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Abstract: Monitoring the Quality of user Experience is a challenge for video streaming services.
Models for Quality of User Experience (QoE) evaluation such as the ITU-T Rec. P.1203 are very
promising. Among the input data that they require are the occurrence and duration of stalling events.
A stalling even5 is an interruption in the playback of multimedia content, and its negative impact
on QoE is immense. Given the idiosyncrasy of this type of event, to count it and its duration is a
complex task to be automated, i.e., without the participation of the user who visualizes the events or
without direct access to the final device. In this work, we propose two methods to overcome these
limitations in video streaming using the DASH framework. The first method is intended to detect
stalling events. For simplicity, it is based on the behavior of the transport layer data and is able to
classify an IP packet as belonging (or not) to a stalling event. The second method aims to predict if
the next IP packet of a multimedia stream will belong to a stalling event (or not), using a recurrent
neural network with a variant of the Long Short–Term Memory (LSTM). Our results show that the
detection model is able to spot the occurrence of a stalling event before being experienced by the user,
and the prediction model is able to forecast if the next packet will belong to a stalling event with an
error rate of 10.83%, achieving an F1 score of 0.923.

Keywords: stalling events; QoE; video streaming; DASH; deep learning

1. Introduction

Video streaming services have become very popular. In 2020, the revenue of video
streaming platforms amounted to US$25,894 million, and the number of users is expected
to amount to 1.3 billion by 2024 [1]. In this context, the entertainment business is actively
investing in content creation, acquisitions, and also in technology. As a matter of fact, video
streaming platforms are showing that “dynamic markets can benefit consumers with lower
prices and better quality” [2].

When it comes to evaluating quality, two concepts arise, Quality of Service (QoS) and
Quality of user Experience (QoE). The former is mainly based on well-known network
metrics (delay, jitter, etc.). The latter covers a broader range of metrics, trying to infer a
user’s perception of the level of quality provided. Thus, QoE has been adopted by the
scientific community as the best approach to evaluate the performance of video streaming
services. Most multimedia services consider visual quality, loading time, stalling events,
and overall quality as the four basic metrics for evaluating the quality of the playback [3].
Stalling events are particularly relevant, considered by many as the most degrading factor
in QoE [3–8]. In general, it can be stated that the more stalling events, the lower the quality.
Stalling events are caused by the exhaustion of the receiving buffers. They are experienced
by users as sudden stops of the video playback, with a duration of the order of seconds
or even minutes. Several works have studied the impact of stalling events and how these
events can be estimated or predicted [3–9].

In previous work [5], we validated the objective model for QoE estimation in video
streaming services proposed by the ITU-T Rec. P-1203 [10] under an LTE scenario via
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experimentation and emulation. As in [4], stalling events had the most negative impact
on QoE measurements. In order to solve this issue, Casey and Muntean [7] proposed a
solution called DASH-based Quality-oriented Video Delivery (DQVD) to reduce stalling
events during video playback under a heterogeneous architecture. The idea was based on
using dynamic wireless interface selection. This approach activates a second connection
channel on mobile devices to download the necessary content and temporarily improve
performance. The solution monitors the playout buffer levels and if it cannot be replenished
quickly enough using a single connection to avoid the video stalling, the cellular connection
is re-established to increase overall throughput to the buffer. When conditions improve to
the point at which the WiFi connection can sustain replenishing the playout buffer on its
own, the cellular connection is disconnected again.

From a different perspective, Tao et al. [3] presented a novel technique for processing
data collected by the user during the playback of multimedia content over mobile networks.
The authors applied feature selection and deep learning methods with seven layers in
order to predict the subjective QoE scores based on the selected parameters (visual quality,
loading, stalling, and overall quality score). Similarly, Seufert et al. [4] concluded that
“stalling events due to re-buffering still are by far the worst QoE degradation” and focused
their work on the prediction of stalling events in real-time. They proposed a machine
learning-based approach for monitoring QoE-relevant metrics in YouTube, which was
able to predict the occurrence of stalling events in real-time from such basic features. For
training and testing, the authors generated a dataset with 4714 YouTube video sessions
through the Google Chrome web browser, using HTTP-adaptive streaming (HAS).

