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Abstract: Object classification is important information for different transportation areas. This
research developed a probabilistic neural network (PNN) classifier for object classification using
roadside Light Detection and Ranging (LiDAR). The objective was to classify the road user on the
urban road into one of four classes: Pedestrian, bicycle, passenger car, and truck. Five features
calculated from the point cloud generated from the roadside LiDAR were selected to represent
the difference between different classes. A total of 2736 records (2062 records for training, and
674 records for testing) were manually marked for training and testing the PNN algorithm. The
data were collected at three different sites representing different scenarios. The performance of the
classification was evaluated by comparing the result of the PNN with those of the support vector
machine (SVM) and the random forest (RF). The comparison results showed that the PNN can
provide the results of classification with the highest accuracy among the three investigated methods.
The overall accuracy of the PNN for object classification was 97.6% using the testing database. The
errors in the classification results were also diagnosed. Discussions about the direction of future
studies were also provided at the end of this paper.

Keywords: object classification; probabilistic neural network; roadside LiDAR; point cloud

1. Introduction

Object classification can provide numerous benefits for different transportation areas.
In general, classification is defined as classifying the objects into one of the finite sets of
classes. Object classification can provide valuable knowledge for travel behavior research,
transport planning and traffic management [1]. The percentage of different vehicle classes
can be used for pavement design and maintenance. Object classification is also becoming
more and more important for intelligent transportation systems (ITS). For example, the
auto-toll system calculates the fees based on the vehicle classification results. For those
applications in ITS, the classification needs to be fast and accurate at the same time. The
real-time wildlife crossing system activates the real-time lighting sign by detecting the
large animal (small animal with low danger risk will not be reported). Additionally, the
pedestrian cutting in behavior can be reported by successfully classifying the pedestrians
from the vehicles. The typical classification procedure can be usually chopped into the fol-
lowing steps: Defining the number of classes, selecting the features used for classification,
and applying a proper classifier for classification. The classification can be divided into
two types: Unsupervised classification and supervised classification. The unsupervised
classifier means the classifier does not need any labeling in advance and can classify the
objects by searching the thresholds automatically. For object classification, there may be
several features that impact the thresholds selection. The supervised classifier is more
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popular than the unsupervised classifier (usually rule-based method) with the develop-
ment of machine learning [1]. The supervised classification means manual labeling for
the training set is required, and the classifier can learn the difference between different
classes using the labeled training set. There are four major approaches based on the used
features for supervised classification: Shape-based method, pixel-based method, density-
based method, and intensity-based method [2]. The deep learning (DL) and machine
learning (ML) approaches have enhanced the artificial intelligent (AI) tasks, including
object classification [3]. The roadside Light Detection and Ranging (LiDAR) can provide
three-dimensional shape information for the detected object, which is an emerging method
for object classification serving different applications [4–6].

This paper developed a shape-based method with the probabilistic neural network
(PNN) classifier for object classification using the roadside LiDAR data. The shape in-
formation was extracted from a previously developed roadside LiDAR data processing
procedure. The performance of the proposed method was evaluated using the real-world
collected data. The rest of the paper is structured as follows. Section 2 documents the
related work. Section 3 briefly introduces the LiDAR data processing and the feature
selection. Section 4 describes the PNN classifier. Section 5 trains the classifier and evaluates
the performance with the real-world data. Section 6 summarizes the contributions of the
paper and provides discussions for future studies.

