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Abstract: This paper presents a new filtering algorithm, switching extended Kalman filter bank
(SEKFB), for indoor localization using wireless sensor networks. SEKFB overcomes the problem
of uncertain process-noise covariance that arises when using the constant-velocity motion model
for indoor localization. In the SEKFB algorithm, several extended Kalman filters (EKFs) run in
parallel using a set of covariance hypotheses, and the most probable output obtained from the EKFs
is selected using Mahalanobis distance evaluation. Simulations demonstrated that the SEKFB can
provide accurate and reliable localization without the careful selection of process-noise covariance.

Keywords: extended Kalman filter (EKF); indoor localization; switching extended Kalman filter bank
(SEKFB); wireless sensor network (WSN)

1. Introduction

Localization involves tracking locations of objects that are of interest, such as robots,
humans, vehicles, and equipment [1–3]. Outdoor localization usually depends on a global
positioning system, whereas indoor localization exploits various types of wireless sensor
networks (WSNs) [4]. A typical WSN comprises several fixed nodes installed at designated
locations and mobile nodes attached to target objects. Fixed and mobile nodes communicate
with each other using wireless signals, and the locations of mobile nodes are obtained by
analyzing the parameters of wireless signals. Time of arrival (TOA) [5], time difference
of arrival (TDOA) [6], and angle of arrival [7] are typical wireless measurements used for
indoor localization.

A wireless measurement is corrupted by noise, which is inevitable but can be mitigated
using stochastic filters (also referred to as state estimators). To exploit stochastic filters, a
localization system should be modeled in a state space form that comprises motion and
measurement models. Because wireless measurements of WSNs are typically represented
by nonlinear measurement models, nonlinear stochastic filters such as the extended Kalman
filter (EKF) and the particle filter (PF) are often used for indoor localization [8–11]. In this
study, the EKF was used for indoor localization because it has an advantage over the PF in
terms of real-time processing.

In indoor localization, the constant-velocity (CV) motion model is commonly used to
represent the motion of target objects. In the CV motion model, process-noise covariance Q
plays a critical role, but it is a highly uncertain design parameter [12–15]. The conventional
EKF algorithm uses constant Q values that are selected on the basis of an engineer’s
knowledge and experience. However, inappropriately selected Q may degrade localization
accuracy [12,13].

Uncertainty in the motion model is one of the oldest problems in the field of target
tracking. To solve this problem, interacting multiple model (IMM) filtering [16] was
developed. IMM filtering mixes models for which mixing probabilities are computed using
the probabilities of transition between multiple models. Transitional probability (TP) is
a key design parameter in IMM filtering. Guidelines to designing TP were presented for
typical motion models used in target tracking, for example, CV motion and coordinated
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turn motion models [14,15]. However, TP design is still a cumbersome problem. In
particular, it is difficult to design a TP between different Q values in the same CV motion
model. Thus, a filtering algorithm that is simple and easy to implement is required for
indoor localization.

This paper proposes a new filtering algorithm, the switching extended Kalman filter
bank (SEKFB), to overcome the uncertain process-noise covariance problem. In the SEKFB
algorithm, a filter bank consisting of several EKFs is constructed. EKFs in the filter bank
use different Q hypotheses that are roughly selected without careful consideration or
experience. In addition, the most probable among EKF outputs is selected using Maha-
lanobis distance evaluation [17]. SEKFB thereby alleviates the problem of selecting Q and
designing the TP. Without the need for the careful selection of Q, the SEKFB algorithm
performs accurate localization compared to the best achieved performance of an EKF. In
addition, the SEKFB provides reliable localization, while the conventional EKF exhibits
localization failures. Moreover, the SEKFB is easy to implement because of its simple
algorithm. The excellent performance of the SEKFB is demonstrated via the simulation of
indoor localization using a WSN.

The remainder of this paper is organized as follows. Section 2 discusses the indoor lo-
calization scheme utilizing the EKF, and proposes the SEKFB. Section 3 presents simulation
results for the demonstration of SEKFB performance. Lastly, the conclusions of the study
are presented in Section 4. The abbreviations used in this paper are listed in Table 1.