Following the same trend, Bampis et al. [11] presented a QoE prediction model based
on Support Vector Regression (SVR). It uses three different features to make predictions:
the density of stalling events, time since the last stalling event, and the quality of the
video. The model was tested offline on a Netflix database under the HAS over TCP pro-
tocol. Wassermann et al. [12] studied the behavior of QoE under LTE, taking data from
the network layer and the context (screen size, orientation, playing mode, audio volume,
etc.) when playing YouTube videos. The authors used the ITU-T P.1203 model to estimate
the Mean Opinion Score (MOS) value and employed different ML algorithms such as
Random Forest (RF), Decision Tree (DT), Supported Vector Machine (SVM), K-Nearest
Neighbors (KNN), or Naïve Bayes (NB) to predict the QoE value from a selection of
30 features. Gutterman et al. [13] proposed the use of Adaptive Bit Rate (ABR) through
DASH and WiFi connection, knowing at every moment the state of the buffer. The multi-
media content was divided into chunks using the ChunkDetection algorithm; the features
of the chunks were obtained and from these features, the QoE value was predicted us-
ing the RF algorithm. Although Krishnamoorthi et al. [14] used HAS as the streaming
protocol, features were obtained through chunks from YouTube videos as in [13]. The
mechanism had access to the buffer state and used two methods for prediction: a threshold-
based classifier and a machine learning model based on DT and SVM. Finally, Mazhar
et al. [15] used a supervised machine learning algorithm to predict QoE values from the
C4.5 DT and Adaboost to reduce misclassifications. For this purpose, the authors extracted
226 features from the reception time windows and from the received packets in the network
and transport layer. Tests were carried out using the Quick UDP Internet Connections
(QUIC) protocol at the transport layer. Finally, Abar et al. [16] proposed a new solution
based on Software Defined Network (SDN), DASH, and machine learning to reduce the
occurrence of stalling events during playback when a large volume of clients was connected
to the platform. The model estimated a threshold value of QoE to offer good quality in a
heterogeneous network.

In sum, the identification, measurement, and prediction of stalling events in real-
time are highly valuable tools and this has become a very active area of research. We
could improve accuracy when applying QoE parametric models. For instance, the ITU-T
Rec. P.1203 [5,17] presents an objective model for estimating QoE in video streaming
services. However, one of the required input parameters is the number of stalling events
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that have occurred and their duration. Unless there is a method to identify and measure
stalling events in real-time, the application of the ITU-T Rec. P.1203 needs to be done a
posteriori. Besides, the method should not be based on detection by active users, i.e., the
user that is consuming the video. In addition, the ability to predict when these events are
going to happen would allow the performing of corrective actions to improve the QoE,
e.g., proactively lowering the video resolution or allocating more resources to specific
microservices. Further, new prediction models should be studied and their outcomes
evaluated to take full advantage of the deep learning potential [18–23].

Differing from other works dealing with stalling events by studying the behavior of
the playback buffers or with access to this type of information, it is our initial hypothesis
that the information contained in the network or transport communication layers (or
a combination of both) could be good enough to either detect the existence of stalling
events or to predict their occurrence (or both). One advantage of such an approach is
that the solution would not be affected by the use of encryption techniques in upper
communication layers or by the selected monitoring point in the network in case we use
end-to-end transport layer information.

Consequently, the contribution of this paper is twofold:

1. We propose a method to classify IP packets from a video streaming flow as belonging
(or not) to a stalling event.

2. We present a machine learning-based model to predict if the next packet will be a
stalling event (or not); specifically, we use a Recursive Neural Network (RNN) using
Long Short–Term Memory (LSTM).

To carry out this study, we employed a dataset obtained from an emulated Long-term
Evolution (LTE) scenario that was validated in [5,24]; video streaming transmission and
reception were executed in real devices, whereas the LTE network was simulated with the
NS3 network simulator. Dynamic adaptive streaming over HTTP (DASH) was used. In
the light of the results, both models are very promising in order to automate the detection
and measurement of stalling events to facilitate the use of QoE monitoring. Although
many players available on the market offer an API for these events and many others, it is
important to realize that we are proposing obtaining these data from the network, without
the need of accessing a client’s player.

