU).
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Figure 1. Building model: (a) structure of the second floor; (b) model section of the grid structure. The walkable indoor
areas are represented by yellow pixels, while the areas unlikely to be entered are shown in azure-blue like desks or fixed
rows of chairs in the lecture halls. All areas of the building which are not accessible are indicated by blue cells.

To reflect the building topology’s valid positions, wall-free areas, e.g., rooms, floors,
door areas, and stairs, are characterized as possible starting positions (yellow cells). In
contrast, wall or outdoor areas are invalid starting positions (blue cells). In this exemplary
cell array of 556 × 335 pixels with an edge length of 0.15 m, there exist 76.614 valid out of
186.260 possible initial positions. Only grid cells that are likely to be entered get a value
of one. In contrast, inaccessible areas get zeros pixel values and waist-high obstacles like
fixed desks or benches get a value in between to reflect the unlikelihood of passing through
such objects.

The process of our position estimation algorithm is shown in Figure 2. In Figure 3,
the grid-based building model and the related walkway structure (Figure 3a), as well
as example maps of a BLE (Figure 3b) and a WLAN fingerprinting-based radio map
(Figure 3c), and the magnetic field anomaly map (Figure 3d) are shown. All information,
therefore, was converted into a grid cell representation of the corresponding PDF.

The walkway structure (Figure 3a) is an assumption of the paths in a building based
on the skeletonization of the walkable indoor area. This map’s highest values (yellow cells)
represent areas with a high distance to the walls nearby inside the building.

The BLE (Figure 3b) and the WLAN (Figure 3c) fingerprinting radio map illustrate
a position estimation based on a weighted k-nearest-neighbors (WKNN) fingerprinting
(k = 5) [74]. If a position can be estimated via BLE or WLAN-based fingerprinting, each
of these positions was convoluted with a symmetric 2D Gaussian function to reflect the
position uncertainties based on previous measurements.
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Figure 3. Measurement maps: (a) walkway structure of the indoor area; (b) Bluetooth Low Energy (BLE) fingerprinting
based position estimation; (c) map of possible positions based on Wireless Local Area Network (WLAN) fingerprinting; (d)
map of magnetic field anomalies.

The magnetic field anomaly map (Figure 3d) was estimated using the magnetic
anomalies caused by ferromagnetic objects, in the present case, especially fire-protection
doors. These anomalies influence the magnetometer if the smartphone is near these doors.
Therefore, the areas of the fire-protection doors are convoluted with a symmetric 2D
Gaussian function with a standard deviation (σ) of 1.0 m. The used values of σ were
postulated in [5].

For the estimation of the positions, the measurement uncertainties of the PDR have
to be considered. Therefore, the empirically determined probability distributions of the
step size estimation (Figure 4a, σ = 0.15 m) and the heading estimation (Figure 4b, σ = 40◦)
are fused to a resulting step probability distribution (Figure 4c). The current position
distribution matrix is then superimposed with the resulting probability distribution of step
estimation at each position after a determined movement. This process corresponds to the
discrete 2D convolution formulated in Equation (4) and predicts the actual movement. I
is the image and I* represents the result after a discrete convolution with the convolution
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kernel k ε Rn×n. The coordinates of a pixel are x and y, n is the kernel’s size in the first
dimension, while a is the center of the convolution kernel’s size:

I∗(x, y) =
n

∑
i=1

n

∑
j=1

I
(

x− i + a
y− j + a

)
k(i, j). (4)

Electronics 2021, 10, x FOR PEER REVIEW 8 of 23 
 

 

kernel 𝑘 𝜖 ℝ×. The coordinates of a pixel are x and y, n is the kernel’s size in the first 
dimension, while a is the center of the convolution kernel’s size: 

𝐼∗(𝑥, 𝑦) =   𝐼 ൬𝑥 − 𝑖 + 𝑎𝑦 − 𝑗 + 𝑎൰ 𝑘(𝑖, 𝑗).
ୀଵ


ୀଵ  (4)

 

    
(a) (b) (c)  

Figure 4. Pedestrian dead reckoning maps: (a) ring of the step size distribution; (b) heading estimation; (c) resulting prob-
ability distribution of one step. 

