Estimating Physical Activity Energy Expenditure Using an Ensemble Model-Based Patch-Type Sensor Module
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Wireless Sensor System
2.2. Optimal Method of EE
2.3. Optimization Plan of GA and ANN
3. Proposed Method
3.1. ANN System Representation
3.2. Basic Operations of GA
4. Discussion
5. Results
- Case 1: General physical activity and exercise
- Case 2: Four exercises (walking, fast walking, running, and slow running)
- Case 3: Variable anaerobic exercise
- Case 4: Results from the proposed algorithm
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cordain, L.; Gotshalla, R.W.; Eatonb, S.B. Evolutionary Aspects of Exercise. World Rev. Nutr. Diet. 1997, 1, 49–60. [Google Scholar]
- World Health Organization. Obesity: Preventing and managing the global epidemic. In Report of a WHO Consultation; WHO Technical Report Series 894; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Sarah, W.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef] [Green Version]
- Simon, M.; Ramirez, E. Reducing sedentary behavior: A new paradigm in physical activity promotion. Am. J. Lifestyle Med. 2011, 5, 518–530. [Google Scholar]
- Kim, Y.T.; Park, D.G.; Kang, J.; Seo, K.S. Development of patch type sensor module for real-time monitoring of heart rate and agility index. In Proceedings of the 7th IEEE Conference on Sensors (SENSORS 2008), Lecce, Italy, 26–29 October 2008; pp. 1151–1154. [Google Scholar]
- Meina, L.; Byun, K.H.; Kim, H.J.; Kang, J.; Kim, Y.T. Patch type sensor module for estimating the energy expenditure. In Proceedings of the 8th IEEE Conference on Sensors (SENSORS 2009), Christchurch, New Zealand, 25–28 October 2009; pp. 1455–1458. [Google Scholar]
- Li, M.; Kim, Y.T. Development of patch-type sensor module for wireless monitoring of heart rate and movement index. Sens. Actuators A Phys. 2012, 173, 277–283. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Lee, D.-S.; Mukhopadhyay, S.; Chung, W.-Y. Ubiquitous healthcare data analysis and monitoring using multiple wireless sensors for elderly person. Sens. Transducer J. 2008, 90, 87–99. [Google Scholar]
- Lin, C.-W.; Yang, Y.-T.; Wang, J.-S.; Yang, Y.-C. A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 991–998. [Google Scholar]
- Twomey, N.; Faul, S.; Marnane, W.P. In Comparison of accelerometer-based energy expenditure estimation algorithms. In Proceedings of the 4th International Conference on Pervasive Computing Technologies for Healthcare, Munchen, Germany, 22–25 March 2010; pp. 1–8. [Google Scholar]
- Kang, K.H.; Kim, Y.T. Energy expenditure prediction algorithm based on correlation analysis of exercise indexes. In Proceedings of the International Conference on Information Science and Applications (ICISA 2014), Seoul, Korea, 6–9 May 2014; pp. 1–4. [Google Scholar]
- Dong, B.; Biswas, S.; Montoye, A.; Pfeiffer, K. Comparing metabolic energy expenditure estimation using wearable multi-sensor network and single accelerometer. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2013), Osaka, Japan, 3–7 July 2013; pp. 2866–2869. [Google Scholar]