2. Related Work

A lot of studies have been conducted for object classification on the road. Biljecki et al. [7]
developed a fuzzy-based method for classifying the trajectories obtained from GPS into dif-
ferent transportation model. The testing results showed that this method can achieve 91.6%
of accuracy by comparing them with the reference data derived from manual classification.
Fuerstenberg et al. [8] developed a speed-based method for pedestrian and non-pedestrian
objects detection. An accuracy of more than 80% can be achieved in an urban road en-
vironment. Shape-based methods have been well developed for object classification in
transportation [9]. A lot of efforts have been conducted to use the features extracted from
videos for object classification [10]. Gupte et al. developed a rule-based method to classify
vehicles into two categories: Trucks and other vehicles [9]. The authors assumed that trucks
have a length greater than 550 cm and a height greater than 400 cm. Vehicles with parameters
out of the range will be classified as non-trucks. Though they claimed a correct classification
rate of 90% can be achieved in the test, this simple rule-based algorithm can only work for a
pre-defined zone, and the error went high when there were multiple vehicles existing in the
scene. Zhang et al. [11] used pixel-represented lengths extracted from uncalibrated video
cameras to distinguish long vehicles from short vehicles. The results can achieve the accuracy
of more than 91% for vehicle classification. Mithun et al. [12] used multiple time-spatial
images (TSIs) obtained from the video streams for vehicle detection and classification. The
overall accuracy in counting vehicles using the TSIs method was above 97% in the test. Chen
compared two feature-based classifiers and a model-based approach by classifying the objects
from the static roadside CCTV camera [13]. It was found that the support vector machine
(SVM) can achieve the highest classification performance. Zangenehpour et al. [14,15] used
the shape and speed information extracted from the video to classify the object into one of the
three classes: pedestrians, cyclists, and motor vehicles. The results showed that the overall
accuracy of more than 90% can be achieved using the SVM classifier. Liang and Juang [16]
proposed a static and spatiotemporal features-based method to classify the object into one
of the four classes: Pedestrians, cars, motorcycles, and bicycles. Experimental results from
12 test video sequences showed that their method can achieve relatively high accuracy. The
above-mentioned studies showed that camera/video-based detection has been well studied.
However, since the performance of the camera/video can be greatly influenced by light
conditions, researchers are looking for other sensors for object classification [17].

Light Detection and Ranging (LiDAR) has been widely used for different transporta-
tion areas [18]. The typical LiDAR system is developed based on the Time of Flight (ToF)
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method. The ToF method is used to determine the time that a laser pulse needs to overcome
a certain distance in a particular medium. The performance of the LiDAR is not influenced
by the light condition, indicating that LiDAR can be a supplement of the camera for object
classification [19]. Cui et al. [20] developed a vehicle classification method to distinguish
pedestrians, vehicles, and bicycles using random forest serving the connected-vehicle sys-
tems. Six features were extracted from the point cloud and the testing results showed that
the accuracy is 84%. Khan et al. [21] developed a two-stage big data analytics framework
with real-world applications using spare machine learning and long short-term memory
network. Wu et al. [22] developed a real-time queue length detection method with roadside
LiDAR Data. The method developed by Cui et al. [20] was used for vehicle classification
before detecting the queue length. Song et al. [23] developed a CNN-based 3D object
classification using Hough space of LiDAR point clouds. Premebida et al. [24] developed a
Gaussian Mixture Model classifier to distinguish vehicles and pedestrians from the LiDAR
data. The selected features included segment centroid, normalized Cartesian dimension, in-
ternal standard deviation of points, and radius of points cloud. The testing results showed
that the false rates for pedestrians and vehicles were 21.1% and 16.5%, respectively. Lee
and Coifman [25] trained a rule-based classifier to sort the vehicles into six classes using
the LiDAR data. Eight features including length, height, detection of middle drop, vehicle
height at middle drop, front vehicle height and length, and rear vehicle height and length
were extracted. An overall accuracy of 97% was achieved in the testing data. However,
this algorithm can only class the object at the specific pre-defined location and could not
solve the challenge of vehicle classification with the occlusion issue. Zhang et al. [26] used
the SVM to classify vehicles and non-vehicles from the LiDAR using 13 descriptors repre-
senting the shape of the object. The success rate for vehicle and non-vehicle classification
was 91%. Yao et al. [27] also applied the SVM to distinguish vehicles and non-vehicles
from the LiDAR data. The polynomial function was selected as the kernel function of SVM.
The testing showed that 87% of the vehicles can be successfully extracted. Song et al. [28]
developed a SVM method for object classification for the roadside LiDAR data. Six features
extracted from the object trajectories were involved to distinguish different objects. The
height-profile was innovatively used as a feature for classification. The testing results
showed that the RF method can achieve an accuracy of 89%. Fuerstenbery and Willhoeft [8]
used the geometric data and the information from the past to get a classification of one
object from on-board LiDAR. The past information can overcome the limitation that only a
partial car can be scanned in one frame. Gao et al. [29] presented an object classification
for LiDAR data based on convolutional neural network (CNN). The average accuracy to
classify the object into five classes (pedestrian, cyclist, car, truck, and others) can reach
a value of 96%. Wang et al. [30] used the SVM with radial basis function to distinguish
the pedestrian and non-pedestrian objects. Four features representing the shape profile
were used for training. All pedestrians except for those in the occlusion areas can be
recognized. Though there have been a lot of efforts for object classification using LiDAR
data. There are several problems need to be fixed. The first one is how to automatically
extract the required features from the LiDAR data. Though a lot of features were used in
previous studies, many of them required manual or semi-manual selection which could
not meet the requirement of many advanced applications, such as connected-vehicles and
autonomous vehicles. The second challenge is how to reduce the computation load of
the data processing to achieve a real-time classification goal. PNN is derived from Radial
Basis Function (RBF) network and has fast speed and simple structure. PNN assigns the
weights and uses matrix manipulation for training and testing, which makes it possible
for real-time classification. This paper used developed a PNN based method for object
classification. Table 1 shows the comparison of the methods used in this paper and the
methods used in previous work. It can be seen that previous studies did not test the PNN
method using the roadside LiDAR. It is therefore necessary to verify the performance of
PNN for object classification using the roadside LiDAR.
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Table 1. Comparison of different methods. LiDAR: Light Detection and Ranging; BP-NN: Back-
propagation neural network; SVM: Support vector machine; PNN: Probabilistic neural network.