Due to the sensors’ measurement uncertainties, the current position at building junc-
tions could be determined wrong, and therefore, a false path would be taken. This process 
usually leads to a state where the determined position gets stuck in a wall. This scenario, 
known as the Kidnapped Robot Problem [39], is solved automatically by the algorithm 
without detecting a faulty state because the particles are not erased, and the grid cell val-
ues are not set to zero in a large environment around the current position. This is achieved 
by shifting the wall areas (blue areas in Figure 1a) for each step with the respective step 
length in pixel according to the movement’s heading using Bresenham’s line algorithm 
[75]. Using this algorithm, all position updates (step length and heading) are translated to 
pixel-wise shifts to reflect the raster-discretized translation. 

All grid cell values, which were implausible to represent the current step’s start, are 
attenuated by 90%. Therefore, the correct position can be estimated again if it was lost 
after only a few steps. This procedure reduces the values of wall areas and the areas which 
cannot be reached with the current step probability distribution. This weakening process 
is shown in Figure 5a after five steps.  

    
 

(a) (b) (c) (d)  

Figure 5. Resulting probability distributions: (a) reasoning map after five steps of only wall attenuation; (b) resulting 
probability distributions after 2, (c) 5, and (d) 20 steps. 

Figure 4. Pedestrian dead reckoning maps: (a) ring of the step size distribution; (b) heading estimation; (c) resulting
probability distribution of one step.

Due to the sensors’ measurement uncertainties, the current position at building junc-
tions could be determined wrong, and therefore, a false path would be taken. This process
usually leads to a state where the determined position gets stuck in a wall. This scenario,
known as the Kidnapped Robot Problem [39], is solved automatically by the algorithm
without detecting a faulty state because the particles are not erased, and the grid cell values
are not set to zero in a large environment around the current position. This is achieved by
shifting the wall areas (blue areas in Figure 1a) for each step with the respective step length
in pixel according to the movement’s heading using Bresenham’s line algorithm [75]. Using
this algorithm, all position updates (step length and heading) are translated to pixel-wise
shifts to reflect the raster-discretized translation.

All grid cell values, which were implausible to represent the current step’s start, are
attenuated by 90%. Therefore, the correct position can be estimated again if it was lost
after only a few steps. This procedure reduces the values of wall areas and the areas which
cannot be reached with the current step probability distribution. This weakening process is
shown in Figure 5a after five steps.
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The procedure of superimposing the probability distribution map (IZ−1) with the
current step distribution (kCSD ε Rn×n) represents the prediction step. In contrast, the
Hadamard products (element-wise multiplications �) of this result with the maps of walk-
way structure (IWS), BLE (IBT), WLAN (IWLAN), and of the magnetic field anomalies (IMFA),
as well as of the weakening of implausible areas (Iweak) corresponds to the importance
sampling or update step in the classical PF approach.

These calculations and the normalization are repeated recursively for each step. There-
fore, the current position is determined from each previous position estimate and the
current sensor data. This process and the respective probability distributions are shown in
Figure 5b–d after 2, 5, and 20 steps. Furthermore, the video “S1 Extended Localization” of
the Supplementary Materials illustrates the step-by-step positioning determination.

A maximum of three decimal places was allowed for each parameter to limit the
parameter combinations’ depth. For instance, the combination [0.153; 0.982; 0.349; 0.787;
0.622] is one of the possible individual parameter vectors.

In Equation (5), a pixel’s coordinates are x and y, while a is the center of the convolution
kernel’s size (kCSD).