The rest of the document is organized as follows. Section 2 describes the research
methodology, including data acquisition, imbalanced datasets, and data preprocessing.
The classification model is introduced in Section 3, as well as its performance results. Then,
we describe the proposed forecast model in Section 4, which also includes the performance
evaluation. Finally, the paper ends summarizing the most important findings.

2. Methodology
2.1. Data Acquisition

The dataset was obtained in an LTE emulated deployment described and validated
in [5,24] (see Figure 1). The scenario was composed of three devices: a real video server, an
emulated LTE network, and a client. The video server was implemented with the Wowza
Streaming Engine to serve live video streaming. The LTE network was simulated with
the NS3 network simulator. Finally, a real client consumed the video streaming through
his/her web browser. The video transmission was performed using DASH.

DASH or MPEG-DASH [25] is a standard for video transmission. It employs the
TCP protocol at the transport layer and the HTTP framework to deliver the content at the
application level [26], thus not being affected by Network Address Translations (NATs)
or firewalls. One of its key features is that it is the client who choses the bitrate that
better adapts to the conditions. Briefly, the server divides the video content into smaller
segments (usually from 2 s to 10 s). Then, it encodes them at different compression
levels, i.e., providing different bitrates. All these segments are then available to the client.
Multiple bit-rates and quality levels between segments allow meeting with the available
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bandwidth, maximizing the use of the network in a dynamic way [7]. DASH uses TCP at
the transport layer.
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Figure 1. Testbench to obtain the dataset.

In all tests, an H.264 sequence of the “Big Buck Bunny” cartoon movie was sent, with
a duration of 180 s and a resolution of 720p. Network delays varied from a minimum
value of 0 to a maximum value of 150 ms in steps of 25 ms. Experiments were repeated
10 times to prevent unexpected singularities. Therefore, a total number of 70 captures
were collected. On the client side, we employed the Wireshark tool [27] to collect both the
received and sent packets from/to the video server. The total number of received packets
was 1647770, of which 91,543 packets were identified by visual inspection as belonging to
stalling events; thus, the imbalanced ratio was 1:18. Table 1 shows the characteristics of
the emulated environment. From the collected data, we focused on the received data at
the network and transport layers, corresponding to the TCP and IP protocols, respectively.
Table 2 shows all the original features in our dataset.

Table 1. Characteristics of the Emulated Environment.

Feature Description

Number of devices 3

Devices
1. PC2. A live video streaming server (Wowza Streaming Engine)
2. NS3-PC1. An emulated LTE Network with NS3
3. PC3- Video Client (Web browser and Wireshark)

Codec H.264/MPEG-4 AVC
Audio encoding/channels AAC/stereo
Resolution 720p (1280 × 720)
Coding bitrate (Kbps) 2628
Video Transport Protocol DASH
Propagation Model Nakagami (m = 5)
Simulations 10 for each configured delay
eNB operation power 100 dBm
Antenna Type Cosine height 1.5 m
eNB noise 2 dB
UE noise 7 dB
UE operation power 26 dBm, height 2.5 m, distance 50 m

2.2. Imbalanced Datasets

It can be assumed that network performance is generally favorable and network
impairments do not occur continuously. Under this assumption, a dataset obtained captur-
ing network traffic will be usually imbalanced. For instance, stalling events could occur
occasionally, thus becoming a minority class (not the natural state). However, the minority
class would be the most important from a QoE perspective because is deeply linked with a
behavior that needs to be avoided (or whose impact needs to be limited).
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Table 2. Extracted Features for each Packet in the Dataset.

