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Abstract: For the map building of unknown indoor environment, compared with single robot,
multi-robot collaborative mapping has higher efficiency. Map merging is one of the fundamental
problems in multi-robot collaborative mapping. However, in the process of grid map merging, image
processing methods such as feature matching, as a basic method, are challenged by low feature
matching rate. Driven by this challenge, a novel map merging method based on suppositional box
that is constructed by right-angled points and vertical lines is proposed. The paper firstly extracts
right-angled points of suppositional box selected from the vertical point which is the intersection
of the vertical line. Secondly, based on the common edge characteristics between the right-angled
points, suppositional box in the map is constructed. Then the transformation matrix is obtained
according to the matching pair of suppositional boxes. Finally, for matching errors based on the
length of pairs, Kalman filter is used to optimize the transformation matrix. Experimental results
show that this method can effectively merge map in different scenes and the successful matching rate
is greater than that of other features.

Keywords: map merging; suppositional box; vertical point; Kalman filter

1. Introduction

Mapping is the first step in the navigation work of mobile robots. Some tasks of the
robot, such as ruin detection or indoor rescue, require high efficiency and quality in the
process of mapping. Nevertheless, building a global map by a single robot faces many
disadvantages in large-scale indoor environments. For example, the longtime mapping of
a single robot leads to a large accumulation of errors, which cannot meet the requirements
of high precision. Therefore, in recent years, many scholars have focused their research on
multi-robot collaborative mapping. In the multi-robot system, each robot walks around
in the indoor environment in a distributed manner. A global map is constructed through
merging local maps finished by each robot simultaneously [1]. However, since the coordi-
nate frame of local map is not uniform, local map cannot be directly merged. There are
usually two ways to solve this problem. One is that the transformations between local
maps are given in advance, and the other is that the transformations between local maps
are calculated by some methods such as feature matching.

Accordingly, the current map merging methods are mainly divided into method with
known initial pose and method with unknown initial pose. One part of method with known
initial pose is to extend the single-robot SLAM (Simultaneous Localization And Mapping)
method to a multi-robot system, and the other part is to combine optimization algorithms
to reduce the cumulative error. In this method, an important challenge is that the estimation
of initial pose is not only complicated but also has certain errors. In the case that initial pose
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is unknown, map merging is carried out mainly through rendezvous, optimization, and
feature matching. The method of rendezvous is to derive the transformation relationship
combined with optimization algorithm between local maps by using sensors to measure
each other’s position when they meet. The problem is that the face-to-face observation
has a high requirement for the sensor and angle of the measurement site. The method
based on optimization mainly searches overlapping areas between maps by using artificial
intelligence algorithms such as GA (Genetic Algorithm). However, most optimization
algorithms require a long matching time which cannot meet high efficiency requirements.
The method based on feature matching mainly uses traditional geometric features, such
as points and straight lines. However, in a two-dimensional grid map, the grid is divided
into three types of states—free, occupancy, and unknown by the probability threshold. In
the process of extracting features, grids with only three different states will cause a large
number of similar features, which results in a high mismatching rate. Similarly, the number
of linear features in indoor environment is very large, which is easy to fall into the local
extremum in the matching process.

The combination of point and line features is our motivation because they are both
robust features in grid map in spite of some drawbacks to separate matching. Suppositional
box is a virtual feature that we construct on map with vertical points and virtual straight
lines. It is invariant in the grid map and more easily matched in number, and after matching,
a pair of suppositional boxes can get more corresponding point or line features, which is
beneficial to improve the merging accuracy. It should be noted that our research aims at
the two-dimensional grid map of the indoor environment. In addition, it does not need to
know the initial relative pose relationship. Our proposal is to (i) find common area between
local maps based on suppositional box; (ii) use the length of suppositional box and the
position constraints between four right-angled points to calculate the rough transformation
relationship; and (iii) in order to reduce the errors in the process of suppositional box
matching, use Kalman filter to optimize the transformation matrix, so as to get the precise
transformation relationship. The method framework is shown in Figure 1.
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2. Related Works
2.1. Initial Pose Known

In the situation of knowing initial pose, the relative position relation can be directly
used to obtain the transformation relationship between the local maps, but errors accu-
mulate over time. Reid et al. [2] used the gradient descent method to minimize the errors.
The relative position transformation at a certain time was obtained through the odometer,
and then the gradient descent method was used to find the optimal conversion method.
Other optimization method, such as particle filtering [3], can also be used to reduce er-
rors. In other way, PF-SLAM (Particle Filter SLAM) is extended to multi-robots [4]. This
method is discussed separately by assuming whether the initial position is known. In their
method, each particle contains trajectory, map, and weight value of each robot. When
initial position is known, multiple robot formulas can be derived. The second kind of
situation where initial position is unknown, this is the most common form in practical
applications, and mutual position relationship is generally determined by meeting. Analo-
gously, Sasaoka et al. [5] studied multi-robot slam based on information fusion and EKF
(Extended Kalman Filter).