To avoid zero-pixel values and ensure the further usability of cells, the distributions
of the walkway structure, BLE, WLAN, and magnetic field anomalies are multiplied by a
weighting factor wi (interval from 0 to 1) and an offset of +1 is added:

I =

(
n
∑

i=1

m
∑

j=1
IZ−1

(
x− i + a
y− j + a

)
kCSDZ (i, j)

)
� (IwsZ ·w1 + 1)�

(
IBTZ ·w2 + 1

)
�
(

IWLANZ ·w3 + 1
)
�
(

IMFAZ ·w4 + 1
)
� IweakZ

IZ = I
max(I)

(5)

To reflect the discrepancy between the possible body height, leg length, personal
walking speed, and walking style between the examined pedestrian of [76] and the one
in this work, an adjustment can be made. Therefore, the step length could be changed
within the parameter optimization by multiplying a weighting factor 2·w5 (interval from
0 to 1) to the estimated step length before the steps are discretized. Nevertheless, the
minimal step length is equal to one cell’s size and the maximal is equal to the doubled
estimated step length. During the first steps or at building junctions, IZ will have multiple
peaks, but only the highest cell value indicates the current position. The knowledge-based
parameter combination is [1; 1; 1; 1; 0.5], which represents the equal trust in the fused
position information of the walkway structure, BLE fingerprinting, WLAN fingerprinting,
magnetic field anomalies, and the step length estimation.

5. Optimization Strategies

For determining the weights w1 to w5, used in the prediction step for fusion the
position information of the different sources (Equation (5)), in general, optimization meth-
ods can be applied. For the implementation the procedure was to carry out test runs
in buildings with ground truth points (GTPs) and then to estimate the weights with a
root-mean-square error (RMSE)-based fitness metric shown in Equation (6). To obtain small
values for the distances between the GTPs and the corresponding estimated positions, the
product of the RMSE values’ reciprocals for each involved test run is used. Furthermore,
for better numerical handling, a scaling factor of 10 was chosen:

Fitness =
N

∏
test run=1

10
RMSEtest run

. (6)

Due to the high ambiguity and the unknown (mixed) stochastical distributions of
the input variables, the optimization quickly converges to a local minimum when using
classical search methods (e.g., gradient-based methods). Therefore, global optimization
procedures are recommended to maximize the quality metric and avoid local extrema.
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However, because of the building model’s nonlinearities, the used 2D maps, and the
cropped steps, jumps and plateaus of the metric values exist. This also makes the stochastic
description of the weights difficult and no gradients can be easily derived analytically. Thus,
gradient-based optimization methods are not applicable and only function evaluations
appear expedient.

Hence, in this work a GA is investigated to avoid the convergence against local extrema
and to find optimal weights despite the complex optimization problem. For evaluation and
benchmarking, the GA is compared with four other local and global optimization strategies
(Hill Climbing, Nelder–Mead method, Simulated Annealing, Particle Swarm) to illustrate
the necessity for more complex and robust search techniques.

5.1. Genetic Algorithm

Since especially the GA is investigated in this work, it will be introduced first in
this section.

The GA is a flexible and robust optimization strategy whose general structure is
shown in Figure 6. The GA is based on the observation of nature in which biological
evolution (following Darwin’s thesis) has led to complex life forms optimally adapted
to their environment. Therefore, it can be assumed that not only the results of biological
evolution are optimal, but also its mechanisms [77]. Accordingly, a potential solution in
the parameter space is abstracted as an individual in an artificial environment [78] and
successful patterns are combined to achieve better results. Here, a specific weighting
constellation is called an individual.
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In the context of this work, the (µ, λ)-strategy (µ—parents and λ—children) is pur-
sued [79], and as in biological evolution, a limited lifespan of individuals [78] is used. The
maximum age of an individual is 5% of the number of generations and the population size
is kept constant in every generation.

However, it is crucial that the optimum search is global and does not just converge to
a local optimum. Therefore, inferior individuals also have a small probability of getting
selected [80].