Feature Description

Tcp seq num TCP sequence number
Tcp win siz TCP window size
Tcp fast ret Fast retransmitted packet

Tcp ack dup Packet with ACK duplicated
Tcp prev NC Previous packet is lost
Tcp pkt ooo TCP Packet out-of-order

Pkt len IP packet length
Ip len IP header length

Tcp hea len TCP header length
Tcp flag ack TCP ACK flag
Tcp flag urg TCP URG flag
Tcp flag psh TCP PUSH flag
Tcp flag rst TCP RESET flag
Tcp flag syn TCP SYN flag
Tcp flag fin TCP FIN flag

In this work, we deal with an imbalance dataset obtained from [5,24]. Despite being
imbalanced, our goal is to use it in order to propose an efficient mechanism able to classify
a packet as belonging (or not) to a stalling event and to predict if the next packet will belong
(or not) to a stalling event. Whereas most of the regular learning algorithms generalize
well into balanced datasets, imbalanced datasets need to be addressed differently [28,29],
otherwise the underrepresented minority class would be weaker than the majority class.

In [30], Sun et al. presented a review of the imbalanced classification problems in
different application domains and reported several solutions. Further, the work done by
He et al. [31], Krawczyk [32], and Vluymans [33] explained how to deal with imbalanced
data and data skewness focusing on computational efficiency and adaptive methods. In
this sense, there is a common agreement that preprocessing is required in this situation.
Most preprocessing methods are available in Scikit-Learn [34], a simple Open-Source tool
that also provides predictive analysis using additional libraries such as NumPy, SciPy, and
matplotlib. The first preprocessing step is to transform the original dataset by reducing the
number of features. It can be assumed that very similar features are redundant and only
increase the dimension and complexity of the dataset. Consequently, some of them could
be ignored. Some techniques employed for feature selection are correlation, Recursive
Feature Elimination (RFE), Principal Feature Analysis (PFA), Independent Component
Analysis (ICA), and Fisher’s Linear Discriminate Analysis (LDA) [35,36]. These methods
follow a similar process: a subset of features is created and one feature is excluded from
the group at each iteration. In contrast, Principal Component Analysis (PCA) and Forward
Selection Component Analysis (FSCA) reduce the number of features by approximation,
reconstructing the majority of the original information [37].

2.3. Processing Data

For feature selection, we applied PFA. PFA computes the n-dimensional correlation
matrix, showing the correlation coefficients between two features. From the calculated
correlation matrix, the method obtains a series of Vi vectors that represent the i-th projection
of the feature vector X for a lower subset of features. The higher the correlation, the higher
the absolute value weight vector Vi. Once the subspace dimension has been set, 1D for
our case, PFA clusters highly correlated features together using K-Means. For each cluster,
it chooses the feature that best represents the set containing less redundant and more
dispersed information. This allows us to maintain a good representation of the original
data set with a complexity similar to PCA [22].

After preprocessing the dataset and using cross-validation techniques, the most rele-
vant features in the appearance of stalling events belong to the transport communication
layer, specifically the TCP SYN (Transport Control Protocol SYNchronization) flag, the
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TCP sequence number, and the TCP window size, as shown in Figure 2. It is intuitive to
think that a video streaming transmission protocol over reliable transport such as DASH
will have an effect on the transport layer, so the feature selection process corroborates
this approach.
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2.4. Learning Metrics

If a raw imbalanced dataset is trained, the result may achieve high accuracy, but the
model has a “naive” result. The accuracy is not appropriate for imbalanced problems
because it is biased to the majority class [19]. For binary classification problems, as in this
work, the confusion matrix consists of four components (Table 3): True Positive (TP), when
predicted and real values are both positive; True Negative (TN), when predicted and real
values are negative; False Positive (FP), when the prediction is positive and real data are
negative, and False Negative (FN), when the prediction is negative and real values are
positive. Our models will try to maximize TP and TN and minimize FP and FN.

Table 3. Confusion Matrix.

