A New SOC Estimation for LFP Batteries: Application in a 10 Ah Cell (HW 38120 L/S) as a Hysteresis Case Study
Abstract
:1. Introduction
2. Conventional and Proposed Hysteresis Modeling Methods for LiFePO4 Battery
2.1. One-State Hysteresis Modeling Method
2.2. Hysteresis Modeling Method by Using a Parallelogram
2.3. The Proposed Advanced Hysteresis Model for the LiFePO4 Battery
3. SOC Estimation of LiFePO4 Battery with EKF and Parameter Estimation Using ARX Model and RLS Filter
3.1. ARX Model and RLS Filter
3.2. Extended Kalman Filter for the SOC Estimation
4. Experimental Results
4.1. Experiments of the SOC-OCV Curve of LiFePO4
4.2. Experiments for the Hysteresis Curve of LiFePO4
4.3. Experimental Verification
4.4. Comparison of the Methods by SOC Estimation Error
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SOC | state of charge |
BMS | battery management system |
EVs | electric vehicles |
ESSs | energy storage systems |
EKF | extended Kalman filter |
ARX | auto regressive exogeneous |
RLS | recursive least square |
LiFePO4 | lithium iron phosphate |
LiCoO2 | lithium cobalt oxide |
OSHM | one state hysteresis model |
ECM | equivalent circuit model |
RMSE | root mean square |
MAE | mean absolute error |
References
- Ritchie, A. Recent developments and future prospects for lithium rechargeable batteries. J. Power Sources 2001, 96, 1–4. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Li, Q.; Cartmell, S.; Ferrara, S.; Deng, Z.D.; Xiao, J. Lithium and lithium ion batteries for applications in microelectronic devices: A review. J. Power Sources 2015, 286, 330–345. [Google Scholar] [CrossRef] [Green Version]
- Fergus, J.W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195, 939–954. [Google Scholar] [CrossRef]
- Satyavani, T.; Kumar, A.S.; Rao, P.S. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review. Eng. Sci. Technol. Int. J. 2016, 19, 178–188. [Google Scholar] [CrossRef] [Green Version]
- Aiello, O. Electromagnetic Susceptibility of Battery Management Systems’ ICs for Electric Vehicles: Experimental Study. Electronics 2020, 9, 510. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Kang, L.; Lu, C.; Linghu, J.; Lin, H.; Hu, B. An Enhanced Multicell-to-Multicell Battery Equalizer Based on Bipolar-Resonant LC Converter. Electronics 2021, 10, 293. [Google Scholar] [CrossRef]
- Aiello, O.; Crovetti, P.S.; Fiori, F. Susceptibility to EMI of a Battery Management System IC for electric vehicles. In Proceedings of the 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), Dresden, Germany, 16–22 August 2015; pp. 749–754. [Google Scholar]
- Xing, Y.; Ma, E.W.M.; Tsui, K.L.; Pecht, M. Battery Management Systems in Electric and Hybrid Vehicles. Energies 2011, 4, 1840–1857. [Google Scholar] [CrossRef]
- Lelie, M.; Braun, T.; Knips, M.; Nordmann, H.; Ringbeck, F.; Zappen, H.; Sauer, D.U. Battery Management System Hardware Concepts: An Overview. Appl. Sci. 2018, 8, 534. [Google Scholar] [CrossRef] [Green Version]
- Doridant, A.; Abouda, K.; Givelin, P.; Thibaud, B. Battery Management System Demonstrator Board design using EMC System simulation. In Proceedings of the 2019 International Symposium on Electromagnetic Compatibility-EMC EUROPE, Barcelona, Spain, 2–6 September 2019; pp. 427–432. [Google Scholar]
- Dong, G.; Wei, J.; Zhang, C.; Chen, Z. Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method. Appl. Energy 2016, 162, 163–171. [Google Scholar] [CrossRef]
- Barai, A.; Widanage, W.D.; Marco, J.; McGordon, A.; Jennings, P. A study of the open circuit voltage characterization technique and hysteresis assessment of lithium-ion cells. J. Power Sources 2015, 295, 99–107. [Google Scholar] [CrossRef]
- Roscher, M.A.; Sauer, D.U. Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries. J. Power Sources 2011, 196, 331–336. [Google Scholar] [CrossRef]