- Vathsangam, H.; Emken, A.; Schroeder, E.T.; Spruijt-Metz, D.; Sukhatme, G.S. Determining energy expenditure from treadmill walking using hip-worn inertial sensors: An experimental study. IEEE Trans. Biomed. Eng. 2011, 10, 2804–2815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Kwak, K.C.; Kim, Y.T. Intelligent predictor of energy expenditure with the use of patch-type sensor module. Sensors 2012, 12, 14382–14396. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.S.; Lin, C.W.; Yang, Y.T.; Kao, T.P.; Wang, W.H.; Chen, Y.S. A Pace sensor system with machine learning-based energy expenditure regression algorithm. In Proceedings of the 7th International Conference on Intelligent Computing (ICIC 2011), Zhengzhou, China, 11–14 August 2011; pp. 529–536. [Google Scholar]
- Ng, W.W.; Xu, S.; Wang, T.; Zhang, S.; Nugent, C. Radial Basis Function Neural Network with Localized Stochastic-Sensitive Autoencoder for Home-Based Activity Recognition. Sensors 2020, 5, 1479–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meina, L.; Kwak, K.-C.; Kim, Y.T. Estimation of Energy Expenditure Using a Patch-Type Sensor Module with an Incremental Radial Basis Function Neural Network. Sensors 2016, 16, 1566. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Chen, Y.M.; Yuchi, M.; Ding, M.Y. Heart Rate Prediction Model Based on Physical Activities Using Evolutionary Neural Network. In Proceedings of the International Conference on Genetic and Evolutionary Computing (ICGEC 2010), Shenzhen, China, 13–15 December 2010; pp. 198–201. [Google Scholar]
- Yuchi, M.; Jo, J. Heart Rate Prediction Based on Physical Activity Using Feedforward Neural Network. In Proceedings of the International Conference on Convergence and Hybrid Information Technology (ICHIT 2008), Busan, Korea, 11–13 November 2008; pp. 344–350. [Google Scholar]
- Xiao, F.; Yuchi, M.; Jo, J.; Ding, M.Y.; Hou, W.G. A Research of Physical Activity’s Influence on Heart Rate Using Feedforward Neural Network. In Proceedings of the 6th International Symposium on Neural Networks (ISNN 2009), Wuhan, China, 26–29 May 2009; pp. 1089–1096. [Google Scholar]
- Mitchell, T.M. Genetic Algorithms; Machine Learning: Boston, MA, USA, 1997; pp. 249–270. [Google Scholar]
- Simon, H. Neural networks: A comprehensive foundation. Knowl. Eng. Rev. 1994, 13, 409–412. [Google Scholar]
- Eiben, A.E.; Smith, J.E. Genetic Algorithms. In Introduction to Evolutionary Computing; Springer: New York, NY, USA, 2003; pp. 37–69. [Google Scholar]
- Zakeria, M.; Bahramib, A.; Anijdanb, S.H.M. Using genetic algorithm in heat treatment optimization of 17-4PH stainless steel. Mater. Des. 2007, 28, 2034–2039. [Google Scholar] [CrossRef]
- Arabasadi, Z.; Alizadehsani, R.; Roshanzamir, M.; Moosaei, H.; Yarifard, A.A. Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm. Comput. Methods Programs Biomed. 2017, 141, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Pappu, S.M.J.; Gummadi, S.N. Artificial neural network and regression coupled genetic algorithm to optimize parameters for enhanced xylitol production by Debaryomyces nepalensis in bioreactor. Biochem. Eng. J. 2017, 120, 136–145. [Google Scholar] [CrossRef]
- Chow, T.T. Global optimization of absorption chiller system by genetic algorithm and neural network. Energy Build. 2002, 34, 103–109. [Google Scholar] [CrossRef]
- Gjoreski, H.; Kaluža, B.; Gams, M.; Milić, R.; Luštrek, M. Context-based ensemble method for human energy expenditure estimation. Appl. Soft Comput. 2015, 37, 960–970. [Google Scholar] [CrossRef]