Table 1. List of abbreviations.

Abbreviations Explanation

CV Constant velocity
EKF Extended Kalman filter
IMM Interactive multiple model
MC Monte Carlo

RMSPE Root-mean-square position error
RTAMSE Root-time-averaged mean square error

SEKFB Switching extended Kalman filter bank
TDOA Time difference of arrival
TOA Time of arrival
TP Transition probability

WSN Wireless sensor network

2. Indoor Localization Scheme and Proposed Algorithm

We considered an indoor localization system using a WSN described as follows. To
simplify the problem, the indoor space was assumed to be a two-dimensional (2D) floor
space. Figure 1 shows the configuration of a WSN using TDOA measurements.

Four receivers were installed at designated locations in the indoor space. A transmitter
(mobile tag) was attached to a target object (e.g., vehicles, equipment, or human) in the
space. The four receivers received signals from the transmitter and measured four TOAs
that are defined as follows:

TOAi,k =
1
c

di,k, i = 1, 2, 3, 4, (1)

di,k =
√
(xk − xi)2 + (yk − yi)2, (2)

where c is the speed of light; di is the distance between transmitter and i-th receiver; (xk, yk)
are the 2D positions of the transmitter at time k; and (xi, yi) are the fixed positions of the
receivers. The receiver’s clocks were synchronized with each other. The measured TOAs
were transmitted to a server computer, and the TDOA was computed as follows:

TDOAi,k = TOA1,k − TOAi+1,k, i = 1, 2, 3. (3)



Electronics 2021, 10, 718 3 of 10

Because TDOA measurements are corrupted by noise, the EKF was used to estimate
the target positions from noisy measurements. At each time step k, the EKF performs two
processes, time and measurement updates. In the time-update process, state variables
are updated using a motion model. We used the CV motion model for updating, and
state variables to be estimated were 2D positions (x, y) and velocities (vx, vy) as shown in
Figure 2.

Figure 1. Schematic of indoor localization system using time difference of arrival (TDOA) measurements.

Figure 2. State variables for constant-velocity (CV) motion model.

State variables at time k are represented as (xk, yk) and (vx,k, vy,k). To simplify the
notation of velocities, we used (ẋk, ẏk) instead of (vx,k, vy,k). Thus, state vector xk was
constructed as xk , [xk yk ẋk ẏk]

T . Thus, the CV motion model [14,15] is represented as

xk+1 = Axk + Gwk,

A =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

, G =


T2/2 0

0 T2/2
T 0
0 T

, (4)

where T is the sampling interval, and wk is the process-noise vector. We assumed that wk
was zero-mean white Gaussian noise with covariance matrix Q = qI2, where I2 is a 2× 2
identity matrix.



Electronics 2021, 10, 718 4 of 10

The measurement update process of the EKF uses a measurement model. The TDOA
measurements are expressed as z1,k

z2,k
z3,k

 =

 h1,k
h2,k
h3,k

 =
1
c

 d1 − d2
d1 − d3
d1 − d4

, (5)

where z1,k, z2,k, and z3,k are TDOA measurements (in units of nanoseconds); h1,k, h2,k, and
h3,k are nonlinear measurement equations that produce TDOA measurements. The mea-
surement vector and measurement equation vector were constructed as zk = [z1,k z2,k z3,k]

T

and hk = [h1,k h2,k h3,k]
T , respectively. The measurement model can then be expressed as

zk = hk(xk) + vk, (6)

where vk is the Gaussian measurement noise vector with covariance R.
Given the motion and measurement models, the EKF was used to estimate the 2D

positions of the transmitter. EKF equations for the state-space models (4) and (6) are
represented as follows:

x̂−k = Ax̂+k−1, (7)

P−k = AP+
k−1AT + GQGT , (8)