2.2. Initial Pose Unknown—Rendezvous

Rendezvous case is the use of sensors to measure the relative positional relationship
when robots are close to each other. However, recognition only by observation will produce
some errors. Thus, some studies are focus on landmark matching [6], combining PLICP
(Point-to-Line Iterative Closest Point) algorithm and KD (K-Dimension) tree [7] or two-
dimensional code scanning [8] to improve the accuracy of the merged map. In addition, Cho
et al. [9] used one-way observation to obtain coarse transformation. Then they combined
curvature registration method and the particle swarm smoothing algorithm to increase
merging precision. Konolige [10] proposed a hypothesis verification method. When two
robots meet, one robots uses data received from the other robot to estimate their relative
position. On the base of this, they assume that the robot will be in a certain position. Once
the assumption is successful, robots will work together.

2.3. Initial Pose Unknown—Optimization

The map merging method based on the optimization algorithm is to directly find
overlap area between maps, which can obtain the transformation relationship. Carpin [11]
sets the objective function as the difference function of two maps. To find optimal overlap
area, random search algorithm is used to minimize the difference degree function. On the
contrary, Birk et al. [12] set the objective function as the map overlap similarity function
and used the adaptive random walk algorithm to find the optimal solution. Furthermore,
Ma et al. [13] studied an adaptive genetic algorithm to solve.

2.4. Initial Pose Unknown—Feature Matching

The matching features range from points to lines to other geometric features. Fer-
rao [14] used SIFT (Scale-Invariant Feature Transform) to calculate translation, rotation,
and zoom between maps. However, according to their discussion, it was found that
only matching feature points may not find the correct corresponding points. Therefore,
reliability analysis is introduced on the basis of feature points [15]. Windows are built
around the feature points, which can calculate the number of unknown state grids and
filter mismatched feature points. Analogously, Jiang et al. [16] increased the precision
by using MAFF (Map Augmentation and Feature Fusion). In addition, Tang et al. [17]
combined SURF (Speeded Up Robust Features) features and RANSAC (RANdom Sample
Consensus) algorithm as the initial value of the ICP (Iterative Closest Point) algorithm for
map merging. Sun et al. [18] used Harris points to construct max common subgraph which
is used as feature for map matching. In the grid map, each grid is represented by only
three states after the threshold is divided. Thus, the description of the feature points is very
similar, resulting in the point feature being unable to find the correct corresponding point.



Electronics 2021, 10, 815 4 of 19

For lines matching, Carpin et al. [19] used the cross-correlation of the Hough spectrum to
determine similar signals. After obtaining the rotation angle, they calculated the translation
matrix through the X-spectrum and the Y-spectrum. On the basis of Hough spectrum,
Lee et al. [20] enhanced this algorithm to improve the efficiency of the multi-robot system
by identifying visual landmarks. Similarly, Sajad et al. [21] improved the accuracy by
studying how to match the relative peak value correctly. Furthermore, Roh et al. [22] used
Radon transform to extract the sinogram of the map. They took the coarse rotation matrix
and translation matrix as the initial particle of the particle swarm algorithm to calculate
the accurate value. However, it is easy to fall into a local maximum or minimum only by
Radon transformation, so recently Lee [23] studied the Gaussian mixture model to optimize
the transformation matrix on this basis. In addition to extracting existing lines from the
map, some works [24,25] constructed lines based on scanning points. The difference is that
the latter match based on the interconnections between the intersections of the two line
segments. Although, in indoor grid maps, straight line features are very common, it takes
a long time to match only with straight lines, which cannot meet the requirements of
high efficiency. In the research based on geometric features, Adam et al. [26] proposed
method based on wireframe mapping where the descriptor of each point is six variables
and each edge is vectorized. Then, the weighted infinite norm between descriptors serves
as a matching criterion. For some similar studies, Park et al. [27] proposed to construct the
maximal empty rectangle in the map, so as to use the triangle position constraint between
the empty rectangles to obtain the transformation relationship. Since the center of the
empty rectangle will change due to the inconsistency of the map orthogonal coordinate
system, the direction of the map orthogonal coordinate system needs to be unified. On the
basis of that, Jazi [28] improves the orthogonal algorithm to speed up the matching speed,
but the sensitivity of the empty rectangle to the rotated map still increases the complexity
of the matching process. Our methods are not affected by this map rotation.

In addition to the above features extracted directly from the map, there are also
some methods studying features fixed in the environment. Göksel et al. [29] find similar
landmarks to match by identifying certain landmark information. Tsardoulias et al. [30]
combined RFID (Radio Frequency Identification) positioning technology and ICP algorithm
for grid map merging. However, the setting of feature points needs to be built in an
unchanging environment, so the adaptability is not strong.

