5G Mobile Phone Network Introduction in Colombia
Abstract
:1. Introduction
2. Background
3. Frequency Bands in 5G
Advantages and Disadvantages in Frequency Band mm-W and Sub-6 GHz in 5G
4. MIMO Systems
4.1. Comparison of MIMO in 5G vs. 4G
4.2. MIMO and 5G
4.3. Massive MIMO and 5G
5. Radio Access Network (RAN) in 5G
6. 5G Deployment Architecture Options from LTE (4G)
7. 5G Network Mobile Deployment in Colombia
7.1. Road Map of Colombia Government
7.2. 5G Pilot Tests in Colombia
7.3. Current Situation and Future Deployment
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Robaei, M.; Akl, R. Examining Spatial Consistency for Millimeter-Wave Massive MIMO Channel Estimation in 5G-NR. IEEE Int. Conf. Consum. Electron. (ICCE) 2020, 9042983. [Google Scholar] [CrossRef]
- Sun, L.; Li, Y.; Zhang, Z.; Feng, Z. Wideband 5G MIMO Antenna with Integrated Orthogonal-Mode Dual-Antenna Pairs for Metal-Rimmed Smartphones. IEEE Trans. Antennas Propag. 2019, 68, 2494–2503. [Google Scholar] [CrossRef]
- Chataut, R.; Akl, R.; Robaei, M. Accelerated and Preconditioned Refinement of Gauss-Seidel Method for Uplink Signal Detection in 5G Massive MIMO Systems. Annu. Comput. Commun. Workshop Conf. (CCWC) 2020, 83–89. [Google Scholar] [CrossRef]
- Khalid, M.; Naqvi, S.I.; Hussain, N.; Rahman, M.; Fawad; Mirjavadi, S.S.; Khan, M.J.; Amin, Y. 4-Port MIMO Antenna with Defected Ground Structure for 5G Millimeter Wave Applications. Electronics 2020, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Albataineh, Z.; Hayajneh, K.; Salameh, H.B.; Dang, C.; Dagmseh, A. Robust massive MIMO channel estimation for 5G networks using compressive sensing technique. AEU Int. J. Electron. Commun. 2020, 120, 153197. [Google Scholar] [CrossRef]
- Sakai, M.; Kamohara, K.; Iura, H.; Nishimoto, H.; Ishioka, K.; Murata, Y.; Yamamoto, M.; Okazaki, A.; Nonaka, N.; Suyama, S.; et al. Experimental Field Trials on MU-MIMO Transmissions for High SHF Wide-Band Massive MIMO in 5G. IEEE Trans. Wirel. Commun. 2020, 19, 2196–2207. [Google Scholar] [CrossRef]
- Ibrahim, A.A.Z.; Hashim, F.; Noordin, N.K.; Sali, A.; Navaie, K.; Fadul, S.M.E. Heuristic Resource Allocation Algorithm for Controller Placement in Multi-Control 5G Based on SDN/NFV Architecture. IEEE Access 2021, 9, 2602–2617. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, R.; Luo, Y.; Yang, G. Compact Eight-Element Antenna Array for Triple-Band MIMO Operation in 5G Mobile Terminals. IEEE Access 2020, 8, 19433–19449. [Google Scholar] [CrossRef]
- Elshirkasi, A.M.; Al-Hadi, A.A.; Soh, P.J.; Mansor, M.F.; Khan, R.; Chen, X.; Akkaraekthalin, P. Performance Study of a MIMO Mobile Terminal with Upto 18 Elements Operating in the Sub-6 GHz 5G Band with User Hand. IEEE Access 2020, 8, 28164–28177. [Google Scholar] [CrossRef]
- Carrera, D.F.; Vargas-Rosales, C.; Azpilicueta, L.; Galaviz-Aguilar, J.A. Comparative study of channel estimators for massive MIMO 5G NR systems. IET Commun. 2020, 14, 1175–1184. [Google Scholar] [CrossRef]
- Ribeiro, C.; Gomes, R.; Duarte, L.; Hammoudeh, A.; Caldeirinha, R.F. Multi-Gigabit/s OFDM real-time based transceiver engine for emerging 5G MIMO systems. Phys. Commun. 2020, 38, 100957. [Google Scholar] [CrossRef]
- Kim, J.; Sung, M.; Cho, S.-H.; Won, Y.-J.; Lim, B.-C.; Pyun, S.-Y.; Lee, J.-K.; Lee, J.H. MIMO-Supporting Radio-Over-Fiber System and its Application in mmWave-Based Indoor 5G Mobile Network. J. Light. Technol. 2020, 38, 101–111. [Google Scholar] [CrossRef]
- Usami, M. New World Explored by 5G. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 4–6 January 2020. [Google Scholar]
- Popovski, P.; Trillingsgaard, K.F.; Simeone, O.; Durisi, G. 5G Wireless Network Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View. IEEE Access 2018, 6, 55765–55779. [Google Scholar] [CrossRef]
- Hui, H.; Ding, Y.; Shi, Q.; Li, F.; Song, Y.; Yan, J. 5G network-based Internet of Things for demand response in smart grid: A survey on application potential. Appl. Energy 2020, 257, 113972. [Google Scholar] [CrossRef]
- Husenovic, K.; Bedi, I.; Maddens, S.; Bozsoki, I.; Karyabwite, D.; Sundberg, N.; Maniewicz, M. Setting the Scene for 5G: Opportunities & Challenges. International Telecommunication Union. 2018. Available online: https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.5G_01-2018-PDF-E.pdf (accessed on 21 June 2020).