Predicted Positive Predicted Negative

Real Positive True Positive (TP) False Negative (FN)

Real Negative False Positive (FP) True Negative (TN)

In addition, new metrics can be derived from the confusion matrix to evaluate model
performance using imbalance datasets. Traditionally, the learning process has adopted
accuracy as the metric to fit and improve the performance of the model. Accuracy is
usually defined as the number of correct predictions made by the model over all types of
predictions. The use of Accuracy in imbalanced problems is discouraged because it is not
very precise. As an alternative, Precision, Recall, F1, and AUC are recommended. Precision
measures the exactness as the number of positive samples tagged without errors. Therefore,
it is calculated as the ratio between samples correctly assigned to the positive class and all
samples classified as positive (1). Recall quantifies the completeness. It is assessed as the
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fraction of the total amount of relevant instances that were actually retrieved (2), i.e., how
many positive samples were identified among all real positive samples. The F1-Score (F1)
is a simpler metric that joins Precision and Recall as a harmonic mean as shown in (3). F1 is
very useful when we look for an equilibrium between both metrics and we have a large
number of negative samples. Consequently, it is possible to represent the robustness of the
classifier in a single metric, quantifying the correct number of non-lost instances. Finally,
the Area Under the Curve (AUC) evaluates the model according to the distinction among
classes (4); the higher the value, the greater the separation of the classes. The range for all
previous metrics is [0, 1] [38].

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2·(Precision·Recall)
Precision + Recall

(3)

AUC =
TP(TN + FP) + TN(TP + FN)

2(TP + FN + TN + FP)
(4)

3. Threshold-Based Model to Classify Stalling Events

In this section, we describe and evaluate the proposed model to classify packets as
belonging (or not) to stalling events.

3.1. Model Description

Instead of applying a machine learning method for classification, we will address this
goal by observing only the behavior of the TCP SYN flag in the multimedia stream. The
TCP SYN flag was identified previously as the most relevant feature in the feature selection
process. Therefore, we propose a sliding window-based, simple (yet efficient) algorithm
(see Algorithm 1).

Let us assume an initial window size t, where t is much smaller than the total number
of captured packets in the dataset T (t << T). Please note that in the paper, a packet is
equivalent to a captured IP packet with its corresponding header and payload. Packets
will be numbered using the sub index i, from i = 1 to i = T. Then, we define a vector L of
size N, where N (5) represents how many consecutive windows with different packets are
contained in the dataset. L is used to store the number of packets with the TCP SYN flag
active within the same sliding window. From the stored values in L, a threshold will be
defined so that if this threshold is exceeded, then packet i will be classified as belonging to
a stalling event.

Let us give an example. Let us assume a sliding window with a size equal to three
packets (t = 3) and a dataset with a size of six packets (T = 6). Then, applying (5), vector L
would have four elements (N = 4).

N = T − t + 1 (5)

That is, there are four consecutive windows containing different packets through the
dataset (see Figure 3). The first sliding window w1 covers packet i = 1 to packet i = 3 (both
included). If the sum of TCP SYN flags in these packets is 3, then L[0] = 3. For the second
iteration, the sliding window w2 covers packet i = 2 to packet i = 4 (both included). If
the sum of TCP SYN flags in these packets is 2, L[1] = 2, and so on, until the last sliding
window w4 (e.g., L = [3, 2, 2, 1]). Once vector L has been computed, the average value (6)
and the standard deviation (7) of all its elements are obtained. We define the threshold th
as shown in (8). In our example, th would be equal to 2.71 (the average value is equal to 2
and the standard deviation is equal to 0.71). In order to classify a packet i as belonging to a
stalling event (or not), we observe the positions in vector L impacted by this packet. For
instance, the first packet (i = 1) appears only in the first window w1, so we only observe
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L[0]. If L[0] > th then packet i belongs to a stalling event. In the example, 3 > 2.71 so the
first packet is assumed to belong to a stalling event. For the second packet (i = 2), we know
that this packet appears in the first two sliding windows w1 and w2, so we need to compute
the average value of L[0] and L[1]; in this case, 2.5. Then again, if avg(L[0], L[1]) > th this
packet would belong to a stalling event; in this case, 2.5 < th, so the second packet (i = 2)
does not belong to a stalling event.
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Taking into account that any packet will appear in t sliding windows, except the first
and last (t-1) packets, packet i (where t ≤ i ≤ T − t + 2) belongs to the sliding windows
from w(i-t + 1) to wi. Consequently, to classify packet I, the positions L[i-t] to L[i-1] will be
evaluated (9).