Kk = P−k HT(HP−k HT + R)−1, (9)

x̂+k = x̂−k + Kk(zk −Hx̂−k ), (10)

P+
k = (I−KkH)P−k , (11)

where Pk is the estimation error covariance matrix; Kk is the Kalman gain; and superscripts
− and + represent a priori and a posteriori, respectively. H is the Jacobian matrix defined as

Hk =
∂hk
∂x

∣∣∣∣
x̂k

, (12)

and obtained as follows:

Hk =

 h11,k h12,k 0 0
h21,k h22,k 0 0
h31,k h32,k 0 0

,

h11,k =
1
c

(
xk − x1

d1
− xk − x2

d2

)
,

h12,k =
1
c

(
yk − y1

d1
− yk − y2

d2

)
,

h21,k =
1
c

(
xk − x1

d1
− xk − x3

d3

)
,

h22,k =
1
c

(
yk − y1

d1
− yk − y3

d3

)
,

h31,k =
1
c

(
xk − x1

d1
− xk − x4

d4

)
,

h32,k =
1
c

(
yk − y1

d1
− yk − y4

d4

)
. (13)

Process-noise covariance Q in (8) had a significant effect on EKF performance. Q
was derived from the CV motion model and is related to the movement rate of a target.
Because the movement of a target (e.g., person) is unpredictable, selecting a suitable Q is
difficult. If an unsuitable Q value is used, EKF accuracy degrades. Thus, we propose the
SEKFB algorithm, which can provide accurate and reliable localization without selecting
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a suitable Q. Figure 3 illustrates the structure of SEKFB. EKFs using different process
noise covariances constitute a filter bank. State estimates of EKFs are evaluated using
Mahalanobis distance. The best estimate is selected as the output of SEKFB, and it is also
used to reset the EKFs.

Figure 3. Structure of proposed switching extended Kalman filter bank (SEKFB).

The first step of the SEKFB algorithm is to select Q hypotheses, which involves
selecting q hypotheses because we assumed that Q = qI2. We constructed set of hy-
potheses {q1, q2, · · · , qn}, where n is the number of hypotheses. Hypotheses do not need
to be selected in a careful manner. Designers can roughly select the hypotheses (e.g.,
q = 1, 10, 100, · · · ), and the hypotheses perform suitably owing to the SEKFB algorithm.

In the next step, n EKFs using the n hypotheses are operated in parallel. At each time
step, n state estimates {x̂+,1

k , x̂+,2
k , · · · , x̂+,n

k } are obtained. The best state estimate is selected
by minimizing Mahalanobis distance between actual TDOA measurement ẑk and predicted
measurements ẑj

k, where j = 1, 2, · · · , n. The predicted measurement is computed using
the state estimate as follows:

ẑj
k = hk(x̂

+,j
k ), (14)

where x̂+,j
k is the state estimate obtained from the j-th EKF. Mahalanobis distance [17] is

computed as

D j
k = (zk − ẑj

k)
TR−1(zk − ẑj

k). (15)

If the j-th EKF produces the minimal D j
k, x̂+,j

k is chosen as the output of the SEKFB at
time k. For the estimation of the next time step k + 1, the other EKFs except the j-th EKF are
reset using the information of the most reliable EKF. Thus, EKFs can produce more reliable
estimates than those estimated using previous algorithms. The overall algorithm of the
SEKFB is summarized in Algorithm 1.
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Algorithm 1: Filtering using SEKFB.
Data: qj(j = 1, 2, · · · , n)
Result: x̂k
begin

for j = 1, 2, · · · , n do
- Obtain state estimate x̂j

k using qj.

x̂−,j
k = Ax̂+,j

k−1
Q = qjI2

P−,j
k = AP+,j

k−1AT + GQGT

Kk = P−,j
k HT(HP−,j

k HT + R)−1

x̂+,j
k = x̂−,j

k + Kk(zk −Hx̂−,j
k )

P+,j
k = (I−KkH)P−,j

k

- Compute Mahalanobis distance for x̂+,j
k .