- Chaudhary, P.; Kumar, A.; Yadav, A. Pattern diversity MIMO 4G AND 5G wideband circularly polarized antenna with integrated LTE band for mobile handset. Prog. Electromagn. Res. M 2020, 89, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Lv, G.; Liu, X.; Wang, D.; Ghannouchi, F.M. Doherty PAs for 5G Massive MIMO: Energy-Efficient Integrated DPA MMICs for Sub-6-GHz and mm-Wave 5G Massive MIMO Systems. IEEE Microw. Mag. 2020, 21, 78–93. [Google Scholar] [CrossRef]
- Singh, A.; Saavedra, C.E. Fluidically Reconfigurable MIMO Antenna with Pattern Diversity for Sub-6-GHz 5G Relay Node Applications. Can. J. Electr. Comput. Eng. 2020, 43, 92–99. [Google Scholar] [CrossRef]
- Xu, Z.; Deng, C. High-Isolated MIMO Antenna Design Based on Pattern Diversity for 5G Mobile Terminals. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 467–471. [Google Scholar] [CrossRef]
- Alkaraki, S.; Gao, Y. mm-Wave Low-Cost 3D Printed MIMO Antennas with Beam Switching Capabilities for 5G Communication Systems. IEEE Access 2020, 8, 32531–32541. [Google Scholar] [CrossRef]
- Vojnović, N.M.; Savić, S.V.; Ilić, M.M.; Ilić, A.Ž. Performance Analysis of Low-Cost Printed Antenna Array Elements for 5G LOS-MIMO Arrays at 60 GHz. Wirel. Pers. Commun. 2020, 111, 2641–2658. [Google Scholar] [CrossRef]
- Barani, I.R.R.; Wong, K.-L.; Zhang, Y.-X.; Li, W.-Y. Low-Profile Wideband Conjoined Open-Slot Antennas Fed by Grounded Coplanar Waveguides for 4 × 45 G MIMO Operation. IEEE Trans. Antennas Propag. 2020, 68, 2646–2657. [Google Scholar] [CrossRef]
- Kavitha, M.; Shanthi, S.; Beno, A.; Arul Rajan, B.; Sathish, M. Design of 2 × 2 MIMO-DRA antenna for 5g communication. Int. J. Sci. Technol. Res. 2020, 9, 7025–7029. [Google Scholar]
- El Misilmani, H.M.; El-Hajj, A.M. Massive MIMO Design for 5G Networks: An Overview on Alternative Antenna Configurations and Channel Model Challenges. Int. Conf. High Perform. Comput. Simul. (HPCS) 2017, 288–294. [Google Scholar] [CrossRef]
- GSMA. 5G Spectrum GSMA Public Policy Position. 2020. Available online: https://www.gsma.com/spectrum/wp-content/uploads/2020/03/5G-Spectrum-Positions.pdf (accessed on 1 April 2021).