Method Device Database Size

Zhao et al. [4] BP-NN Roadside LiDAR 6800
Cui et al. [20] Random Forest Roadside LiDAR Not reported
Song et al. [28] SVM Roadside LiDAR 1093
Wang et al. [30] SVM On-board LiDAR 12820
This research PNN Roadside LiDAR 2736

3. Data Processing and Feature Selection
3.1. LiDAR Data Processing

The RS-16 LiDAR developed by Robosense was used for data collection in this research.
The RS-16 LiDAR has 16 channels and can detect the objects as long as 150 m. The key
parameters of RS-16 can be found in the reference [28]. The RS-16 can be deployed on a
tripod for movable data collection, as shown in Figure 1.
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The raw LiDAR data generates points for all the scanned objects including ground
points and noises, as shown in Figure 2.
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This paper used a data processing procedure introduced by Wu to process the road-
side LiDAR data [31]. The data processing algorithms developed by Wu were further
improved by other researchers [32–35]. This part briefly introduced the major parts of
the data processing procedure. For the detailed information, we refer the readers to the
reference [31]. The whole procedure contains three major steps: Background filtering,
object clustering, and data association.

The purpose of background filtering is to exclude the irrelevant points and to keep the
points of interest (moving objects) in the space. This paper used a density-based method
named 3D-DSF for background filtering. The 3D-DSF firstly aggregates points in different
frames into the same coordinate based on the points’ XYZ location. After aggregation, the
space can be rasterized into same cubes with the same side length. Since the background
points are relatively fixed, the cubes containing background points should have a higher
point density compared to those cubes without background points. By giving a pre-defined
threshold, the background cubes and non-background cubes can be distinguished. The
locations of the background cubes are then stored in a matrix. The LiDAR data are searched
by the matrix frame by frame, and any point found in the matrix is excluded from the space.

Points clustering is used to cluster the points belonging to one object into one group.
The density-based spatial clustering of applications with noise (DBSCAN) was applied
for object clustering by searching the distribution of point density in the 3D space [26].
Adaptive values were given to the two major parameters in the algorithm: Epsilon–the
distance between two points to be covered in the same cluster, and minPts–the number of
neighbors of one point to be included into a cluster.

To continuously track the same object, it is then necessary to associate the same cluster
in different frames. The Global Nearest Neighbor (GNN) was employed for object tracking.
This tracking algorithm utilizes the geometric location information of the vehicle to identify
key points (nearest point to the LiDAR) in different frames belonging to the same object [36].
For each object in the current frame, the algorithm searches for the object with the minimum
distance to the object in the previous frame.