With the development of neural networks, some scholars use the features output from
neural network to merge maps. Sajad et al. [31] used SOM neural network to conduct
clustering feature for each segmented area, and the rotation angle is obtained by matching
the norm vector histogram of the line connecting two cluster points and combining with
Radon transform. Finally the x-y transformation was determined by using the norm
vector of the matched cluster point. Although the number of feature output by the neural
network is large in grid map, the mismatching is relatively high only according to these
features. The other part was mainly based on the pose-graph map or topology map.
Bonanni et al. [32] used the Voronoi diagram method to extract pose-graph map from grid
map. They expanded the nodes from the existing pose-graph according to the breadth-first
algorithm and optimize the expansion node by using the g2o libraries, and Lázaro et al. [33]
directly merged topology map based on visual features (ORB features), then optimized
the pose map using the g2o libraries. Similar to these works, other studies are focused
on different optimization methods, likely feature filtering method [34] or RANSAC and
Gauss–Newton method [35].

3. Method

The map merging method based on suppositional box is mainly divided into three
steps: suppositional box construction, map matching based on suppositional box, and
map merging.
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3.1. The Construction of Suppositional Box

In our study, suppositional box is a virtual connection between four right-angled
points which have position constraints. Generally, they have some commonalities. For
instance, a suppositional box is composed of four right-angled points and two pairs of
parallel sides. At the same time, four right-angled points have common edges between
each other. Thus, it is easy to construct suppositional box by using common features, saying
straight lines and right-angled points, in indoor environment. Hough transform [36] as
a classics and mature method is used to detect straight lines in our research. Then the
intersections of perpendicular straight lines are calculated as vertical points. Finally vertical
points and perpendicular straight lines are grouped to construct suppositional box. Since
these vertical points can also be intersecting points of straight line extension, the number
of suppositional boxes extracted from the map is much, which can improve the success
rate of matching.

3.1.1. Vertical Point Extraction

The vertical point is the intersection between perpendicular straight lines. Practically,
a vertical point can represent the spatial vertical relationship between two objects. In other
words, they can be either real connecting points or extension points of objects.

First, straight lines are detected in the grid map through Hough transform, and the
slope and intercept of each straight line is calculated. Then, the slopes are used to find
two perpendicular straight lines, that is, when two straight lines are perpendicular, the
slopes of them are multiplied to−1. If two straight lines are in a perpendicular relationship,
the intersection point of two straight lines is as the vertical point, as and p2 in Figure 2.
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of two straight lines.

The vertical point is described by the coordinates of vertical point, the slope and
intercept of two perpendicular straight lines constituting this vertical point. On the whole,
the i-th vertical point descriptor is pi:

pi = (vxi, vyi, ki1, bi1, ki2, bi2) × (i = 0, 1 . . . N) (1)

where N is the number of vertical points. (vxi, vyi) is the vertical point coordinate value,
ki1 and bi1 are the slope and intercept of one of the vertical sides respectively, ki2 and bi2
are the slope and intercept of the other vertical side, respectively. There is no requirement
for the order of the two vertical sides. In the subsequent matching process, the slope and
intercept of the two vertical sides will be used for matching.

3.1.2. Uncertainty Optimization of Vertical Points

Ideally, each vertical point is a unique representation in the map. However, the same
wall sometimes is not made up of a straight line in grid map, because the state of each grid
is calculated by probability. At the same time, a part of long wall will be recognized as
several straight lines. Therefore, in the map, a vertical point in reality may be represented
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by a set of nearby points, as shown in Figure 3. In order to reduce the uncertainty, it is
necessary to find an optimal one to represent these vertical points.
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Figure 3. Example of vertical points’ uncertainty. There are three walls in the map. The gray grid
is the obstacle, the green line is the line identified by Hough transform, and the red point is the
vertical point extracted by method mentioned in Section 3.1.1. The six vertical points on the left are
intersection points of line features extracted from No. 1 wall and No. 2 wall. The four points on the
right are intersection points of line features extracted from No. 2 wall and No. 3 wall.

This paper uses clustering algorithm to group the vertical points that actually represent
the same vertical point and find the optimal value to represent this set of vertical points.
We take Euclidean distance as the goal to calculate the optimal coordinate, and defines it as
an unconstrained optimization problem, as in Formula (2).

(
vxbest, vybest

)
= arg min

t

∑
m=0
‖(vxm, vym)−

(
vxbest, vybest

)
‖

2

(2)

where
(
vxbest, vybest

)
is the optimal vertical point, (vxm, vym) is the m-th vertical point

in the same group, and t is the number of vertical points in the group. The optimization
problem is solved by Newton method [37] which starts with any coordinate (vx0, vy0)
selected within the group. The optimization precision is set as ε = 1× 10−8.

Some vertical points formed by the intersection of perpendicular extension straight
line are not in the map outline. In order to improve the matching speed, these outliers are
filtered using the neighborhood state difference method: a vertical point is taken as the
starting point for four directions of diffusion; if there is no grid state different from this
grid state in the four directions, then this vertical point is deleted.