ẑj
k = hk(x̂

+,j
k )

D j
k = (zk − ẑj

k)
TR−1(zk − ẑj

k)

end

- Select x̂+,j
k that produced the minimal D j

k as the output of the SEKFB.

x̂k = arg min
x̂+,j

k
D j

k

- Reset unselected EKFs using selected EKF information.
for l = 1, 2, · · · , n (l 6= j) do

x̂+,l
k = x̂j

k

P+,l
k = P+,j

k
end

end

3. Simulation

We simulated indoor localization using SEKFB. The simulation scenario was as follows.
A person equipped with a mobile tag (transmitter) traveled along a square trajectory in
an indoor space as shown in Figure 4. The size of the indoor space was 20× 20 m. Four
receivers were installed at positions (0, 0), (0, 20), (20, 0), and (20, 20) m. The receivers
obtained wireless signals from the transmitter, and three TDOA measurements were
acquired as shown in Figure 1.

At each time step, the 2D positions of a person (xk, yk) were estimated using both
the SEKFB and conventional EKFs. Motion and measurement models given in (4) and (6),
respectively, were used for the filters. In the simulation, TDOA measurements were
generated using the measurement model given in (6), and measurement-noise covariance
R = 0.12I3. We assumed that measurement-noise covariance was exactly known. However,
process-noise covariance Q was unknown. Thus, we roughly selected q hypotheses as
{100, 10, 1, 0.1, 0.01}. We operated the EKF using the five q hypotheses to find the best
performing hypothesis. Next, we operated the SEKFB and compared its performance with
the best achievable performance of the EKF.

Filter performance was evaluated by the root-mean-square position error (RMSPE)
and root time-averaged mean square error (RTAMSE). We ran 100 Monte Carlo (MC)
simulations. RMSPE at time k and RTAMSE were calculated as

RMSPEk =
1

Ne

Ne

∑
m=1

√
(xm

k − x̂m
k )

2 + (ym
k − ŷm

k )
2, (16)

RTAMSE =
1

Ne tmax

Ne

∑
m=1

tfinal

∑
k=1

√
(xm

k − x̂m
k )

2 + (ym
k − ŷm

k )
2, (17)
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where tfinal is the final time step, Ne is the number of effective simulations, and
Ne = 100− N f , where N f is the number of localization failures. A case that produced
the RTAMSE at a value greater than 5m was considered to be a localization failure.

0 5 10 15 20

X (m)

0

5

10

15

20
Y

 (
m

)

Receiver 3 Receiver 4

Finish

Start

Receiver 1 Receiver 2

Figure 4. Trajectory of person equipped with mobile tag.

Figure 5a shows the RMSPEs of the EKFs using the five q hypotheses. q = 0.01
produced the largest RMSPE, that is, the worst performance. q = 10 and q = 100 produced
much smaller RMSPEs compared with the other q hypotheses. Because RMSPEs produced
by q = 10 and q = 100 were similar and difficult to distinguish, we compared their
RTAMSEs. Table 2 compares the RTAMSEs of the filters; q = 10 and q = 100 produced
RTAMSE values of 0.0252 and 0.0260, respectively. Thus, the best EKF performance could
be achieved with q = 10.

In Figure 5b, we compared the SEKFB and EKF with q = 10. The two filters exhibited
similar RMSPEs, as shown in Figure 5b, and we compared them in terms of the RTAMSE.
As shown in Table 2, the RTAMSE of the SEKFB was 0.0249, which was smaller than that
of the EKF with q = 10. The best choice for q was unknown in advance. The process-
noise covariance of the CV model is a highly uncertain design parameter, and selecting an
appropriate covariance value is difficult. EKF performance with q = 10 or q = 100 could be
obtained when a selected covariance value is appropriate. However, the SEKFB exhibited
accurate localization performance without selecting an appropriate covariance value.