- Windarko, N.A.; Choi, J.-H. LiPB Battery SOC Estimation Using Extended Kalman Filter Improved with Variation of Single Dominant Parameter. J. Power Electron. 2012, 12, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Ma, J.; Sun, Y.; Li, Z. Estimating the State-of-Charge of Lithium-Ion Batteries Using an H-Infinity Observer with Consideration of the Hysteresis Characteristic. J. Power Electron. 2016, 16, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Pavkovic, D.; Krznar, M.; Komljenovic, A.; Hrgetic, M.; Zorc, D. Dual EKF-Based State and Parameter Estimator for a LiFePO 4 Battery Cell. J. Power Electron. 2017, 17, 398–410. [Google Scholar] [CrossRef] [Green Version]
- Gregory, L. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation. J. Power Sources 2004, 134, 277–292. [Google Scholar]
- Mastali, M.; Vazquez-Arenas, J.; Fraser, R.; Fowler, M.; Afshar, S.; Stevens, M. Battery state of the charge estimation using Kalman filtering. J. Power Sources 2013, 239, 294–307. [Google Scholar] [CrossRef]
- Duong, V.-H.; Tran, N.-T.; Park, Y.-J.; Choi, W. Novel Estimation Technique for the State-of-Charge of the Lead-Acid Battery by using EKF Considering Diffusion and Hysteresis Phenomenon. Trans. Korean Inst. Power Electron. 2014, 19, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Mauracher, P.; Karden, E. Dynamic modelling of lead/acid batteries using impedance spectroscopy for parameter identification. J. Power Sources 1997, 67, 69–84. [Google Scholar] [CrossRef]
- Xia, B.; Chen, C.; Tian, Y.; Wang, M.; Sun, W.; Xu, Z. State of charge estimation of lithium-ion batteries based on an improved parameter identification method. Energy 2015, 90, 1426–1434. [Google Scholar] [CrossRef]
- He, H.; Zhang, X.; Xiong, R.; Xu, Y.; Guo, H. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles. Energy 2012, 39, 310–318. [Google Scholar] [CrossRef]
- Duong, V.H.; Tran, N.T.; Choi, W.; Kim, D.-W. State Estimation Technique for VRLA Batteries for Automotive Applications. J. Power Electron. 2016, 16, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Waag, W.; Käbitz, S.; Sauer, D.U. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl. Energy 2013, 102, 885–897. [Google Scholar] [CrossRef]
- System Identification Theory for the User, Lennart Ljung; Linkoping University: Linköping, Sweden, 1999.
- Jiang, J.; Zhang, Y. A revisit to block and recursive least squares for parameter estimation. Comput. Electr. Eng. 2004, 30, 403–416. [Google Scholar] [CrossRef]
- AA Portable Power Corp. Available online: https://www.batteryspace.com/prod-specs/5101_2.pdf (accessed on 2 March 2021).
- Gregory, L. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background. J. Power Sources 2004, 134, 252–261. [Google Scholar]
Name | Cylindrical LiFePO4 Battery | Model | HW 38120 L/S |
---|---|---|---|
Nominal Capacity | 10,000 mAh | Rated Voltage | 3.2 V |
Energy Density | 105 Wh/kg | Internal Resistance | |
Max. charging current | 3 C (30 A) | Recommended charging current | 0.5 C, 5 A × 2 h |
Max. continuous discharging current | 3 C (30 A)–10 C (100 A) | Recommended discharging current | 1 C (10 A) |
Standard. charging voltage | 3.65 ± 0.05 V | Max. End-off discharged voltage | 2.0 V |
Model | Proposed Model | Parallelogram Model | OSHM |
---|---|---|---|
RMSE | 0.69% | 0.87% | 1.51% |
MAE | 0.47% | 0.66% | 0.95% |
Max. Error | 2.02% | 2.50% | 5.01% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, Y.; Choi, W. A New SOC Estimation for LFP Batteries: Application in a 10 Ah Cell (HW 38120 L/S) as a Hysteresis Case Study. Electronics 2021, 10, 705. https://doi.org/10.3390/electronics10060705
Ko Y, Choi W. A New SOC Estimation for LFP Batteries: Application in a 10 Ah Cell (HW 38120 L/S) as a Hysteresis Case Study. Electronics. 2021; 10(6):705. https://doi.org/10.3390/electronics10060705
Chicago/Turabian StyleKo, Younghwi, and Woojin Choi. 2021. "A New SOC Estimation for LFP Batteries: Application in a 10 Ah Cell (HW 38120 L/S) as a Hysteresis Case Study" Electronics 10, no. 6: 705. https://doi.org/10.3390/electronics10060705
APA StyleKo, Y., & Choi, W. (2021). A New SOC Estimation for LFP Batteries: Application in a 10 Ah Cell (HW 38120 L/S) as a Hysteresis Case Study. Electronics, 10(6), 705. https://doi.org/10.3390/electronics10060705