3.1.3. Suppositional Box Building

In addition to the commonality of four right-angled points, suppositional box also
has certain constraints on the positions of the four right-angled points. They must form a
closed loop in the clockwise or counterclockwise direction. According to this constraint,
suppositional box can be built by optimized vertical points.

Any vertical point can be chosen as the first right-angled point of suppositional box.
A vertical side of this vertical point is selected as the target to find all other vertical points
with the same slope and intercept which are the first candidate group. Then, a vertical
point is randomly selected from above candidate object group as the second right-angled
point of suppositional box, meanwhile the second candidate object group is obtained in the
same way. Finally, the same method is used combined with the height and width distance
constraints to find the fourth right-angled point of suppositional box. Repeat the above
steps until all suppositional boxes that meet the requirements are extracted. When the
fourth right-angled point is matched, in order to prevent the intersection of the sides of
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suppositional box, the height and width distance constraints are imposed. The process of
building suppositional box is shown in Figure 4.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 20 
 

 

the fourth right-angled point is matched, in order to prevent the intersection of the sides 
of suppositional box, the height and width distance constraints are imposed. The process 
of building suppositional box is shown in Figure 4. 

   

(a) (b) (c) 

   

(d) (e) (f) 

 
(g) 

Figure 4. The process of building a suppositional box. (a) The gray point is the extracted vertical point, and the two straight 
lines are the direction of the vertical straight line. (b) The red point is a randomly selected vertical point; the red line is the 
target straight line direction. The blue point is the vertical point that matches the red line, forming candidate group one, 
as in (c). (d) Randomly select a point from candidate group one as the target circled in the figure, the blue line is the target 
straight line. The green point is the vertical point that matches the blue line, forming candidate group two. (e) Randomly 
select a point from the candidate group two as the target circled in the figure, there is no matching point. (f) Choose 
another point from the candidate group two. The green line is the target straight line, and the yellow point is the vertical 
point that matches the green line. (g) A suppositional box is formed by the constraint matching of length and width. 

After each suppositional box is built, its descriptor can be defined by suppositional 
box’s height, width, area, center point, and vertical points as 

( )1 2 3 4R z ,z ,z ,z , , , , ,q q q q q height width area cx cy= (q = 0,1…M) (3)

where M is the number of suppositional box. Rq  is the q-th suppositional box in the map, 

( )rz ,q = x y  is the coordinate of the r-th right-angled point in suppositional box, height is 
the long side of suppositional box, width is the short side of suppositional box, area is the 
area of suppositional box, (cx, cy) is the center point of suppositional box coordinate. Sup-
positional box matching will be based on this descriptor. See Algorithm 1 for the detailed 
process of suppositional box construction. 

Figure 4. The process of building a suppositional box. (a) The gray point is the extracted vertical point, and the two straight
lines are the direction of the vertical straight line. (b) The red point is a randomly selected vertical point; the red line is the
target straight line direction. The blue point is the vertical point that matches the red line, forming candidate group one, as
in (c). (d) Randomly select a point from candidate group one as the target circled in the figure, the blue line is the target
straight line. The green point is the vertical point that matches the blue line, forming candidate group two. (e) Randomly
select a point from the candidate group two as the target circled in the figure, there is no matching point. (f) Choose another
point from the candidate group two. The green line is the target straight line, and the yellow point is the vertical point that
matches the green line. (g) A suppositional box is formed by the constraint matching of length and width.

After each suppositional box is built, its descriptor can be defined by suppositional
box’s height, width, area, center point, and vertical points as

Rq = (zq1, zq2, zq3, zq4, height, width, area, cx, cy)(q = 0, 1 . . . M) (3)

where M is the number of suppositional box. Rq is the q-th suppositional box in the map,
zqr = (x, y) is the coordinate of the r-th right-angled point in suppositional box, height is the
long side of suppositional box, width is the short side of suppositional box, area is the area of
suppositional box, (cx, cy) is the center point of suppositional box coordinate. Suppositional
box matching will be based on this descriptor. See Algorithm 1 for the detailed process of
suppositional box construction.
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Algorithm 1 Suppositional box building

Input: the list of vertical points, pi = (vxi, vyi, ki1, bi1, ki2, bi2)
Output: the list of suppositional box descriptor: Rq = (zq1, zq2, zq3, zq4, height, width, area, cx, cy)
1: for i = 1→ n do
2: zq1 ← (pi.vx, pi.vy)
3: ss← True
4: while ss
5: if j1 = finding (pi.ki1,pi.bi1) //Find point with the same slope and intercept
6: if j2 = finding (pi.ki2,pi.bi2)//Find point with the same slope and intercept
7: if j3 = finding (pi.ki2,pi.bi2) and intersection (i,j1,j2,j3)

// Find point that has the same slope and intercept and satisfies distance constraint constraint
8: zq2 ← (pj1.vx, pj1.vy)
9: zq3 ← (pj2.vx, pj2.vy)
10: zq4 ← (pj3.vx, pj3.vy)
11: height = max(dis(zq1, zq2),dis(zq2, zq3))//Define the long side to be height high
12: width = min(dis(zq1, zq2),dis(zq2, zq3))//Define the short side to be width
13: (cx, cy) = meancenter(zq1,zq2,zq3,zq4)//Compute the center point
14: Rq.append(zq1,zq2,zq2, zq4,height, width, cx, cy)
15: q← q + 1
16: else
17: ss← False
18: end for

After building suppositional box circularly, right-angled points of each descriptor are
randomly ordered. In order to reduce the time for subsequent matching, our method is
designed to start from the lower left corner point and carry out counterclockwise sorting,
generating a set of ordered right-angled points. As shown in Figure 5.
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Figure 5. Suppositional box building instance. Red rectangle is suppositional box extracted from map.