avg(L) =
N

∑
n=1

L[n]
N

(6)

std(L) =

√√√√ 1
N

N

∑
n=1

(L[n]− avg(L))2 (7)

th = avg (L) + std(L) (8)

Frame i


i f i < t eval. f rom L[0]to L[i− 1]

i f t ≤ i ≤ T − t + 2 eval. f rom L[i− t] to L[i− 1]
i f i > T − t + 1 eval. f rom L[i− t + 1] to L[t− 1]

(9)

Algorithm 1 Threshold-based classification model

1. procedure DATASETSPLITTING (data(ex, cap))
2. experiment = 150
3. while experiment ≥ 0 do
4. capture = 10
5. while capture ≥ 0 do
6. if capture > 2 then
7. train = data(experiment, capture)
8. else
9. test = data(experiment, capture)
10. end if
11. capture = capture—1
12. end while
13. experiment = experiment—25
14. end while
15. end procedure
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Algorithm 1 Cont.

16. procedure GETTHRESHOLDVALUE(train, t)
17. dataX = []
18. T = len(train)
19. while i ≤ T − t + 1 do
20. a = train[i: (i + t)]
21. dataX = a.append(a)
22. i = i + 1
23. end while
24. dataTrain = sum(dataX, 1)
25. th = mean(dataTrain) + std(dataTrain)
26. return th
27. end procedure
28. procedure SLIDINGWINDOWS(test, t)
29. dataY = []
30. T = len(test)
31. while i ≤ T − t + 1 do
32. a = test[i: (i + t)]
33. dataY = a.append(a)
34. i = i + 1
35. end while
36. dataTest = sum(dataY, 1)
37. return dataTest
38. end procedure
39. procedure CHECKINGTHRESHOLD(th, a)
40. if a.mean() ≥ th then
41. st_event.append(1)
42. else
43. st_event.append(0)
44. end if
45. end procedure
46. procedure STALLINGDETECTION(dataTest, th, t)
47. st event = []
48. T = len(dataTest)
49. while i ≤ T + t do
50. if i < t then
51. a = dataTest[0: i]
52. CheckingThreshold(th, a)
53. else if i > T then
54. a = dataTest[i−t:]
55. CheckingThreshold(th, a)
56. else
57. a = dataTest[i−t: i]
58. CheckingThreshold(th, a)
59. end if
60. i = i + 1
61. end while
62. end procedure

3.2. Results

We compared the frame classification obtained with this algorithm with the stalling
events registered via experimentation in [5]. It can be observed that the stalling events in
the test-bed undergo a short time-delay compared to the classification results obtained
with the algorithm (see Figure 4). This fact can be explained because of the buffering effect.
As shown in Figure 4, the model detected the stalling event before the moment it was
registered as such by the user (please take into account that real measurements were done
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by the final user who consumes the video streaming). From our point of view, this can be
seen as an advantage, since proactive actions could be applied in the service/system in
order to avoid the stalling event before it is experienced by the final user.
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In addition, we tested this process using different window sizes, from t = 128 to
t = 1024 packets and observed the AUC score. The best performance was obtained for
larger window sizes (1024 packets). For small values of t, overfitting occurred due to
insufficient data. This effect was clearly avoided by increasing t because the amount of
false positives was highly reduced (see Figure 5).
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4. Forecasting Model to Predict Stalling Events

In this section, we describe and evaluate the proposed forecasting model for stalling
events. The forecasting model aims to predict the behavior of future packets. Two classes
are defined to solve the binary prediction challenge: 1 for stalling event and 0 for non-
stalling (normal operation).

4.1. Model Description

One of the most popular approaches for forecasting is the use of artificial Neural
Networks (NN), considered a deep learning technique. Despite the advances in NN,
their use with imbalanced datasets is not completely mature. Johnson and Khoshgoftaar’s
survey [39] described the implementation details of different case studies, highlighting their
strengths and weaknesses in dealing with imbalanced data in aspects related to complexity
and the architecture of the data, performance evaluation, or ease of use. Of particular
interest for our study is the RNN using LSTM. LSTM was introduced by Hochreiter and
Schmidhuber in [18] to overcome and explore gradient problems and has gained popularity
in predictive analysis due to its capacity to predict time series data [19–21].