- Parchin, N.O.; Basherlou, H.J.; Al-Yasir, Y.I.A.; Abdulkhaleq, A.M.; Patwary, M.; Abd-Alhameed, R.A. A New CPW-Fed Diversity Antenna for MIMO 5G Smartphones. Electronics 2020, 9, 261. [Google Scholar] [CrossRef] [Green Version]
- Parchin, N.O.; Al-Yasir, Y.I.A.; Basherlou, H.J.; Abd-Alhameed, R.A. A closely spaced dual-band MIMO patch antenna with reduced mutual coupling for 4G/5G applications. Prog. Electromagn. Res. C 2020, 101, 71–80. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Ren, A.-D.; Liu, Y. Decoupling methods of MIMO antenna arrays for 5G applications: A review. Front. Inf. Technol. Electron. Eng. 2020, 21, 62–71. [Google Scholar] [CrossRef]
- Subbaraj, S.; Kanagasabai, M.; Mohammed, G.N.A.; Palaniswamy, S.K.; Tipparaju, R.R.; Kingsly, S.; Selvam, Y.P. Integrated 4G/5G Multiservice MIMO Antenna for Hand-Held Devices. Wirel. Pers. Commun. 2019, 111, 2023–2043. [Google Scholar] [CrossRef]
- Tang, W.; Kang, S.; Zhao, J.; Zhang, Y.; Zhang, X.; Zhang, Z. Design of MIMO-PDMA in 5G mobile communication system. IET Commun. 2020, 14, 76–83. [Google Scholar] [CrossRef]
- Tsai, M.-D.; Yang, S.-Y.; Yu, C.-Y.; Chen, P.-Y.; Wu, T.-H.; Hassan, M.; Chen, C.-T.; Wang, C.-W.; Huang, Y.-C.; Hung, L.-H.; et al. 10.3 A 12nm CMOS RF Transceiver Supporting 4G/5G UL MIMO. IEEE Int. Solid State Circuits Conf. (ISSCC) 2020, 176–178. [Google Scholar] [CrossRef]
- Larsson, E.G.; Danev, D.; Olofsson, M.; Sorman, S. Teaching the Principles of Massive MIMO: Exploring reciprocity-based multiuser MIMO beamforming using acoustic waves. IEEE Signal Process. Mag. 2017, 34, 40–47. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, Y.; Yang, S. Integration of 5G Rectangular MIMO Antenna Array and GSM Antenna for Dual-Band Base Station Applications. IEEE Access 2020, 8, 63175–63187. [Google Scholar] [CrossRef]
- Buzzi, S.; D’Andrea, C.; Zappone, A.; D’Elia, C. User-Centric 5G Cellular Networks: Resource Allocation and Comparison with the Cell-Free Massive MIMO Approach. IEEE Trans. Wirel. Commun. 2020, 19, 1250–1264. [Google Scholar] [CrossRef] [Green Version]
- Bjornson, E.; Van Der Perre, L.; Buzzi, S.; Larsson, E.G. Massive MIMO in Sub-6 GHz and mmWave: Physical, Practical, and Use-Case Differences. IEEE Wirel. Commun. 2019, 26, 100–108. [Google Scholar] [CrossRef] [Green Version]
- MinTIC. Ministry of Information and Communication Technologies—Mobile Service. Available online: https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/Noticias/161329:En-mayo-de-2021-954-localidades-de-zonas-rurales-tendran-servicio-movil-4G-anuncia-la-ministra-Karen-Abudinen (accessed on 1 April 2021).
- Jungnickel, V.; Habel, K.; Parker, M.; Walker, S.; Bock, C.; Riera, J.F.; Marques, V.; Levi, D. Software-defined open architecture for front- and backhaul in 5G mobile networks. Int. Conf. Transparent Opt. Netw. (ICTON) 2014, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Chih-Lin, I.; Huang, J.; Duan, R.; Cui, C.; Jiang, J.; Li, L. Recent Progress on C-RAN Centralization and Cloudification. IEEE Access 2014, 2, 1030–1039. [Google Scholar] [CrossRef]
- Intel. Wind an Intel Company—vRAN: The Next Step in Network Transformation. Available online: https://builders.intel.com/docs/networkbuilders/vran-the-next-step-in-network-transformation.pdf (accessed on 1 April 2021).
- Lin, Y.; Feng, L.; Li, W.; Zhou, F.; Ou, Q. Stochastic Joint Bandwidth and Computational Allocation for Multi-Users and Multi-Edge-Servers in 5G D-RANs. IEEE Int. Conf. Smart Cloud 2019, 65–70. [Google Scholar] [CrossRef]
- Xu, J.; Dziong, Z.; Luxin, Y.; Huang, Z.; Xu, P.; Cabani, A. Intelligent multi-agent based C-RAN architecture for 5G radio resource management. Comput. Networks 2020, 180, 107418. [Google Scholar] [CrossRef]
- Mei, H.; Peng, L. Flexible functional split for cost-efficient C-RAN. Comput. Commun. 2020, 161, 368–374. [Google Scholar] [CrossRef]
- Keysight. 5G Terms and Acronyms. Available online: https://www.keysight.com/us/en/assets/7018-06171/brochures/5992-2996.pdf (accessed on 1 April 2021).
