Floating Body DRAM with Body Raised and Source/Drain Separation
Abstract
:1. Introduction
2. Device Structure and Simulation Model
3. Device Operation
3.1. WRITE and ERASE Operations
3.2. READ Operation
3.3. HOLD Operation
4. Geometrical and Technological Scaling
5. Performance of the Geometry/Bias Trade-Off
6. Conclusions
Funding
Conflicts of Interest
References
- Okhonin, S.; Nagoga, M.; Sallese, J.M.; Fazan, P. A SOI capacitor-less 1T-DRAM concept. In Proceedings of the International SOI Conference, Durango, CO, USA, 1–4 October 2001; pp. 153–154. [Google Scholar]
- Shin, J.S.; Choi, H.; Bae, H.; Jang, J.; Yun, D.; Hong, E.; Kim, D.H.; Kim, D.M. Vertical-Gate Si/SiGe Double-HBT-Based Capacitorless 1T DRAM Cell for Extended Retention Time at Low Latch Voltage. IEEE Electron Device Lett. 2012, 33, 134–136. [Google Scholar] [CrossRef]
- Moon, D.-I.; Kim, J.-Y.; Moon, J.-B.; Kim, D.-O.; Choi, Y.-K. Evolution of Unified-RAM: 1T-DRAM and BE-SONOS Built on a Highly Scaled Vertical Channel. IEEE Trans. Electron Devices 2014, 61, 60–65. [Google Scholar] [CrossRef]
- Navlakha, N.; Lin, J.-T.; Kranti, A. Retention and Scalability Perspective of Sub-100-nm Double Gate Tunnel FET DRAM. IEEE Trans. Electron Devices 2017, 64, 1561–1567. [Google Scholar] [CrossRef]
- Yoon, Y.J.; Seo, J.H.; Cho, S.; Lee, J.-H.; Kang, I.M. A polycrystalline-silicon dual-gate MOSFETbased 1T-DRAM using grain boundaryinduced variable resistance. Appl. Phys. Lett. 2019, 114, 183503. [Google Scholar] [CrossRef]
- Cristoloveanu, S.; Lee, K.H.; Parihar, M.S.; El Dirani, H.; Lacord, J.; Martinie, S.; Le Royer, C.; Barbe, J.-C.; Mescot, X.; Fonteneau, P.; et al. A review of the Z2-FET 1T-DRAM memory: Operation mechanisms and key parameters. Solid State Electron. 2018, 143, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Navarro, C.; Karg, S.; Marquez, C.; Navarro, S.; Convertino, C.; Zota, C.; Czornomaz, L.; Gamiz, F. Capacitor-less dynamic random access memory based on a III–V transistor with a gate length of 14 nm. Nat. Electron. 2019, 2, 412–419. [Google Scholar] [CrossRef]
- Butt, N.Z.; Alam, M. Scaling limit of double-gate and surround-gate Z-RAM cells. IEEE Trans. Electron Devices 2007, 54, 2255–2261. [Google Scholar] [CrossRef]
- Giusi, G.; Alam, M.A.; Crupi, F.; Pierro, S. Bipolar Mode Operation and Scalability of Double Gate Capacitorless 1T DRAM Cells. IEEE Trans. Electron Devices 2010, 57, 1743–1750. [Google Scholar] [CrossRef]
- Giusi, G. Investigation on junctionless floating body DRAMs including Trap Assisted Tunneling. Solid State Electron. 2020, 169, 107799. [Google Scholar] [CrossRef]
- Giusi, G. Physical insights of body effect and charge degradation in floating-body DRAMs. Solid State Electron. 2014, 95, 1–7. [Google Scholar] [CrossRef]
- Kim, G.; Kim, S.W.; Song, J.Y.; Kim, J.P.; Ryoo, K.-C.; Oh, J.-H.; Park, J.H.; Kim, H.W.; Park, B.-G. Body-Raised Double-Gate Structure for 1T DRAM. In Proceedings of the 2009 IEEE Nanotechnology Materials and Devices Conference, Traverse City, MI, USA, 2–5 June 2009. [Google Scholar]
- Lin, J.-T.; Sun, W.-T.; Lin, H.-H.; Chen, Y.-J.; Navlakha, N.; Kranti, A. Raised Body Doping-Less 1T-DRAM With Source/Drain Schottky Contact. IEEE J. Electron Devices Soc. 2019, 7, 276–281. [Google Scholar] [CrossRef]
- Ansari, H.R.; Navlakha, N.; Lee, J.Y.; Cho, S. Double-Gate Junctionless 1T DRAM With Physical Barriers for Retention Improvement. IEEE Trans. Electron Devices 2020, 67, 1471–1479. [Google Scholar] [CrossRef]
- Giusi, G.; Iannaccone, G. Junction Engineering of 1T-DRAMs. IEEE Electron Device Lett. 2013, 34, 408–410. [Google Scholar] [CrossRef]
- Available online: https://www.silvaco.com/products/tcad/device_simulation/atlas/atlas.html (accessed on 29 January 2021).
- Hurkx, G.A.M.; Klaassen, D.B.M.; Knuvers, M.P.G. A New Recombination Model for Device Simulation Including Tunneling. IEEE Trans. Electron Devices 1992, 39, 331–338. [Google Scholar] [CrossRef]
- Gundapaneni, S.; Bajaj, M.; Pandey, R.K.; Murali, K.V.R.M.; Ganguly, S.; Kottantharayil, A. Effect of Band-to-Band Tunneling on Junctionless Transistors. IEEE Trans. Electron Devices 2012, 59, 1023–1029. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giusi, G. Floating Body DRAM with Body Raised and Source/Drain Separation. Electronics 2021, 10, 706. https://doi.org/10.3390/electronics10060706
Giusi G. Floating Body DRAM with Body Raised and Source/Drain Separation. Electronics. 2021; 10(6):706. https://doi.org/10.3390/electronics10060706
Chicago/Turabian StyleGiusi, Gino. 2021. "Floating Body DRAM with Body Raised and Source/Drain Separation" Electronics 10, no. 6: 706. https://doi.org/10.3390/electronics10060706
APA StyleGiusi, G. (2021). Floating Body DRAM with Body Raised and Source/Drain Separation. Electronics, 10(6), 706. https://doi.org/10.3390/electronics10060706