Consequently, our proposal is based on RNN since the state of the memory influences
the decision making process. In particular, it will use LSTM, solving the vanish gradient
problem in the RNN with back propagation through time. As in the classification problem,
we suggest the use of a sliding window of size t to make decisions. In this case, the most
recent t packets will be used to predict if the next packet will belong to a stalling event
or not. The selected t value for this specific case is 1024 packets due to the overfitting
effect observed previously for smaller values. We implemented the Attention enhanced
Bidirectional Long Short—Term Memory (ABi-LSTM) model [38] with blocks of long-term
memory and back and forward propagation (see Algorithm 2). These memory blocks
use gates, inputs, and outputs to manage the state and obtain the prediction of the future
packet. Finally, the forget gate is responsible for updating the memory. Observe that the
proposed model is based on the classification of sequences using two LSTMs in the input
sequence as depicted in Figure 6. The first adds the sequence as such, and the second an
inverted copy of the sequence, providing an additional context giving faster and deeper
learning [20,40,41].

Algorithm 2 ABi-LSTM prediction model

procedure DEFINITIONANDTRAINING
(trainX[k] trainY[k], testX[k], testY[k])

1. model = Sequential();
2. Bidirectional(LSTM(activation = ‘relu’));
3. Dropout(0.3);
4. Dense(activation = ‘sigmoid’);
5. model.compile(loss = binary_crossentropy, metrics = [accuracy,F1,Recall,Precision],

opt = SGD(lr = 0.0001))
6. model.fit(trainX[k],trainY[k])
7. return model.evaluate(testX[k],testY[k])
8. end procedure
9. procedure CV ABI-LSTM(data, K)
10. Partition randomly the data in K subsets (DT1, . . . , DTk)
11. for k = 1 to K:
12. Construct the kth training set with K—1 subsets
13. Construct the kth testing set with 1 subset, different to training set.
14. result[k] = DEFINITIONANDTRAINING (trainX[k], trainY[k], testX[k], testY[k])
15. end for
16. Represent results for Loss Function, Accuracy, Precision, Recall and F1 Score for each fold.
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The training process updates the weight coefficient w of the model using Stochastic
Gradient Descent (SGD) (10) and finds the optimal weights to minimize the loss function.
Another factor is the learning rate (η) that comes into play managing the learning speed and
reducing the training overfitting [38]. In order to reduce overfitting, this algorithm applies
regularization techniques by penalizing the network weights on the final objective function.
The regulation factor (0.3) has been carefully selected to obtain a balanced classification
using the Dropout technique; this implementation is the most powerful in deep learning.
Its purpose is to drop units during forward propagation or backward propagation so that
the network does not adapt to a specific set of features.

The proposed model has an entrance layer, an exit layer and a hidden layer; the con-
nections between the different layers are bidirectional. Each layer has different connection
units; I units for the input layer, H units for the hidden layer, and K units for the output
layer. The computational complexity of a bidirectional LSTM is given by O(2n), where n
is the number of weights [18]. For our case, n can be expressed as shown in (11), with I =
1024, H = 1024, and K = 1. For each fold, the average training time is 2650 s, with 60 s for
evaluation. For the fitting, we use 25 epochs and the batch_size value is 1024. Table 4 shows
the characteristics of the equipment used to run the model.

w w + ∆w; ∆w = −η∇J(w) (10)

n = 4IH + 4H2 + 3H + HK (11)

Table 4. Details of the Server used for Simulation.

Feature Description

Description Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHz
CPU(s) 60

Thread(s) per core 2
Core(s) per socket 10
Core(s) per socket 2

UE operation power 26 dBm, height 2.5 m, distance 50 m

4.2. Results

In order to obtain the results for this model, we use k-Fold Cross Validation as the
statistical method to estimate the ability of the model raised on different subsets of data
within a single dataset. The procedure has a single parameter called k that refers to the
number of groups into which a given data sample will be divided. For the evaluation of
each group, the group is taken as a testing dataset and the rest as a training dataset; the
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model is fitted with the training dataset and evaluated with the testing dataset. The result
of each fold is saved and finally, the results from the different folds evaluated are compared.
Generally, k-Fold Cross Validation results in a less biased or less optimistic estimate of the
ability of the model than other methods. In this study, a value of k = 10 will be used; thus, a
10-fold cross-validation will be performed.