- Gavrilovska, L.; Rakovic, V.; Denkovski, D. From Cloud RAN to Open RAN. Wirel. Pers. Commun. 2020, 113, 1523–1539. [Google Scholar] [CrossRef]
- Mendes, J.; Jiao, X.; Garcia-Saavedra, A.; Huici, F.; Moerman, I. Cellular access multi-tenancy through small-cell virtualization and common RF front-end sharing. Comput. Commun. 2019, 133, 59–66. [Google Scholar] [CrossRef]
- McKenney, B. Open RAN: Reality or Illusion? Available online: https://www.microwavejournal.com/articles/35108-open-ran-reality-or-illusion (accessed on 1 April 2021).
- Nokia. Open RAN Explained. Available online: https://www.nokia.com/about-us/newsroom/articles/open-ran-explained/ (accessed on 1 April 2021).
- Ericsson. Non-Standalone and Standalone: Two Standards-Based Paths to 5G. Available online: https://www.ericsson.com/en/blog/2019/7/standalone-and-non-standalone-5g-nr-two-5g-tracks (accessed on 1 April 2021).
- GSMA. 5G Implementation Guidelines. Available online: https://www.gsma.com/futurenetworks/wp-content/uploads/2019/03/5G-Implementation-Guideline-v2.0-July-2019.pdf (accessed on 1 April 2021).
- Samsung. 5G Standalone Architecture. Available online: https://images.samsung.com/is/content/samsung/p5/global/business/networks/insights/white-papers/0107_5g-standalone-architecture/5G_SA_Architecture_Technical_White_Paper_Public.pdf (accessed on 1 April 2021).
- Agiwal, M.; Kwon, H.; Park, S.; Jin, H. A Survey on 4G-5G Dual Connectivity: Road to 5G Implementation. IEEE Access 2021, 9, 16193–16210. [Google Scholar] [CrossRef]
- GSMA. 5G Implementation Guidelines: NSA Option 3. Available online: https://www.gsma.com/futurenetworks/wp-content/uploads/2019/03/5G-Implementation-Guidelines-NSA-Option-3-v2.1.pdf (accessed on 1 April 2021).
- Constain, S.; Mantilla-Gaviria, I.A.; Rueda-Jiménez, G.C.; Fernanda-Trujillo, L.; Barrera-Medina, J.G.; Thiriat-Tovar, P.E.; Ustate-Bermúdez, A.G.; Triviño-Arbelaez, H.M.; Agudelo-Mora, O.I. Plan 5G—Colombia’s Digital Future Belongs to Everyone; Ministry of Information and Communication Technologies of Colombia: Bogota, Colombia, 2019. Available online: https://micrositios.mintic.gov.co/plan_tic_2018_2022/pdf/plan_tic_2018_2022_20191121.pdf (accessed on 1 April 2021).
- MinTIC. Ministry of Information and Communications – Resolution number 00467 of March 9, 2020. Available online: http://micrositios.mintic.gov.co/plan_5g/pdf/resolucion_467_2020_temporal_espectro_pruebas.pdf (accessed on 1 April 2021).
- MinTIC. Ministry of Information and Communications Technology—Resolution number 003209 of 5 December 2019. Available online: https://www.mintic.gov.co/portal/604/articles-118058_resolucion_3209_2019.pdf (accessed on 1 April 2021).
- ANE. National Spectrum Agency. Resolution Number 442 of 22 August 2013. Available online: https://normograma.mintic.gov.co/mintic/docs/resolucion_mintic_0963_2019.htm (accessed on 1 April 2021).
- MinTIC. Ministry of Information and Communications—5G Pilot Expressions of Interest Report. 2020. Available online: http://micrositios.mintic.gov.co/plan_5g/pdf/informe_manifestaciones_interes_piloto_5Gg_u20200311.pdf (accessed on 1 April 2021).