The genetic operator’s selection, recombination, and mutation create the next gener-
ation from the random starting parameter space (the starting population). This process
is repeated until most parameter combinations converge or a maximum number of gen-
erations has been reached. To achieve progress in the optimization, selecting the best
individuals of a generation is required in each optimization step based on a quality met-
ric [81].

Because the computation time for sorting is negligible in this work, and to prevent
a convergence occurring directly at the beginning, a ranking selection is used in contrast
to the frequently used recombination schemes of roulette wheel or competition selection.
This selection applies the sorted rank instead of the absolute fitness values and deter-
mines whether an individual will be selected for recombination. A dominance of single
individuals and convergence to a local extremum is thus prevented.

In this approach, individuals with rank 1 represent those with the lowest fitness value,
whereas rank n describes the best [64]. To determine the probability of selection, [82]
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suggests the following procedure: the expected value Emax is assigned (1 ≤ Emax ≤ 2)
to the highest-ranked individual. The value Emin for the worst individual is estimated
from Emin = 2− Emax and the probability of an arbitrary individual E(i) to be chosen is
calculated using rank(i). Thus E(i) is the linear index of the i-th element in the sorted array
of length n:

E(i) = Emin +
(Emax − Emin) · (rank(i)− 1)

n− 1
. (7)

A real-valued genetic representation of each individual with five property vectors be-
tween 0 and 1 is used in this work. To take advantage of different recombination techniques,
80% of the next generation is created by intermediate and 20% by combining recombination.
On the one hand, intermediate recombination is used in which each parameter of a new
individual is represented as the average of the respective parent’s parameters [79]. On the
other hand, the combining recombination recomposes the details of different individuals
and thus, the advantageous components of the parent individuals can be combined in the
optimal case [83]. Here, individuals can also be combined with themselves. To avoid the
resulting more homogeneous population and convergence without reaching the optimum,
the individuals’ parameters are mutated to prevent diversity loss. Thus, a local optimum
can be left again and the search space is explored extensively.

Each child individual is created by recombination of two parents and subsequent
mutation. This process concentrates the search space around promising areas of the
model space. A mutation in the GA describes the arbitrary modification of the genetic
material of an individual. For achieving this, the Gauss-mutation was used, which adds a
Gaussian distributed random value u·mutation_rate (u ∼ N(0, σ)) to each component
of the recombined child generation. Random changes with low probability secure the
diversity within the population [84]. Due to this probability distribution, many mutations
will only make small changes, but larger jumps are also possible [83]. Table 1 shows an
overview of the features used for the GA in this work.

Table 1. Features of the GA.

GA Feature Value

population size 100 random combinations
number of generations 100

mutation rate 0.05
maximum lifetime 5 generations
parent individuals 20
elite individuals 4

Emax 1.5

All of the described procedures can replace the entire parent population with the new
individuals, but this may result in the best individual’s loss. The results of [85,86] had
shown that elitism could significantly speed up the GA’s performance, which can also
help prevent the loss of good solutions once they are found. To achieve this and reach a
better convergence, the worst offspring (20% of the population size) is replaced by the best
parent individuals [64]. Furthermore, 20% of the parent individuals are chosen to be elite
individuals [86] without any lifespan.

5.2. Hill Climbing

The Hill Climbing algorithm searches for the next maximum starting from the initial
position (knowledge-based parameter combination) with decreasing step size (0.05; 0.02;
0.01; 0.005; 0.002; 0.001). The steps taken are identical to the Gauss–Newton algorithm (in
contrast to the Levenberg–Marquardt algorithm, which uses a dynamic step size estimation)
because minimizing the sum of least squares (therefore the RMSE) and maximizing the
reciprocal generate the same step selection.
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Therefore, the step widths are always reduced if no neighboring position has a higher
metric value than the current one. All neighbors with the respective step size are examined
(initial values + [−step; 0; step]) for all five weighting parameters. Thus, there are 243
parameter combinations to be examined per step (35 possible permutations). However, the
parameter values cannot exceed or fall below the limit values of 0 and 1. All combinations
are stored in a matrix after calculation, which serves as a continuous comparison database
to prevent the recalculation of already known parameter combinations.