- Lu, K.; Yang, L.; Seoane, F.; Abtahi, F.; Forsman, M.; Lindecrantz, K. Fusion of heart rate, respiration and motion measurements from a wearable sensor system to enhance energy expenditure estimation. Sensors 2018, 18, 3092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Masso, X.; Serra-Ano, P.; Garcia-Raffi, L.; Sanchez-Perez, E.; Giner-Pascual, M.; Gonzalez, L.M. Neural network for estimating energy expenditure in paraplegics from heart rate. Int. J. Sports Med. 2014, 35, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.; Christine, M. Practical genetic algorithms. J. Am. Stat. Assoc. 2005, 100, 1099. [Google Scholar] [CrossRef]
- Kang, K.H.; Shin, S.H.; Jung, J.; Kim, Y.T. Estimation of a physical activity energy expenditure with a patch-type sensor module using artificial neural network. Concurr. Comput. Pract. Exp. 2021, 33, e5455. [Google Scholar] [CrossRef]
Males (n = 43) | Females (n = 10) | |||
---|---|---|---|---|
Age (years) | 32 ± 8.9 | 26–52 | 27 ± 2.4 | 24–32 |
Height (cm) | 172 ± 6.8 | 160–180 | 160 ± 4.9 | 150–165 |
Weight (kg) | 70 ± 6.5 | 65–80 | 50 ± 3.2 | 45–56 |
BMI | 32 ± 8.9 | 20.1–31.3 | 27 ± 2.4 | 16.5–24.8 |
Items | Performance |
---|---|
Channel | 8 ch |
Sampling Rate | 200/s |
Resolution | 12 bit |
Frequency Bandwidth | 1–50 Hz |
Power | Li-ion |
HR Detection Error | Below 10% |
Max HR | 250/m |
Comm. Module | ZigBee |
Comm. Distance | 400 m |
Power | ±3.3 V, 3.3 V |
MCU | MSP430 (TI, USA) |
Electrode | Jumper setting available |
Size | 6 × 9 cm, 20 g |
Variable | Value |
---|---|
Maximal oxygen uptake (㎖/kg) | 40–45 |
Carbon dioxide emissions (ppm) | 300–400 |
Pulmonary ventilation (㎖/m) | 6–8 |
Maximum HR (HRmax) | 70–84 |
Body mass index (kg/m2) | 18.3–22 |
Number of Neurons | RMSE | R2 | MSE | MAE |
---|---|---|---|---|
1 | 0.2165 | 0.89 | 0.046878 | 0.15274 |
2 | 0.1909 | 0.91 | 0.036479 | 0.13964 |
3 | 0.2386 | 0.86 | 0.056966 | 0.17777 |
4 | 0.2308 | 0.87 | 0.053291 | 0.14488 |
5 | 0.1993 | 0.90 | 0.039721 | 0.14424 |
6 | 0.1893 | 0.91 | 0.014213 | 0.14020 |
7 | 0.2178 | 0.78 | 0.035833 | 0.15897 |
8 | 0.2018 | 0.81 | 0.033879 | 0.15181 |
9 | 0.2403 | 0.67 | 0.067986 | 0.18290 |
10 | 0.1995 | 0.91 | 0.039872 | 0.13562 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, K.H.; Kang, M.; Shin, S.; Jung, J.; Li, M. Estimating Physical Activity Energy Expenditure Using an Ensemble Model-Based Patch-Type Sensor Module. Electronics 2021, 10, 861. https://doi.org/10.3390/electronics10070861
Kang KH, Kang M, Shin S, Jung J, Li M. Estimating Physical Activity Energy Expenditure Using an Ensemble Model-Based Patch-Type Sensor Module. Electronics. 2021; 10(7):861. https://doi.org/10.3390/electronics10070861
Chicago/Turabian StyleKang, Kyeung Ho, Mingu Kang, Siho Shin, Jaehyo Jung, and Meina Li. 2021. "Estimating Physical Activity Energy Expenditure Using an Ensemble Model-Based Patch-Type Sensor Module" Electronics 10, no. 7: 861. https://doi.org/10.3390/electronics10070861
APA StyleKang, K. H., Kang, M., Shin, S., Jung, J., & Li, M. (2021). Estimating Physical Activity Energy Expenditure Using an Ensemble Model-Based Patch-Type Sensor Module. Electronics, 10(7), 861. https://doi.org/10.3390/electronics10070861