After the training and validation, the proposed ABi-LSTM model is able to predict
the next packet state (stalling event or not) with an excellent performance. In the learning
process, the η value is small (0.0001) and the learning process is quite slow. As depicted
in Figure 7, almost all the folds in which the data set is divided achieve notable results
in terms of Precision, Recall, and F1. For instance, the model only fails classifying 2936
out of 27,091 packets of one capture, which is an error rate of 10.83%. Table 5 includes the
performance results in terms of the confusion matrix, Recall, Precision, and F1 score for
this example.
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Table 5. Example of the Model Performance for one Data Capture.

Metric Value

TP 6467
FP 821
FN 2115
TN 17688

Precision TP
TP+FN = 17688

17688+821 = 0.956
Recall TP

TP+FP = 17688
17688+2115 = 0.893

F1 Score 2·(Precision·Recall)
Precision+Recall =

2·(0.956 ·0.893)
0.956 + 0.893 = 0.923

Finally, we compare from a qualitative perspective our two proposals with those closer
to the related literature. The collected information is shown in Table 6. It is important to
note that among the methods that do not use information from the buffers, our proposal is
the simplest (yet efficient) in terms of number of features and the only one using LTSM as
the technique for deep learning.
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Table 6. Qualitative comparison of our proposal with other methods from the related literature.

Author Network Transp. Layer Video Streaming ML Model Buffer Check Number of Features

Martinez-Caro & Cano LTE TCP DASH (HTTP) LSTM & Time Series No 1
Casey & Muntean [7] WiFi & Cellular TCP DASH (HTTP) - Yes -

Seufert et al. [4] - TCP & QUIC HAS (HTTP) Weka No +300
Tao et al. [3] Wireless - - DNN Yes 4

Bampis et al. [11] - TCP HAS (HTTP) SVR, KNN, NB No 30
Gutterman et al. [13] WiFi TCP DASH (HTTP) DNN Yes 3

Krishnamoorthi et al. [14] - TCP HAS (HTTP) DT, SVN & Threshold
based Yes -

Mazhar et al. [15] 3G QUIC HAS (HTTP) C4.5 Adaboost No 5

Abar et al. [16] - TCP DASH (HTTP) Threshold-based RF,
DNN, KNN & DT Yes -

Wassermann et al. [12] LTE TCP HAS (HTTP) RF, DT, SVM; KNN &
NB Yes 30

5. Conclusions

Competition among video streaming platforms is fierce. Consequently, the price/
quality binomial can be a key factor to guarantee users’ subscriptions. In terms of quality
monitoring, numerous QoE models have been proposed in the related literature, and
one common factor among all of them is the number and duration of stalling events.
Nevertheless, how to carry out this task in a non- (or minimal) invasive way is still an open
issue. In this paper, we have proposed a classification algorithm and a prediction model
able to detect and measure the duration of stalling events using only information from the
transport and network layers. By doing so, we provide a valuable tool for QoS/QoE service
monitoring and the development of new adaptive schemes for video streaming. Stalling
events are one of the most influential parameters of users’ quality perception. Devising
an agnostic method—from the user’s device perspective—to detect and foresee stalling
events, will allow the application of more powerful countermeasures to recover previous
quality levels. In addition, new streaming protocols could benefit from such information,
in a similar way to the DASH adaptive mechanism. The fact of being agnostic, that is, to
operate without extracting information from the player but only from the network, would
be extremely valuable because it could be more easily deployed. Our proposed models
have been trained and tested using a dataset containing a DASH-based video stream. Even
though our proposal has limitations to be executed in real time, it can serve as a basis to
advance towards real-time solutions. The results are very promising, achieving values
close to 1 in Recall, Precision, and the F1 score. As future work, we plan to extend these
models by testing multiple simultaneous flows, different streaming protocols, and novel
neural network mechanisms.
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