- MinTIC. Ministry of Information and Communications—Resolution number 000638 of 1 April 2020. Available online: http://micrositios.mintic.gov.co/plan_5g/pdf/resolucion_638.pdf (accessed on 1 April 2021).
- MinTIC. Ministry of Information and Communications—Resolution number 000722 of 30 April 2020. Available online: https://micrositios.mintic.gov.co/plan_5g/pdf/resolucion_722.pdf (accessed on 1 April 2021).
- GSMA. 5G y el Rango 3,3-3,8 GHz en América Latina November 2020. Available online: https://www.gsma.com/spectrum/wp-content/uploads/2020/11/5G-and-3.5-GHz-Range-in-Latam-Spanish.pdf (accessed on 1 April 2021).
- MinTIC. Ministry of Information and Communications—Mintic Hopes to Have a 5G Auction before the End of the Government. Available online: https://mintic.gov.co/portal/inicio/https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/MinTIC-en-los-Medios/161584:Mintic-espera-tener-una-subasta-5G-antes-que-termine-el-Gobierno (accessed on 1 April 2021).
- MinTIC. Ministry of Information and Communications—By May 2021, 954 Rural Localities will Have 4G Mobile Service, Announces Minister Karen Abudinen. Available online: https://mintic.gov.co/portal/inicio/Sala-de-Prensa/Noticias/161329:En-mayo-de-2021-954-localidades-de-zonas-rurales-tendran-servicio-movil-4G-anuncia-la-ministra-Karen-Abudinen (accessed on 1 April 2021).
- MinTIC. Ministry of Information and Communications—Resolution 638 of 1 April 2020. Available online: https://micrositios.mintic.gov.co/plan_5g/pdf/infome_asignacion_5g_2.pdf (accessed on 1 April 2021).
- Telefonica. Movistar Empresas and Hospital Militar Central Present Second 5G Pilot. Available online: https://www.telefonica.co/ver_noticia?id_not=409248143 (accessed on 1 April 2021).
- HOMIL. Hospital Militar Central—HOMIL and Movistar Empresas Present Second 5G Pilot. Available online: https://www.hospitalmilitar.gov.co/index.php?idcategoria=69906 (accessed on 1 April 2021).
- Claro. The Deployment of 5G Antennas Continues. Available online: https://www.claro.com.co/institucional/pruebas-5g/ (accessed on 1 April 2021).
- Claro. 5G Technology in Colombia: Already in Trials. Available online: https://www.claro.com.co/empresas/sectores/noticias-interes/5g-colombia/ (accessed on 1 April 2021).
- MinTIC. Ministry of Information and Communications—MinTIC Assigned Spectrum to Claro to Develop 5G Trials for Six Months. Available online: https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/MinTIC-en-los-Medios/145864:MinTIC-le-asigno-espectro-a-Claro-para-desarrollar-pruebas-5G-durante-seis-meses (accessed on 1 April 2021).
- MinTIC. Ministry of Information and Communications—Resolution 001039 of 23 June 2020. Available online: https://micrositios.mintic.gov.co/plan_5g/pdf/permisos_uso_espectro_piloto_5G.zip (accessed on 1 April 2021).
- Claro. Claro Expresses Interest in 5G Technology. Available online: https://www.claro.com.co/institucional/tecnologia-5g (accessed on 1 April 2021).
- MinTIC. Ministry of Information and Communications—In Colombia, 5G Networks Will Be Ready in 2022. Available online: https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/MinTIC-en-los-Medios/101472:En-Colombia-redes-5G-estaran-listas-en-2022 (accessed on 1 April 2021).
- Enter. Telefonica conducted 5G technology trial in Colombia. Available online: https://www.enter.co/empresas/colombia-digital/telefonica-prueba-5g-en-colombia/ (accessed on 1 April 2021).
- Rebato, M.; Zorzi, M. A Spectrum Sharing Solution for the Efficient Use of mmWave Bands in 5G Cellular Scenarios. IEEE Int. Symp. Dyn. Spectr. Access Netw. (DySPAN) 2018, 1–5. [Google Scholar] [CrossRef] [Green Version]
- ANE. National Spectrum Agency—Functions. Available online: http://www.ane.gov.co/Agencia/SitePages/MarcoEstrategico.aspx?p=1&d=8] (accessed on 1 April 2021).
- MinTIC. Ministry of Information and Communications—Commercial Roll-Out of 5G Network. Available online: https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/MinTIC-en-los-Medios/149152:Colombia-inicia-proceso-para-despliegue-comercial-de-red-5G (accessed on 1 April 2021).
