Accurate and Efficient Evaluation of Bit Error Rate for Dynamic Directional Modulation for Standard Modulation Schemes
Abstract
:1. Introduction
1.1. Related Work
1.2. Our Contributions
2. Orthogonal Vector Approach for Dynamic Directional Modulation
3. Derivation of Average SNR for Dynamic Directional Modulation
4. Evaluation of BER for Dynamic Directional Modulation
4.1. Zero Mean Artificial Gaussian Noise: Results and Discussion
4.2. Zero Mean Artificial Non-Gaussian Noise: Results and Discussion
5. Non-Iterative BER-Driven DDM Synthesis
5.1. General Procedure
5.2. Results: Synthesis Example
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zou, Y.L.; Zhu, J.; Wang, X.B.; Hanzo, L. A survey on wireless security: technical challenges, recent advances, and future trends. Proc. IEEE 2016, 104, 1727–1765. [Google Scholar] [CrossRef] [Green Version]
- Stallings, W. Cryptography and Network Security: Priciples and Practice, 7th ed.; Pearson Education Limited: Harlow, UK, 2017. [Google Scholar]
- Barenghi, A.; Breveglieri, L.; Koren, I.; Naccache, D. Fault injection attacks on cryptographic devices: Theory, practice, and countermeasures. Proc. IEEE 2012, 100, 3056–3076. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Fakoorian, S.A.A.; Huang, J.; Swindlehurst, A.L. Principles of physical layer security in multiuser wireless networks: A survey. IEEE Commun. Surv. Tutor. 2014, 16, 1550–1573. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.M.; Ng, D.W.K.; Gerstacker, W.H.; Chen, H.S. A survey on multiple-antenna techniques for physical layer security. IEEE Commun. Surv. Tutor. 2016, 19, 1027–1053. [Google Scholar] [CrossRef]
- Sun, L.; Du, Q. A Review of Physical Layer Security Techniques for Internet of Things: Challenges and Solutions. Entropy 2018, 20, 730. [Google Scholar] [CrossRef] [Green Version]
- Goel, S.; Negi, R. Guaranteeing secrecy using artificial noise. IEEE Trans. Wirel. Commun. 2008, 7, 2180–2189. [Google Scholar] [CrossRef]
- Ding, Y.; Fusco, V. Directional-modulation-enabled physical-layer wireless security. In Trusted Communications with Physical Layer Security for 5G and Beyond; Duong, T.Q., Zhou, X., Poor, H.V., Eds.; The Institution of Engineering and Technology: London, UK, 2017; pp. 313–336. [Google Scholar]
- Ding, Y.; Fusco, V. Establishing metrics for assessing the performance of directional modulation systems. IEEE Trans. Antennas Propag. 2014, 62, 2745–2755. [Google Scholar] [CrossRef] [Green Version]
- Babakhani, A.; Rutledge, D.B.; Hajimiri, A. Near-field direct antenna modulation. IEEE Microw. Mag. 2009, 10, 36–46. [Google Scholar] [CrossRef]
- Daly, M.; Bernhard, J. Directional modulation technique for phased arrays. IEEE Trans. Antennas Propag. 2009, 57, 2633–2640. [Google Scholar] [CrossRef]
- Daly, M.P.; Daly, E.L.; Bernhard, J.T. Demonstration of directional modulation using a phased array. IEEE Trans. Antennas Propag. 2010, 58, 1545–1550. [Google Scholar] [CrossRef]
- Daly, M.P.; Bernhard, J.T. Beamsteering in pattern reconfigurable arrays using directional modulation. IEEE Trans. Antennas Propag. 2010, 58, 2259–2265. [Google Scholar] [CrossRef]
- Hong, T.; Song, M.Z.; Liu, Y. Dual-beam directional modulation technique for physical-layer secure communication. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1417–1420. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, Y.; Fusco, V. Sidelobe modulation scrambling transmitter using Fourier Rotman lens. IEEE Trans. Antennas Propag. 2013, 61, 3900–3904. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Zhang, Y.; Fusco, V. Fourier Rotman lens enabled directional modulation transmitter. Int. J. Antennas Propag. 2015, 2015, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Valliappan, N.; Lozano, A.; Heath, R.W. Antenna subset modulation for secure millimeter-wave wireless communication. IEEE Trans. Commun. 2013, 61, 3231–3245. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Fusco, V. BER-driven synthesis for directional modulation secured wireless communication. Int. J. Microw. Wirel. Technol. 2013, 6, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Fusco, V.F. A vector approach for the analysis and synthesis of directional modulation transmitters. IEEE Trans. Antennas Propag. 2014, 62, 361–370. [Google Scholar] [CrossRef]
- Shi, H.; Tennant, A. Simultaneous, multichannel, spatially directive data transmission using direct antenna modulation. IEEE Trans. Antennas Propag. 2014, 62, 403–410. [Google Scholar] [CrossRef]