3.2. Suppositional Box Matching

On the whole, the process of matching is divided into two parts, rough matching, and
filtration. It is important to note that the background of our work is based on the same
resolution, only considering the translation and rotation of the map.

It is easy to match suppositional box by the side length. By default, the long side is
height, and the short side is wide. Considering the error in the two-dimensional grid map
established by the lidar, in order to match all the similar suppositional box pairs as much
as possible, the threshold value is set to a larger number. Along with these a large number
of pairs come the challenges of mismatching. Therefore, on the basis of rough matching
with the side length, the process of filtering the mismatched pairs to obtain the optimal
suppositional box pairs is proposed. In this study, the optimal suppositional box pairs can
meet the alignment requirements of a large number of rough matching pairs and minimize
the alignment error.
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Through suppositional box matching, at least four pairs of corresponding right-angled
points between two local maps can be directly found. The transformation matrix T can be
calculated by the corresponding right-angled points, as shown in Equation (4).

T =

 cos θ − sin θ tx
sin θ cos θ ty

0 0 1

 (4)

Firstly, a transformation matrix can be calculated for each rough match pair. Since
the transformation matrix contains only three unknown variables, it can be calculated by
three pairs of corresponding right-angled point pairs of suppositional box pairs. However,
the arbitrarily sorted right-angled points of suppositional box descriptor means that the
cyclic shift of point pairs must be considered in the computational process. Below we
take two local maps map1 and map2 matching as an example. For any rough matching
pair, select three points (z11, z12, z13) from suppositional box of map1 as the source point,
correspondingly select (z21, z22, z23), (z22, z23, z24), (z23, z24, z21), (z24, z21, z22) from the
corresponding suppositional box of map2 as candidate points. Now, 4 transformation
matrixes T0, T1, T2 and T3 are obtained, respectively.

Secondly, it is the filtration process that try to remove incorrect match pairs. For the
other suppositional box corresponding to map1 in the rough matching pair, we convert the
coordinates of right-angled points to the map2 coordinate system by the transformation
matrix T0. Then, the distance between four pairs of right-angled point is calculated. When
the distance of the four right-angled points is less than a threshold, it is considered that
this pair is successfully matched. Next, the number of successfully matched under the
transformation T0 is counted. When the number of successful matching reaches the target
value, T0 is considered a correct transformation matrix and put it into the candidate group.
On the contrary, if the number is less than the threshold, then T1, T2, and T3 will be used
to repeat the above process in turn.

Finally, score evaluation is used to obtain the optimal matching pair. After the afore-
mentioned round of screening, transformation matrices can be calculated for the correctly
matched pairs. They form a candidate group. In order to select the optimal transformation
matrix from the candidate group, a scoring method is designed. The higher the score is, the
smaller the alignment errors generated by the transformation matrix is. Based on this, a
suppositional box pair with the highest score is selected as the optimal matching result. The
score is mainly judged by the corresponding right-angled point distance and suppositional
box area, see Equation (5). If the distance between the right-angled points of other supposi-
tional box in the rough matching is smaller, the higher the accuracy of this pair is. Besides
that, since the area of suppositional box is smaller, the area of the overlapping represented
is smaller. These increase the error of other corresponding right-angled pairs. Therefore,
the area is used as a reference factor. The smaller the pair area, the lower the weight.

SR1R2 =
min(area(R1), area(R2))

∑
R1 ∈ map1
R2 ∈ map2

max(dR1R21, dR1R22, dR1R23, dR1R24)
(5)

where R1 and R2 are the matching suppositional box pairs, area(R1) and area(R2) are the
corresponding suppositional box area, dR1R21, dR1R22, dR1R23 and dR1R24 are the Euclidean
distance differences of the four corresponding right-angled points.

3.3. Map Merging

Local maps transformed to the same coordinate system by the optimal suppositional
box pairs can be directly merged. However, it is evident that there are inconsistencies in the
representation of the same region after map merging. For example, the same suppositional
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box does not align perfectly on the merged map. The reason is that there may be some
errors in the optimal pairs. For reducing errors, Kalman filter is chosen.

In the process of grid map merging, we take the grid homogeneous coordinates as the
state variable. The predictor variable is grid homogeneous coordinate X̂ of the coordinate
system of map2, which is transformed from the corresponding grid homogeneous coordi-
nates under the coordinate system of map1, and the observation variable Ẑ is represented
as the same position in the map2.