- GSMA. The WRC Series 3.5 GHz in the 5G Era Preparing for New Services in 3.3-4.2 GHz March 2021. Available online: https://www.gsma.com/spectrum/wp-content/uploads/2021/02/3.5-GHz-for-5G.pdf (accessed on 1 April 2021).
- GSA. 2020 in Review 5G networks, Spectrum & Devices (December 2020). Available online: https://gsacom.com/paper/2020-in-review-5g-networks-spectrum-devices/ (accessed on 1 April 2021).
- Ericsson. Building Efficient Fronthaul Networks Using Packet Technologies. 2020. Available online: https://www.ericsson.com/en/blog/2020/4/building-efficient-fronthaul-networks-using-packet-technologies (accessed on 1 April 2021).
- Pérez, G.O.; Hernández, J.A.; Larrabeiti, D. Fronthaul Network Modeling and Dimensioning Meeting Ultra-Low Latency Requirements for 5G. J. Opt. Commun. Netw. 2018, 10, 573–581. [Google Scholar] [CrossRef]
- Perez, G.O.; Lopez, D.L.; Hernandez, J.A. 5G New Radio Fronthaul Network Design for eCPRI-IEEE 802.1CM and Extreme Latency Percentiles. IEEE Access 2019, 7, 82218–82230. [Google Scholar] [CrossRef]
- MinTIC. Ministry of Information and Communications Technologies—The Spectrum Auction Last December Was Very Clear,” Sylvia Constaín. Available online: https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/Columnas-Ministra-TIC/126186:La-subasta-de-espectro-del-pasado-diciembre-fue-muy-clara-Sylvia-Constain (accessed on 1 April 2021).
- MinTIC. Ministry of Information and Communication Technologies—Resolution 3078 of 2019. Available online: https://normograma.mintic.gov.co/mintic/docs/resolucion_mintic_3078_2019.htm (accessed on 1 April 2021).
- MinTIC. Ministry of Information and Communication Technologies—Resolution 3121 of 2019. Available online: https://normograma.mintic.gov.co/mintic/docs/resolucion_mintic_3121_2019.htm (accessed on 1 April 2021).
- Abudinen-Abuchaibe, K.A.; Mantilla-Gaviria, I.A.; Barrera-Medina, J.G.; Ramírez-Echeverry, J.; Rueda-Pepinosa, J.D.; Dávila-Barragán, J.A.; González-Cárdenas, G.; Corredor-Forero, H.A.A.; Ustate-Bermúdez, A.G.; Ruiz-Eraso, A.B.; et al. Preliminary Analysis of the Objective Selection Process for the Allocation of Spectrum Use Permits in IMT Bands (2020). Ministry of Information Technologies and Communications of Colombia. Available online: https://www.mintic.gov.co/portal/604/articles-146624_resolucion_1322_20200727_soporte_tecnico.pdf (accessed on 1 April 2021).
- Qualcomm. Global Update on Spectrum for 4G & 5G. Available online: https://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf (accessed on 1 April 2021).
- ANE. National Spectrum Agency—Public consultation document on frequency bands available for the future development of International Mobile Telecommunications (IMT) in Colombia, August 2020. Available online: http://www.ane.gov.co/Documentos%20compartidos/ArchivosDescargables/noticias/Consulta%20p%C3%BAblica%20sobre%20las%20bandas%20disponibles%20para%20el%20futuro%20desarrollo%20de%20las%20IMT%20en%20Colombia.pdf (accessed on 1 April 2021).
- GSMA. 5G Spectrum Positions. 2019. Available online: https://www.gsma.com/latinamerica/wp-content/uploads/2019/03/5G-Spectrum-Positions-InfoG.pdf (accessed on 1 April 2021).