The trajectories of road users can be generated after applying the data extraction
procedure. Figure 3 shows an example of road users’ trajectories. The elements stored
in each trajectory can be customized based on the requirement of different purposes. A
summary of the typical elements in the trajectory can be found in Table 2. The accuracy of
the trajectory has been well validated by checking the tracking speeds of the vehicles and
the traffic volume in a previous study [31]. The results showed that about 98% of calculated
speed had errors less than 2 mph by comparing the tracking speed and the speed extracted
from the on-board diagnostic system information (OBD). For the detailed evaluation, we
refer the readers to [31].
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Table 2. Typical elements in the trajectory generated from roadside LiDAR.

Element Name Description

Object ID A unique ID for each object

Object Type Different types of objects. To be provided by
this study

Date Recording the date

Timestamp Recording the data logging time (hh:mm:ss)

Frame ID Time index representing the relative time from
the beginning of the data collection

Point Cloud Package (Multiple elements)
Storing the point information of each point in

the object (XYZ information, intensity,
direction (in a polar coordinate system, etc.)

Tracking-x X value of coordinate of the tracking point

Tracking-y Y value of coordinate of the tracking point

Tracking-z Z value of coordinate of the tracking point

Speed Object speed calculated based on the Global
Nearest Neighbor (GNN)

The data were collected at six different sites in Jinan: G104 national road, East Erhuan
road, Xinlongshan campus of Shandong University, on-ramp of around-city highway,
Shungeng road, and Heping/Lishan intersection. Table 3 summarizes the sites.

Table 3. Six sites for data collection.

Site AADT Facility Type Number of Through
Lanes per Direction

G104 national road 9000 Road segment Four
East Erhuan road 5000 Crosswalk Four
Xinlongshan campus
of Shandong
university

300 Road segment One

On-ramp of
around-city highway 6000 On-ramp One

Shungeng road 9200 Crosswalk Three
Heping/Lishan
Intersection 13800 Intersection Four

Figure 4 shows the pictures of data collection at six sites.

3.2. Feature Selection

For simplicity, this paper defined four classes for the objects: Pedestrian, bicycle,
passenger car (including pick-up), and truck (including bus). This paper did not consider
motorcycle as one class since it was rarely captured on the urban roads. The researchers
or traffic engineering can also define their own classes based on their purposes. For each
road user, the corresponding point cloud can be created by the LiDAR and can be stored in
the trajectory. The selected feature should reflect the difference between different classes.
However, high quality and detailed features are either very sparse or very difficult to
obtain. Therefore, the feature selection should consider whether the feature is extractable
from the trajectories. Table 4 summarizes the features used in previous studies for LiDAR
data classification.
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Table 4. Feature selection in previous studies.

References Selected Features Applicability

Song et al. [18]
Object length, height profile, point
number, distance, and difference between
length and height.

Developed for vehicle classification with
roadside LiDAR. Validated at 3 sites.

Lee and Coifman [25] Object length and height profile. Developed for vehicle classification with
roadside LiDAR. Validated at 6 sites.

Liang and Juang [16] Point number, distance, intensity, and the
difference between length and height.

Developed for vehicle and pedestrian
classification with roadside LiDAR. Validated
at one site.

Yao et al. [27] Elongatedness, planarity, vertical
position, and vertical range.

Developed for vehicle and non-vehicle
classification for airborne LiDAR. Validated at
three sites.

Wang et al. [30] Eigenvalue, eigenvector, histogram of
two planes, and slice feature.

Developed for pedestrian and non-pedestrian
classification using on-board LiDAR. Validated
at two sites.

Fuerstenberg and Willhoeft [8] Geometric data. Developed for object classification using
on-board LiDAR. Not validated.

All those previous studies used the shape/intensity information for object classifica-
tion. Inspired by those previous studies in Table 4, this research selected five features for
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object classification considering the ease of calculation and characteristic representation.
The five features are illustrated as follows.

• Number of points (NP). NP represents the number of LiDAR points in one object. NP
can be easily obtained in the trajectory (from the point cloud package in Table 2).

• Max intensity change (MIC). MIC represents the difference between the max intensity
of one point and the min intensity of one point in the point cloud package representing
one object. MIC can be calculated by

MIC = Max Ini −Min Inj
∣∣i, j ∈ P (1)

where i and j are LiDAR points in the point cloud package (P). i and j can represent
the same point (i = j). Max Ini and Min Ini mean the max intensity of point i and the
min intensity of point i, respectively.