- Zhu, Q.; Yang, S.; Yao, R.; Nie, Z. Directional modulation based on 4-D antenna arrays. IEEE Trans. Antennas Propag. 2014, 62, 621–628. [Google Scholar] [CrossRef]
- Ding, Y.; Fusco, V.F. Constraining directional modulation transmitter radiation patterns. IET Microw. Antennas Propag. 2014, 8, 1408–1415. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Fusco, V.F. Directional modulation far-field pattern separation synthesis approach. IET Microw. Antennas Propag. 2015, 9, 41–48. [Google Scholar] [CrossRef]
- Ding, Y.; Fusco, V.F. MIMO-inspired synthesis of directional modulation systems. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 580–584. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Shu, F.; Li, J. Robust synthesis method for secure directional modulation with imperfect direction angle. IEEE Commun. Lett. 2016, 20, 1084–1087. [Google Scholar] [CrossRef]
- Ding, Y.; Fusco, V. A review of directional modulation technology. Int. J. Microw. Wirel. Technol. 2015, 8, 981–993. [Google Scholar] [CrossRef] [Green Version]
- Narbudowicz, A.; Amman, M.J.; Heberling, D. Directional modulation for compact devices. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2094–2097. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Fusco, V. A synthesis-free directional modulation transmitter using retrodirective array. IEEE J. Sel. Top. Signal Process. 2017, 11, 428–441. [Google Scholar] [CrossRef]
- Sun, C.; Yang, S.; Chen, Y.; Guo, J.; Qu, S.; Hu, J. 4-D retro-directive antenna arrays for secure communication based on improved directional modulation. IEEE Trans. Antennas Propag. 2018, 66, 5926–5933. [Google Scholar] [CrossRef]
- Hong, T.; Shi, X.P.; Liang, X.S. Synthesis of sparse linear array for directional modulation via convex optimization. IEEE Trans. Antennas Propag. 2018, 66, 3959–3972. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, W.; Li, Y.; Zhao, X.; Wang, C. Directional modulation design under a constant magnitude constraint for weight coefficients. IEEE Access 2019, 7, 154711–154718. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, W.; Li, Y.; Zhao, X.; Wang, C. Directional modulation design under maximum and minimum magnitude constraints for weight coefficients. Ad Hoc Netw. 2020, 10, 102034. [Google Scholar] [CrossRef]
- Pozar, D. The active element pattern. IEEE Trans. Antennas Propag. 1994, 42, 1176–1178. [Google Scholar] [CrossRef]
- Proakis, J.; Salehi, M. Digital Communications, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2008; pp. 160–289. [Google Scholar]
- Cho, K.; Yoon, D. On the general BER expression of one- and two-dimensional amplitude modulations. IEEE Trans. Commun. 2002, 50, 1074–1080. [Google Scholar]
- Bit Error Rate, Matlab Help Centre. Available online: https://es.mathworks.com/help/comm/ug/bit-error-rate-ber.html#bq421b1 (accessed on 13 January 2021).
- Parron, J.; Cabrera-Hernandez, E.A.; Tennant, A.; DePaco, P. Multiport compact stacked patch antenna with 360° beam steering for generating dynamic directional modulation. IEEE Trans. Antennas Propag. 2021, 69, 1162–1167. [Google Scholar] [CrossRef]
Closed-Form Equation [11,12,13,18] | Data Stream Simulation [10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32] | |
---|---|---|
Static DM | Only QPSK | Yes |
Dynamic DM: zero-mean Gaussian orthogonal artificial noise | Only QPSK | Yes |
Dynamic DM: zero-mean non-Gaussian orthogonal artificial noise | No | Yes |
Computation time | Low | High |
Modulation Scheme | QPSK | 16-QAM | 8-PSK |
---|---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parrón, J.; Cabrera-Hernandez, E.; Tennant, A. Accurate and Efficient Evaluation of Bit Error Rate for Dynamic Directional Modulation for Standard Modulation Schemes. Electronics 2021, 10, 776. https://doi.org/10.3390/electronics10070776
Parrón J, Cabrera-Hernandez E, Tennant A. Accurate and Efficient Evaluation of Bit Error Rate for Dynamic Directional Modulation for Standard Modulation Schemes. Electronics. 2021; 10(7):776. https://doi.org/10.3390/electronics10070776
Chicago/Turabian StyleParrón, Josep, Edith Cabrera-Hernandez, and Alan Tennant. 2021. "Accurate and Efficient Evaluation of Bit Error Rate for Dynamic Directional Modulation for Standard Modulation Schemes" Electronics 10, no. 7: 776. https://doi.org/10.3390/electronics10070776
APA StyleParrón, J., Cabrera-Hernandez, E., & Tennant, A. (2021). Accurate and Efficient Evaluation of Bit Error Rate for Dynamic Directional Modulation for Standard Modulation Schemes. Electronics, 10(7), 776. https://doi.org/10.3390/electronics10070776