Given any grid coordinates (x, y) in map1, the predictor variable X̂n is calculated
through the transformation matrix T.

X̂n =
[
x′, y′, 1

]T
= T[x, y, 1]T (6)

where n = 0,1,2..., is the grid index. The transformation matrix obtained only by selecting
three pairs of corresponding right-angled points of the matching pair may have some
errors. Hence the prediction covariance matrix can be derived from the four transformation
matrices Ta, Tb, Tc and Td which are calculated by the cyclic combination of four sets of
corresponding right-angled points of this pair.

First these four transformation matrices are used to find the corresponding four sets
of homogeneous coordinate values, and then calculate the mean values in the x and y
directions in turn:

[x, y, 1]T =
1
4

d

∑
j=a

Tj
[
x′, y′, 1

]T (7)

Next, the predicted covariance matrix is calculated according to the above four sets of
homogeneous coordinate values and mean values:

Pn =

 σx 0 0
0 σy 0
0 0 1

, (8)

where σx =
3
∑

s=0
(x′s − x), σy =

3
∑

s=0
(y′s − y)

The matched optimal suppositional box pair is considered as the same area in en-
vironment; that is, the center points of its two suppositional boxes should theoretically
be the same point in practice. Accordingly, the distance from the same grid point to the
center point of the matched suppositional box in the two maps should be same. Thus, the
observation value can be calculated by the distance from this point to the center point of
the matched suppositional box:

Ẑn = [x′′ , y′′ , 1]T, (9)

Ẑn = [x′′ , y′′ , 1]T, (10)

y′′ = yc2 + y′ − yc1
′, (11)

where
(
xc1
′, yc1

′) is the center point coordinates value under the coordinate system of map2
transformed from the center point

(
xc1, yc1

)
of this suppositional box in map1,

(
xc2, yc2

)
is

the corresponding center point of this suppositional box in map2.
Obviously, the error of center point comes from that the matching pairs are not exactly

equal in length. Whereupon the observed error covariance matrix is calculated by the error
value of height and width between the matching pair.

Rn =

 0.5×4W 0 0
0 0.5×4H 0
0 0 1

, (12)

here,4W is the length error in the x direction, and4H is the length error in the y direction.
0.5 is the set parameter value.
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Finally, the Kalman gain is calculated:

Kn = Rn/
(

Rn + TaPnTa
T
)

(13)

The Kalman estimate of grid coordinates is

X̂′n = KnX̂n + (I−Kn)Ẑn, (14)

Since the grid coordinates are integer values, the Kalman estimate result is finally
rounded. During the process of merging, the state of grid in the two maps sometimes are
different. The paper follows the following rules in Table 1 to determine the state of the grid.

Table 1. The rules of grid’s state merging.

S1 S2 Occupancy Free Unknow

occupancy occupancy occupancy occupancy
free occupancy free free

unknow occupancy free unknow
S1 is the grid state value of this point in map1, S2 is the grid state value of this point in map2.

4. Experimental Results and Analysis

In this section, we have verified our algorithm with various maps produced by
simulation and real environment. In simulation experiments, the effectiveness of map
merging method based on suppositional box is verified. Our method is also proved to be
feasible in the case that the map orthogonal frame is inconsistent with the orthogonal frame
of suppositional box. In a real environment, our method is performed under different
indoor environment and proved of the higher rate of matching by comparing with other
matching methods.

4.1. Experimental Verification under the Simulation Environment

In Ubuntu environment, we use Gazebo [38], a simulation software, to construct a
simulation environment, as shown in Figure 6. In our implementation, the simulation
robots equipped with lidar sensors construct two maps through the Gmapping [39] package
in ROS. The Gmapping package can use the virtual lidar sensors to build a two-dimensional
grid map based on the method of particle filtering. As the mapping area extending, the
amount of data carried by particles will increase, resulting in an increase in the amount of
calculation. However, compared with other mapping methods, it has a small computation
cost and high accuracy in the small scenes.
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Figure 6. Simulation environment.

The local maps, map1 and map2, are constructed by the two robots, respectively, as
shown in Figure 7. By suppositional box matching algorithm, the optimal matching pair
can be obtained. It can be seen that vertical points are not only the actual corner inflection
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points, but also the intersection points of some straight lines’ extension. Although we
filter the vertical points that are not on the outline, some of them with different grid states
around are reserved due to algorithm, which will not affect the matching process.
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Figure 7. Suppositional box matching pair. (a) The map is built by robot1. (b) The map is built by robot2. The green line is
the straight line recognized by Hough transform, the red point is the optimized vertical point, and the blue rectangle is
suppositional box.