• Distance between tracking point and LiDAR (D). D represents the nearest distance
between the point cloud package and the roadside LiDAR. D can be calculated as

D =
√

Tx2 + Ty2 + Tz2 (2)

where Tx, Ty, and Tz are the XYZ values of coordinate of the tracking point. It is
assumed that the LiDAR reports its location as (0, 0, 0).

• Max distance in the XY plane (MDXY). MDXY represents the max distance between
two points in the point cloud package in the XY plane. MDXX can be denoted as

MDXX = Max
(√

(Xm − Xn)
2 + (Ym −Yn)

2
∣∣∣∣m, n ∈ P

)
(3)

where m and n are any two points in the point cloud package (P) and m 6= n. MDXX
does not consider the value in the Z-axis.

• Max distance in Z-axis (MDZ). MDZ represents the max distance between two points
in the point cloud package in the Z-axis. MDZ can be expressed as

MDZ = Max
(

Zi − Zj
∣∣i, j ∈ P

)
(4)

where i and j are any two points in the point cloud package (P). i and j can represent
the same point (i = j). Zi is the Z-axis value of point i.

All five features can be directly calculated from the elements in the trajectory extracted
from the LiDAR data.

4. Probabilistic Neural Network (PNN)

The probabilistic neural network (PNN) is one of the efficient neural networks that
has been frequently applied for object classification [37]. PNN is usually faster and more
accurate than the multilayer perceptron network, and is relatively insensitive to outliers [38].
PNN uses the Parzen estimators to approximate the probability distribution function (PDF)
of each class. The multivariate Bayesian rule is implemented to allocate the class with the
highest posterior probability to new input data. The structure of the PNN can be described
as follows.

Assuming f1(x) and f2(x) are the PDFs associated with a p-dimensional input vector
X for π1 and π2, the misclassification cost ratio and the prior probability ratio can be
expressed as

X ∈
{

π1 f1(x)/ f2(x) ≥ { [C(1|2)/ C(2|1)]× [P2/P1]}
π2

(5)

where C(i|j) is the cost of misclassification (one object was classified to πi but in fact it
belonged to πj. Pi is the prior probability of occurrence of population πi. The PDFs are
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used to estimate the posterior probability that x belongs to class πi. The PDF in PNN is
solved by the Bayesian classifier using Parzen estimator. In the case of the Gaussian kernel,
the multivariate estimates [39] can be denoted as

fA (X) =
1

(2π)p/2bp
× 1

m
×

m

∑
i=1

exp

[
− (X− XAi)

T(X− XAi)

2b2

]
(6)

where i is the pattern number, m is the total number of training patterns, XAi is ith training
pattern from category πA, бis the smoothing parameter, and p is the dimensionality of
input space. fA (X) can approximate any smooth density function.

A typical PNN can be illustrated in Figure 5. There are four layers in PNN: Input layer,
pattern layer, summation layer, and output layer [37].
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Figure 5. PNN.

The input units are distribution units that supply the same input values to all the
pattern units. Each pattern unit forms a dot product of the pattern vector X with a weight
vector Wi (Zi = X ∗Wi). A nonlinear operation (exp

[
(Zi − 1)/b2]) was performed on Z

before transferring the activation level to the summation layer. If we assume X and Wi are
normalized to a unit length, the nonlinear operation can be expressed as

NO ∼ exp

[
− (X−Wi)

T(X−Wi)

2b2

]
(7)

The nonlinear operation then is the same form as a Parzen estimator using a Gaussian
kernel [40]. The summation unit sums the outputs for the pattern units corresponding to
the category and calculates the PDFs. The output layer used the largest vote to predict the
target category. Since the input pattern is used for the connection weights, PNN does not
need adjusting for the connection weights. Therefore, the speed of training is much faster
than the traditional back-propagation neural network (BP-NN).