5.3. Nelder–Mead Method

This algorithm (also known as the downhill simplex method) aims to minimize the
metric value via function evaluations in the form of a simplex. Therefore, N + 1 function
evaluations are calculated for the N parameters to be optimized. In each step, the point
with the worst metric value is replaced by a new one [87–89]. The dynamic step size
determination allows bypassing local minima at the beginning of the algorithm process
before the algorithm’s convergence occurs. Thus, local minima can be circumvented in
some cases. To use this algorithm, the metric value is multiplied by “−1”.

5.4. Simulated Annealing

The basic idea is to reproduce a cooling process such as that found in metallurgy. Here,
the slow cooling ensures that stable crystals can form since the atoms have sufficient time
to arrange themselves. Thus, a lower energy state is achieved, which corresponds to a local
optimum. In the context of optimization methods, the temperature corresponds to the
probability that an intermediate solution may deteriorate during the iterations. Thus, this
optimization procedure can leave local optima and better values can be found [90,91].

5.5. Particle Swarm

This optimization procedure is similar to the GA but was derived from observing
flocks of birds [92]. Individuals move in steps through the search space defined by the
target function. Depending on the other individuals’ metric values, the orientation of the
particle movement, and thus, the values of the parameter values of the next individuals are
determined. The particles will gather around the local maxima in the search area with the
expectation to hit the global maximum. Problems arise when no particle is near the global
maximum. Then the algorithm converges to the local maxima [93].

6. Experimental Evaluation and Data Collection

The experimental evaluation of the optimization strategy and the data collection were
performed in a university building. The used smartphones were a Samsung Galaxy S7 (S7
SM-G930F, hereinafter referenced as S7) with an Exynos 8890 (eight cores) and an LG V30
(LG-H930, hereinafter referenced as LG) with a Snapdragon 835 (eight cores), both with
Android Oreo (8.0.0.). Three BLE (Bluetooth Version 4.3, Estimote location beacon based
on nRF52 SoC and 64MHz ARM Cortex-M4F CPU) beacons were used, placed near the
stairways, and there were 109 different WLAN-IDs (IEEE 802.11ac 2.4 or 5 GHz) available.
The floor plan of the used building model and the sequence of the measurement runs are
shown in Figure 7. All measurement runs are performed on the same floor with 107 GTPs,
visualized with red dots, while the start is shown in black and the end of the track in blue.
Eight test runs were performed with the S7 and five with the LG. In the case of the S7, five
test runs were used to estimate the weights and the remaining three for evaluation, while
in the case of the LG, the ratio was three to two runs. Each run consists of approximately
583 steps with an average walking speed of around 1.6 m/s. Because the first steps are
needed to achieve a convergence of the particle values, the first 30 steps are excluded from
the optimization process. Otherwise, the fastest possible convergence will dominate the
overall RMSE estimation.
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The smartphones were held in hand in front of the body while walking through
the measurement runs recording accelerometer, gyroscope, magnetometer, WLAN, and
BLE using a data recording app. Every signal was logged with its timestamp, which was
determined by the operation system. The app offers the opportunity to log the reference
point when passing by as checkpoints via the current timestamp. The reference points
sequence was the same during the measurement runs and each passing was logged with
its timestamp. A run consists on average of 583 steps and a measurement duration of
approximately 367 s. Each measurement run includes the passing of 157 checkpoints
(some GTPs were used twice). The measurement runs were cut to size, so the first and last
checkpoints’ timestamps represent the start and end of all recorded signals of a specific
run. Measurement data outside of this period was disregarded for further analysis.