We compared the filters in terms of the number of localization failures as shown in
Table 2. EKFs using q = 10 and 100 produced RTAMSEs similar to those of the SEKFB, but
they exhibited localization failures. However, the SEKFB did not fail, which means that the
SEKFB was more reliable than EKFs using constant q values are. Thus, simulation results
demonstrated that SEKFB is more accurate and reliable than a conventional EKF that uses
constant covariance is.



Electronics 2021, 10, 718 8 of 10

0 50 100 150 200 250 300 350 400

Time step (k)

10
-2

10
-1

10
0

10
1

R
M

S
P

E
 (

m
)

EKF(q=100)

EKF(q=10)

EKF(q=1)

EKF(q=0.1)

EKF(q=0.01)
EKF (q=0.01)

EKF (q=1)

EKF (q=0.1)

EKF (q=100)
EKF (q=10, best choice)

(a)

50 100 150 200 250 300 350 400

Time step (k)

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

R
M

S
P

E
 (

m
)

EKF(q=10, best choice)

SEKFB(proposed)

(b)

Figure 5. Root-mean-square position error (RMSPE) in localization simulation: (a) extended Kalman
filters (EKFs) using five covariance hypotheses; (b) proposed filter and EKF using best covariance.
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Table 2. Root time-averaged mean square error and number of localization failures.

Filter RTAMSE Number of Localization Failures

SEKFB 0.0249 0
EKF (q = 100) 0.0260 6
EKF (q = 10) 0.0252 1
EKF (q = 1) 0.0626 0

EKF (q = 0.1) 0.2199 0
EKF (q = 0.01) 0.7045 0

Lastly, we compared the SEKFB with the IMM EKF under various signal-to-noise ratio
(SNR) conditions. The IMM EKF algorithm ran five EKFs in parallel. Each EKF matched
to the CV motion models using different process-noise covariances. The same q values
were used for the IMM EKF as those used for the SEKFB. The IMM algorithm required
elaborate TP design, but information on TP between the five motion models was completely
unknown. Hence, we assumed that the five CV motion models had the same probabilities.
Figure 6 compares the RTAMSEs of the SEKFB, IMM EKF, and EKF using the best q value.
For various SNR conditions, we used five different measurement-noise covariances as
R = r2I3, where r = 0.5, 0.25, 0.1, 0.05, and 0.025. SNR increased as r decreased. In
Figure 6, RTAMSEs tended to decrease as r decreased, which indicates that localization
accuracy increased as SNR increased. The SEKFB exhibited smaller RTAMSEs than the
IMM EKF did because the SEKFB selects the most suitable q at each time step on the basis of
Mahalanobis distance, but the IMM EKF cannot. Under high SNR conditions, for example,
r = 0.05 and 0.025, the SEKFB was more accurate than the EKF using best constant q was
because the adaptation of q in the SEKFB algorithm was based on Mahalanobis distance
evaluation. When computing the Mahalanobis distance, predicted measurement ẑk was
obtained while ignoring measurement noise. Errors due to ignorance may be small under
low-measurement-noise (i.e., high SNR) conditions. Thus, the SEKFB is more effective
under high SNR conditions.

0.5
2
 I

3
0.25

2
 I

3
0.1

2
 I

3
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2
 I

3
0.025

2
 I

3

Measurement noise covariance (R)

0

0.02

0.04

0.06

0.08

0.1

0.12

R
T

A
M

S
E

SEKFB (Proposed)

IMM EKF

EKF (q=10, best choice)

Figure 6. Root time-averaged mean square error under various measurement-noise conditions.
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4. Conclusions

This paper proposed SEKFB for indoor localization using a WSN. The SEKFB switches
multiple Q hypotheses in the CV motion model, whereas conventional algorithms use
constant Q values. In the simulation, the SEKFB exhibited excellent localization accuracy
without a priori information on the best covariance value. SEKFB accuracy was better
than that of the IMM EKF. Moreover, the SEKFB exhibited better reliability than that of
the conventional EKF in terms of localization failure. The SEKFB can thus provide more
accurate and reliable performance than conventional EKFs can for indoor localization
using WSNs.
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