5. PNN Training and Evaluation
5.1. Results of PNN

For the training database, a total of 2062 records were collected at six sites in urban
Jinan, China. The selected three sites covered different scenarios (different Annual Average
Daily Traffic (AADT), different pedestrian volumes, different light conditions, and different
road types (intersection and road segment)). Among the 2062 records, 1446 of them were
used for training and the other 616 records were used for validation. Another 674 records
were collected at other two sites in Jinan, China for testing. For each site, a 360-degree
camera is installed with the roadside LiDAR to capture the traffic situation. The roadside
LiDAR is connected to GPS so that the LiDAR time can be synchronized with the camera
time. Each record in the training and testing database was manually marked into one of the
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four classes by checking the corresponding video and the LiDAR data in the open-source
software-RS-Viewer.

In this paper, PNN was implemented using the package “PNN” written in the sta-
tistical language-R [41,42]. The smoothing parameter was identified by the package auto-
matically using a genetic algorithm [43]. To quantitatively evaluate the results of PNN, we
applied the class-based accuracy (CA) to check the classification results. CA represents the
percentage of total objects that are classified to the correct class. CA can be expressed as

CA =
NIA
NRA

× 100%, NI ∈ N (8)

where NR is the number of the actual records in class A. In this paper, A may be a bicycle,
pedestrian, passenger car, or truck. NI is the number of records identified as class A by the
algorithm. Table 5 shows the evaluation of the PNN model.

Table 5. Evaluation of the PNN model.

Training Set Validation Set Testing Set

NR

Passenger Car 996 426 453
Pedestrians 368 158 175
Bicycle 44 18 17
Truck 38 14 29

NI

Passenger Car 996 418 442
Pedestrians 368 154 172
Bicycle 44 18 17
Truck 38 13 27

CA (%)

Passenger Car 100 98.1 97.6
Pedestrians 100 96.8 98.3
Bicycle 100 100 100
Truck 100 92.9 93.1

It is shown that the accuracy of PNN classification using both a validation set and
testing set was relatively high (more than 90%). As for the class-based results, the proposed
method can even achieve a 100% accuracy for bicycle classification. The truck classification
was the lowest. By checking the video, it was found that those trucks were misidentified as
passenger cars (truck→ passenger car) due to the package loss issue. Figure 6a,b show the
package loss issue. There was a truck in Figure 6a, and all the points belonging to the truck
were successfully clustered into one group. However, in Figure 6b, some packages were lost
in the LiDAR data. As a result, a lot of sector-like areas without any LiDAR points showed
up. The truck was cut by one sector-like area and was misclassified as two passenger
cars. As for the pedestrian classification, the common error was that the pedestrians were
misidentified as passenger cars (pedestrian → passenger car). This was caused by the
pedestrians walking to close to each other. Figure 6c shows one pedestrian was crossing the
road, and Figure 6d shows a group of pedestrians were crossing the road. Four pedestrians
were walking close to each other in Figure 6d and the clustering algorithm mis-clustered
the pedestrians into one group. Since the shapes of one pedestrian and the pedestrian
group were significantly different, in the classification stage, the PNN then misclassified
the pedestrian group as a passenger car. As for the classification of passenger car, the
common error was that the passenger cars were misclassified as pedestrians (passenger car
→ pedestrian). This was usually caused by the occlusion issue–one vehicle was partially
blocked by another one. With occlusion, only part of the vehicle was visible. Figure 6e
shows that there were two passenger cars (marked as green and blue) and they were
not blocked by each other. The PNN can successfully classify these two objects as two
passenger cars. Figure 6f shows there were also two passenger cars (marked as green and
blue) on the road and the most part of the blue car was blocked by the green car. As a
result, the blue car was more like a pedestrian. The PNN then misclassified the blue car
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as a pedestrian. In fact, a lot of errors were not generated through the classification stage
but the clustering stage. Therefore, the accuracy of the clustering can greatly influence the
performance of the PNN algorithm.
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5.2. Results of PNN

A lot of other methods, including but not limited to BP-NN, naïve Bayes (NB), k
nearest neighbor (KNN), support vector machine (SVM), and decision trees also have been
widely used for object classification. In a previous study, it has shown that RF can provide
better performance compared to NB, KNN [44]. Additionally, PNN has definite better
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performance compared to BP-NN [45]. Therefore, in this paper, NB, KNN, and BP-NN
were not compared with PNN. The performance of SVM, random forest (RF), and PNN
were compared in this section.