It has to be noticed that the deviation analysis was estimated from the data of the
runs and during movements. That is why [5] estimated up to 0.3 m deviations between an
accurate centered foot on the GTP and the recorded steps.

For better use of the individual signals, accelerometer, gyroscope, and magnetometer
sensor data were converted with a spline interpolation to equidistant data points using
a frequency of 100 Hz. Then the step detection was implemented according to [94]. For
this, the magnitudes of the acceleration signals are determined. A step is only recognized if
the acceleration values’ variance in a sliding window with a width of 0.8 s exceeds a value
of 0.8.

Since the smartphones were held in hand, a higher value for sig_thresh of 0.8 was
empirically determined here compared to the original value of 0.6. Subsequently, the
acceleration magnitude is smoothed by a moving-average filter with a width of 0.31 s
and windowed peak detection with a width of 0.59 s is performed. The sequence of local
maximum and minimum accelerations thus determined marks the steps. The step length
is then determined using the mean absolute acceleration magnitude of a step, according
to [76] (see Equation (8)).
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K was determined to be 0.3179 based on an empirical investigation of one part of the
data set of Wang [95]:

Step Length = K· 3

√√√√ N

∑
i=1

|ai|
N

(8)

The orientation was estimated using the magnetometer to determine the absolute
magnetic north direction, while the accelerometer indicates the direction of the gravity
vector to determine the down direction. The relative orientation changes were tracked
via the gyroscope [96]. This work uses the step size (σ = 0.15 m) and heading (σ = 40◦)
uncertainties postulated in [5].

During the test runs, it was checked whether beacon signals were recognized for a step.
If this is the case, the difference in signal strength between the measured beacon signal and
all reference points which have received the recorded Beacon ID in the offline phase will
be compared. The inverse squared signal strength differences between the recorded and
the reference signals are used to estimate the weights for the position determination. If no
match was found, the corresponding reference points for the current position determination
are ignored. The position is then determined as the weighted average of all remaining
reference positions. Here, in case of signal strength differences of 0, these values are
changed to 0.1 to avoid impermissible weights. The median of the position deviations
during the runs to the determined positions for registered BLE signals is 6.89 m for the S7
and 4.32 m for the LG.

The same procedure was used for positioning using WLAN fingerprinting. The
WLAN fingerprinting provided a higher signal diversity with 109 different WLAN signal
sources, whereas BLE uses three. That is why a reference point is only included in the
positioning process if it has at least three signal overlaps with the currently registered
WLAN signal. Finally, the position is determined from the current step’s permissible
reference points as a WKNN (k = 5). The median of the position deviations from the actual
position to the determined positions for registered WLAN signals is 4.43 m for the S7 and
7.04 m for the LG.

A simple outlier determination was carried out to determine if magnetic field anoma-
lies are present, which indicate characteristic building parts (especially fire doors). For
this, a magnetic field anomaly was detected if the magnetic field magnitude has a greater
or lower value than three median absolute deviations from the moving median. For this
purpose, a window width of 4 s was used. Furthermore, a magnetic field disturbance is
present if the magnetic field magnitude has a value that is more than twice the standard
deviation from the mean value of the current run.

7. Parameter Optimization and Performance Analysis

After data collection, the weights for an optimized hybrid localization strategy based
on the grid-based approach (Equation (5)) were estimated by means of the GA using the
position estimates of the PF and the known position in each GTP as input data.

The results of the GA and for comparison of the different optimization strategies are
shown in Table 2. The weights listed one after the other represent the walkway structure,
BLE fingerprinting, WLAN fingerprinting, magnetic field anomalies, and the step length
estimation. Although the particle swarm algorithm performs best on the LG data, it fails at
the more complex data of the S7 and does not reach a good metric value.
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Table 2. Performance analysis. The weights represent the walkway structure, BLE and WLAN fingerprinting, magnetic
field anomalies, and step length estimation.