In following part, we demonstrate that Kalman filter can reduce the errors in the
matching process of suppositional box. We use violent merging method and Kalman
filter method respectively to carry out map merging experiment. The results are shown
in Figure 8. Violent merging method is to merge the two maps directly. In Figure 8a,
you can see that the same wall part appears twice, which is caused by the error of the
transformation matrix. In Figure 8b, it clearly shows that the result is more consistent with
the actual situation after optimization, which proves the effectiveness of Kalman filtering.
In addition, according to statistics, the overlap contains a total of 22 edges, among which
there are 9 non-coincident edges in violent merging method, and the sum of the length of
non-coincident edges accounts for 31.6% of the sum of all the length of edges in the public
area. In contrast, in the Kalman filter method, only one edge is not completely coincident,
accounting for 2.4% of the total length.
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Figure 8. The merging result. (a) is the result of violent merging method. (b) is the result of merging
by Kalman filter.

In next part, we analyzed detailed errors in local map and merged map, respec-
tively. The error is calculated by the differences of same objects between map and real
environment.

The suppositional box is constructed on the basis of right-angled, which is compo-
nent of the orthogonal frame. In the simulation environment, the orthogonal frame of
suppositional box and map is usually in the same orientation. Actually, there will be
certain differences between them. For example, in the real experiences, orthogonal frame of
suppositional box may not coincide with orthogonal frame of map such as form a certain
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angle between them, which is a challenge for observed error in Kalman filter merging. As
show in Figure 9. It is because that our method ignores the error caused by a certain angle
between the orthogonal frame of them. Therefore, in order to comprehensively evaluate
the performance of map merging method based on suppositional box, we test our method
in scenes where the orthogonal frame of suppositional box and map is in the different
orientation. In the test, the local map is rotated around the robot’s initial position point, so
that the orthogonal frame of local map forms a certain angle with the orthogonal frame of
suppositional box.
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Figure 9. The case of inconsistent orthogonal frames. The top left is the orthogonal frame of map,
and the middle is the orthogonal frameworks of suppositional box.

We selected eight walls characterized by a straight line in the overlapping area of the
two local maps, as shown in Figure 10. We firstly record the actual length of the eight
walls in Gazebo, then calculate the length of the eight walls in the two local maps and the
merged map, respectively. The two local maps are map1 constructed by robot1 and map2
constructed by robot2. The length of the wall in map is calculated by the Euclidean distance
between the pixel coordinates of the two ends of the wall multiplied by the resolution 0.05.
Finally, the error results of the unrotated map, the 45◦ rotation map and the 90◦ rotation
map are shown in Table 2.
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Table 2. The length error.

Wall’s
Number

Actual
Length (m)

Error in map1
(%)

Error in map2
(%)

Error in Merged Map
(%)

0◦ 45◦ 90◦ 0◦ 45◦ 90◦ 0◦ 45◦ 90◦

1 6.25 0.00 2.40 0.00 2.40 1.60 0.80 1.60 1.60 1.60
2 1.25 8.00 0.80 0.00 0.00 4.00 4.00 4.00 1.60 0.00
3 5.25 4.76 2.85 0.95 1.90 2.28 2.85 0.90 1.71 0.00
4 3.25 7.69 7.38 8.33 7.69 9.84 9.23 0.00 8.61 9.23
5 3.25 10.77 9.84 9.23 15.38 8.61 9.23 7.60 7.69 4.61
6 1.50 12.00 8.00 10.67 7.33 8.00 12.00 8.70 6.00 7.33
7 2.50 4.00 6.80 6.00 6.00 5.20 6.00 6.00 3.60 8.00
8 7.50 2.00 2.40 2.00 2.67 2.40 2.00 1.30 0.93 1.33

From the above error data, we can see that the error of the merged map is mostly below
the errors of local maps, and sometimes it is between them. First of all, the length of the
wall in the merged map is very consistent with the actual length, and the average error is
about 4%, indicating that our method is still feasible in the rotated map merging. Secondly,
the superiority of multi-robot mapping can be proved because the merging method can
reduce the accumulated errors of single-robot mapping over a long period of time.

Other rotated angle values in (0◦, 360◦) are randomly experimented to further illustrate
the merging performance. The error results are shown in Figure 11. On the whole, the error
of the merged map is about 4%, showing that the merged map is accord with the actual
environment. From the analysis of different rotation angles, it can be seen that when the
rotation angle is small, the error of the map does not change much. In the case of a large
rotation angle, the error in local map increases due to the map rotation operation, and thus
the error in merged map also increases. Even so, the error in merged map is still within 5%.
In conclusion we can say, our proposed method based on suppositional box matching is
not affected by map rotation.
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4.2. Experimental Verification under the Real Environment

Here, we use two Fuxi cleaning robots to test our method. Each robot is equipped
with a SICK-TIM561 single-line lidar, along with the Ubuntu 16.04 environment and ROS
related function packages.

The real experiments are done in an office building in the Science Park of Central
South University, as shown in Figure 12. The environment is mainly composed of corridors
and connected rooms. Gmapping algorithm is used to build local maps of the environment.
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Figure 12. Real environment. (a) The Fuxi cleaning robot. (b) Two robots are exploring the corridor. (c) Two robots are
exploring different rooms.