SVM is a nonlinear generalization of the generalized portrait algorithm. The goal of
SVM is to establish a hyperplane that can maximize the distance between different classes
and the hyperplane. Given a set with N training samples of points, the hyperplane meets

f(x) = ∑N
i=1 yiaik(x, xi) + b (9)

where N is the number of samples, yi is the label of the ith sample. ai and b are two
coefficients to be estimated by the SVM. In this paper, we used the radial basis function
(RBF) as the kernel function for optimization in SVM.

RF classifier is a combination of tree classifiers that are generated using a random
vector. RF can improve the accuracy of classification compared to a single decision tree by
correcting the overfitting issue in the training set.

The same training database used for training PNN classifier was used to train the
SVM classifier and RF classifier. Figure 7 illustrates the class-based accuracy of the three
investigated methods.
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It is clearly shown that PNN had a better performance than SVM and RF. The PNN can
achieve an equivalent or higher accuracy compared to SVM and RF. Table 6 summarizes
the confusion matrix of SVM, RF, and PNN by classifying the same testing database.

It is shown that the misclassification type in the PNN usually happened in two classes
(such as pedestrian→ passenger car). The types of the misclassification in the SVM and
the RF (such as pedestrian→ bicycle/passenger car) were more discrete than that in the
PNN. The overall accuracy of the PNN was also higher compared to the SVM and the RF.
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Table 6. Confusion matrix.

PNN

Confusion
Matrix Bicycle Pedestrian Passenger Car Truck

Bicycle 17 0 0 0
Pedestrian 0 172 11 0

Passenger Car 0 3 442 2
Truck 0 0 0 27

Overall CA (%) 97.6

SVM

Confusion
Matrix Bicycle Pedestrian Passenger Car Truck

Bicycle 14 2 2 0
Pedestrian 3 167 17 0

Passenger Car 0 6 433 4
Truck 0 0 1 25

Overall CA (%) 94.8

RF

Confusion
Matrix Bicycle Pedestrian Passenger Car Truck

Bicycle 15 5 1 0
Pedestrian 2 162 14 0

Passenger Car 0 8 438 2
Truck 0 0 0 27

Overall CA (%) 95.3

6. Conclusions

This paper developed an object classification method for roadside LiDAR using PNN.
An automatic data processing method to extract vehicle trajectories was introduced. A total
of 2736 records were collected at six sites representing different scenarios. Five features
were selected for PNN training. The input features can be automatically calculated using
the data processing procedure. The overall accuracy of the PNN was 97.6%. The errors in
the classification results were also diagnosed. Considering the accuracy and computational
load, the performance of PNN was superior compared to other widely used classification
methods (the RF and the SVM).

The misclassification errors generated by the PNN were diagnosed using the corre-
sponding 360-degree camera. The object occlusion issue and/or package loss issue were
the major reasons leading to the errors. In the real world, it is common that objects may
be partially occluded by other objects. Modeling all those occlusion situations explicitly
is computationally infeasible because of the variability of different situations. An easy
and effective method is to install another LiDAR at a different location to overcome the
object occlusion issue. The authors have conducted an early study for point registration for
multiple LiDARs [46,47]. The performance of point registration for multiple LiDARs to
reduce the occlusion issue needs to be further investigated. As for the package loss, there
is still no effective solution to fix this issue. The connection between the LiDAR and the
computer used for data processing should be carefully checked before starting the data
collection to avoid the package loss issue. The current LiDAR data processing algorithm
may mis-cluster two pedestrians close to each other as one pedestrian. The authors will try
to find a solution to improve the accuracy of object clustering in the next step. The PNN
cannot handle the data imbalance problem, which limits the accuracy of object classification.
How to handle the data imbalance issue is another topic for future studies.

The future transportation system must rely on multiple sensors including LiDAR,
camera, radar et al. The combination of data from different types of sensors can overcome
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the limitations of one single sensor and provide more complex features for classification.
For example, thermal imaging, which has been widely used for fault diagnosis of electric
impact drills, may be also used for object classification based considering that different
road users may have different temperatures [48]. Therefore, it is also necessary to use the
data from different sensors to further improve the accuracy of object classification [49].
How to integrate the data from different types of sensors is another research topic for
future studies.
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