Optimization
Algorithm

S7
Metric Value

S7
Time (s)

Determined
Weights

LG
Metric Value

LG
Time (s) Determined Weights

Hill Climbing 5490.09 10,925 0.96;0.64;1;0.36;0.57 14.74 5379 0.99;0.99;0.72;0.65;0.57
Nelder-Mead 5681.80 2373 1;0.9;1;0.99;0.57 15.84 1465 1;1;1;0.86;0.57

Simulated
Annealing 6704.37 11,044 0.96;0.77;0.62;0.85;0.56 15.85 6680 0.86;0.21;0.50;0.72;0.56

Particle Swarm 5280.66 7254 0.62;0.61;0.38;0.73;0.56 17.97 15,921 0.99;0.96;0.32;0.11;0.56
Genetic

Algorithm 7046.75 24,966 0.67;0.68;0.83;0.06;0.56 17.78 16,601 0.95;0.73;0.23;0.02;0.56

The Hill Climbing algorithm reaches the next local optimum but fails to find the
global optimum in both datasets. The Nelder–Mead algorithm achieves slightly better
results than the pure Hill Climbing but does also not find the possible global optimum.
Simulated Annealing achieves good metric values, but overall, the GA outperforms the
other algorithms. Although it needs the most computing time, the pure performance of
estimating the best metric value is the optimization goal. This process of determining the
optimal parameters must only be calculated once at the end of the offline phase.

In contrast to the offline phase, the estimated weights for position estimation are used
in the online phase. Thus, a fast computation in the online phase is possible since only
one convolution, the element-wise multiplications of the predefined sensor maps and the
normalization must be calculated for each step. In Figure 8, the optimization process of the
GA is shown. A substantial increase in fitness values can be seen at the beginning of the
search during the first 20 generations.
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Particle Swarm 5280.66 7254 0.62;0.61;0.38;0.73;0.56 17.97 15,921 0.99;0.96;0.32;0.11;0.56 

Genetic Algorithm 7046.75 24,966 0.67;0.68;0.83;0.06;0.56 17.78 16,601 0.95;0.73;0.23;0.02;0.56 

Figure 8. The optimization process of the normalized fitness values.

After the cutoff of the first 30 Steps, there are 147 checkpoints left. The evaluation
runs’ error distances are shown in Figure 9 for the S7 and Figure 10 for the LG. The specific
benchmarks are shown in Tables 3 and 4, respectively.

Considering all evaluation runs, the mean deviation values were reduced by about
35% for the S7 and 25% for the LG. Furthermore, the RMSE were reduced by about 39%
and 26%. The RMSE is approximately 1.97 m for the S7 and 2.93 m for the LG on average.
As shown in Figure 11, indicated with dashed lines, the third quartile positioning error
was reduced by about 54% (3.57 m to 2.32 m) and 50% (5.35 m to 3.57 m). Moreover, the
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95-percentile positioning error was reduced by 67% (6.68 m to 4.00 m) and 38% (7.87 m
to 5.71 m) presented with dotted lines. Additionally, the maximum position error was
reduced by 39% and 20%.
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Table 3. Characteristics of the Samsung Galaxy S7 evaluation runs.

Position Deviation (m) (Relative Deviation (%))

Evaluation Run 1 Evaluation Run 2 Evaluation Run 3

Reference Optimized Reference Optimized Reference Optimized

Max 8.51 4.73
(−44.42%) 8.80 4.47

(−49.20%) 8.59 6.63
(−22.82%)

Mean 2.43 1.57
(−35.39%) 2.27 1.46

(−35.68%) 2.67 1.77
(−33.71%)

Median 1.67 1.21
(−27.54%) 1.73 1.18

(−31.79%) 1.78 1.42
(−20.22%)

RMSE 3.17 1.92
(−39.43%) 2.95 1.76

(−40.34%) 3.52 2.22
(−36.93%)

Table 4. Characteristics of the LG evaluation runs.