1G | 2G | 3G | 4G | 5G | |
---|---|---|---|---|---|
Approximate date of implementation | 1980s | 1990s | 2000s | 2010s | 2020s |
Theoretical download speed | 2 kbps | 384 kbps | 56 Mbps | 1 Gbps | 10 Gbps |
Latency | N/A | 629 ms | 212 ms | 60–98 ms | <1 ms |
Massive Machine Type Communications (mMTC) | Enhanced Mobile Broadband (eMBB) | Ultra-Reliable, Low-Latency Communications (URLLC) |
---|---|---|
IoT, asset tracking, smart agriculture, smart cities, energy control, smart homes, and remote monitoring. | Better quality broadband for both indoor and outdoor use, virtual, and augmented reality. | Autonomous vehicles, intelligent electrical networks, remote patient monitoring, and telehealth and industrial automation services. |
Band Frequency | Advantage | Disadvantage |
---|---|---|
<1 GHz | Greater coverage than higher frequencies (1 GHz–6 GHz), (mm-W bands up to 66 GHz) | Lower channel capacity than other frequencies (1 GHz–6 GHz), (mm-W bands up to 66 GHz) |
1 GHz–6 GHz | Balanced combination of coverage and channel capacity for 5G services drives the first wave of 5G deployments | There are other mobile bands in the 1 to 6 GHz range, currently used for 3G and 4G services, which could be gradually reallocated for their use in 5G. |
>6 GHz | Lower coverage than other frequencies (1 GHz–6 GHz) and (mm-W bands up to 66 GHz) Supports ultra-fast mobile broadband speeds envisioned for 5G technology Will include unlicensed mobile bands | Higher data rate than other frequencies (1 GHz–6 GHz), (mm-W bands up to 66 GHz) |
Development and Publication of the 5G Plan | ANE -MinTIC | ANE-MinTIC | Communications Regulation Commission (CRC) | Analysis of Frequency Band Management Mechanisms | MinTIC |
---|---|---|---|---|---|
Q4-2019 | Q2-2020 | Q3-2020 | Q4-2020 | Q2-2021 | Q3-2021 |
MinTIC |
| Call for the development of applications or use cases in 5G technology | Consult regulatory adjustment needs | ANE-MinTIC | 3500 MHz band allocation. |
Activity | Date |
---|---|
Opening of the call process | As of the issuance of this resolution |
Closing reception of applications | 29 May 2020 |
Evaluation of applications, frequency studies, and requests for clarification | 1 to 12 June 2020 |
Publication of the evaluation report on applications submitted | 19 June 2020 |
Issuance of resolutions to grant permission to use the radio spectrum for 5G technical tests | 23 to 30 June 2020 |
Publication of the assignment report | 1 July 2020 |
Band Frequency (MHz) | Total Free Spectrum in Band (MHz) | Spectrum to be Assigned Per Block (MHz) | Planned Auction Year/Available Band | Source |
---|---|---|---|---|
700 | 10 | 10 | Before September 2022 (Auction). For 4G use, most of this frequency band was licensed in December 2019. | [62,82,83,84,85,86] |
1900 | 5 | 5 | Before September 2022 (Auction). For 4G use, most of this frequency band was licensed in December 2019. | [62,82,83,84,85,86] |
2500 | 20 | 10 | Before September 2022 (Auction). For 4G use, most of this frequency band was licensed in December 2019. | [62,81,83,84,86] |
3500 | 400 | 80 or 100 | Third quarter of 2021 (Auction). | [87,88] |
26,000 | 1000 | 56 or 112 | Available in 2027 | [61,87] |
38,000 | 1000 | There are no ITU-approved channelisations for this frequency band | Available in 2028 | [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Gómez-Mula, F.; Calderin-Curtidor, A.C.; Martínez-Lao, J.; Cama-Pinto, A. 5G Mobile Phone Network Introduction in Colombia. Electronics 2021, 10, 922. https://doi.org/10.3390/electronics10080922
Cama-Pinto D, Damas M, Holgado-Terriza JA, Gómez-Mula F, Calderin-Curtidor AC, Martínez-Lao J, Cama-Pinto A. 5G Mobile Phone Network Introduction in Colombia. Electronics. 2021; 10(8):922. https://doi.org/10.3390/electronics10080922
Chicago/Turabian StyleCama-Pinto, Dora, Miguel Damas, Juan Antonio Holgado-Terriza, Francisco Gómez-Mula, Andrés Camilo Calderin-Curtidor, Juan Martínez-Lao, and Alejandro Cama-Pinto. 2021. "5G Mobile Phone Network Introduction in Colombia" Electronics 10, no. 8: 922. https://doi.org/10.3390/electronics10080922
APA StyleCama-Pinto, D., Damas, M., Holgado-Terriza, J. A., Gómez-Mula, F., Calderin-Curtidor, A. C., Martínez-Lao, J., & Cama-Pinto, A. (2021). 5G Mobile Phone Network Introduction in Colombia. Electronics, 10(8), 922. https://doi.org/10.3390/electronics10080922