The robots walk around in the environment and build two-dimensional grid maps.
Taking into account the diversity of the environment, the robot builds four local maps in
the real environment and divides them into two different groups for map merging. In
Experiment 1, the robot explored a normal indoor environment with rooms in different
directions. In Experiment 2, the robot explored a long corridor, which can construct
multiple similar suppositional boxes. The experimental results are shown in Figure 13.
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room, (c) is the merged map of Experiment 1. (d,e) is the local map of Experiment 2, (f) is the merged map of Experiment 2.

The advantage of the ubiquity and abundance of suppositional boxes in the environ-
ment may result in a high rate of false matches. However, from the above experimental
results, it is obvious that the proposed method can be successfully applied in different
environments, which proves our method can select the right one from a number of suppo-
sitional boxes.

To demonstrate the higher accuracy of the map merging method based on supposi-
tional box, we compare it with the two feature point matching methods based on SURF [40]
and ORB [41]. SURF and ORB feature have become the main research hotspots because of
better speed and robustness for image matching compared with other feature points.

We selected two pairs of maps from the real indoor map dataset Halmstad–Robot-
Maps [42]. This data set mainly collects environmental data of four different scenarios in
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Harmstad University. They used two methods to collect data, namely CAD drawing and
sensor perception. The data set is mainly based on Google’s Tango Constructor application
to build a three-dimensional grid map, and then select a certain horizontal plane to convert
it into a two-dimensional grid map [43]. In the data set, a two-level map of the office
lobby (E5 and F5) and two different residential apartment maps (HIH and KPT4A) are
established. Among them, 14 two-dimensional grid maps are established in the E5 and
F5 scene respectively, and there are 4 two-dimensional grid maps in the HIH and KPT4A
scene, respectively. In the experiment, we select one pair of maps from the E5 scene
as map3 and map4, and the other pair map5 and map6 from the F5 scene, as shown in
Figure 14. The test is to count the number of correct matching features in different matching
methods, and the result is shown in Figure 15. Our method, in terms of the number of
suppositional boxes, is 17 and 15 pairs of features, respectively. However, transformation
matrix is calculated on the basis of multiple pairs of corresponding feature points. Therefore,
according to the number of matching feature points, the number of corresponding feature
points obtained by our method is 68 and 60, respectively. In comparison, the number
of corresponding feature points in our method far outweighs the other two methods.
Importantly, the more the number of matching correct feature points, the higher the
accuracy of the transformation matrix.
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In general, the smaller the local environmental area explored by a single robot, the
smaller the number of features in local map that can be extracted. Therefore, we divide the
indoor map dataset into two categories according to area of local environment. Relatively
speaking, in E5 and F5 scenes, the local environmental area explored by a single robot is
large, while in HIH and KPTA4 scene, the local environmental area is small. We select four
pairs of maps in E5 scene and three pairs of maps in the F5 scene. In HIH and KPT4A scene,
one pair of maps were selected, respectively.

In addition to point features mentioned above, since Hough transform is used in our
method, we choose another method based on Hough spectrum [19] for comparison. The
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performance of methods in terms of success rate is shown in Table 3. From the result, we
have a matching success rate of 75% and 66.66% in map groups with large area, whereas
the ORB method has only 25% and 0%, the SURF method has 25% and 25%, meanwhile the
method based on Hough spectrum only has 25% and 25%. Although we had only a 50%
success rate in map groups with small area, none of the ORB method and SURF method
matched successfully.

Table 3. The success rate comparison.

E5 (%) F5 (%) HIH and KPT4A (%)

SURF + RANSAC 25.00 25.00 0.00
ORB + RANSAC 25.00 0.00 0.00
Hough spectrum 25.00 25.00 50.00

Our proposal 75.00 66.66 50.00

5. Conclusions

In this paper, we propose a map merging method based on suppositional box. Sup-
positional box is not only simple in structure, but also ubiquitous in indoor environment.
This virtual structure feature can greatly facilitate the efficiency of map merging because
a pair of suppositional boxes represents a pair of identical common area within which
many other corresponding features can be extracted. What is more, it is not depend on the
orientation of the map.

The main body of our approach is to find public areas based on suppositional box and
merge map by Kalman filtering. Experimental results demonstrate its outperformance. We
have shown, with experimental results, the merged map is more in line with the actual
environment after reducing the errors of the optimal matching pairs. Further, compared
with other matching method, a suppositional box pair can get more feature pairs like points
or lines, which shows excellent matching abilities.

Despite the success of our approach, there are still challenging situations requiring
additional research. Current research is only a simple violent fusion of three different
grid states when facing with the different states fusion of same grid point. In fact, it is
possible to discuss the probability weight of the grid based on the original probability grid.
Therefore, in future research, it is expected that on the basis of this method, improvements
can be made to the fusion of different grid state values, which can further improve the
mapping accuracy.
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