Position Deviation (m) (Relative Deviation (%))

Evaluation Run 1 Evaluation Run 2

Reference Optimized Reference Optimized

Max 10.23 7.40 (−27.66%) 8.79 7.82 (−11.04%)
Mean 3.04 2.36 (−22.37%) 3.25 2.36 (−27.38%)

Median 2.30 1.84 (−20.00%) 2.50 2.08 (−16.80%)
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Based on the determined optimal parameter values from the test runs, the RMSE
values were calculated for all evaluation runs and these are shown in Figure 12. It illustrates
the decrease of the deviations to the GTPs if the weighting parameters are optimized with
the GA.
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8. Conclusions

In this work, an algorithm for smartphone-based pedestrian localization was shown,
which combines the classical PDR with fingerprinting and a novel multiple hypothesis
grid-based interpretation of the particles of the PF. The grid-based representations of the
fingerprinting maps and the estimated step length are weighted with the optimization
scheme of the GA to achieve higher position accuracy.

The presented algorithm can deal with natural motion behavior, including dynamic
changes of standing and moving with varying step length. This algorithm also does not
require the artificial cut of curves to have 90-degree changes. It was also accelerated via
GPU-based matrix multiplications to improve the vectorized particle computations.

With the presented probability-map-based approach, the sensor fusion algorithm
can combine relative sensor-based movements, absolute fingerprinting-based position
estimations, and digital building models in real-time to a step-based position estimation
without knowledge of any start position. Moreover, it can deal with uncertain information,
sensor noise, and building ambiguities. Other information sources such as brightness
measurements, barometer signals, magnetic field inclination and declination anomaly
maps, ultrasound, and GNSS can easily be included in the calculations as additional layers
in a modular way. Thus, absolute position information is used via additional maps, and
referential information is included with convolutions.

It is important to emphasize that in this novel particle interpretation the particles are
not moving. In contrast, the particles are represented by fixed grid cells whose probabilities
change with every new information source and stepwise iteration. Thus, smooth progress
in the change of the position probability distribution indicates the current position, and
several position theses can alternate without conflicting with each other.

During the reasoning stage, no particles are removed by walls, but the pixel-wise
shifting of the wall maps in the respective direction of steps weakens the values of unlikely
positions. The offline optimization of the weights with the GA has to be determined only
once for a given environment. In contrast to classical, processing-intensive PF utilizing a
large number (e.g., 5000) of freely moving particles, the grid-based implementation allows
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for seamless application on smartphones to enable real-time position estimation. Another
advantage of the presented algorithm is the optionality of a starting position.

A limitation of the current implementation is the fingerprinting specific need of
data premeasurement for BLE and WLAN signal maps. Hence, the weights have to
be re-optimized when the environment changes (e.g., updated WLAN fingerprinting
map, additional BLE beacons, etc.). However, this could be automated by triggering the
optimization process after each change of the environment or the databases. Additionally,
a denser fingerprinting grid and more BLE beacons would improve the results.

In future work, we will investigate the problems regarding the determination of
translation for rotations without clearly recognizable steps or while walking backwards.
Furthermore, the algorithm shows promising results and will thus be tested with other
datasets, environments, different smartphones, and more subjects. It is therefore intended
to use the datasets of the EvAAL Competitions of the last IPINs [97].

In summary, the implemented GA is beneficial for the position accuracy and the
localization errors were reduced. In fact, the GA improves the overall mean position
accuracy by 31%, as well as the maximum position error compared to the knowledge-based
parameter combination using the same sensor data, digital building model, and particle
representation.

The overall RMSE was reduced by 34%, whereas the third quartile positioning errors
by 54% and 50%. Also, the 95-percentile positioning errors were reduced by 67% and 38%.
This improvement was achieved by adjusting the weights of the individual measurement
methods to an optimal constellation.
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