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Abstract: Traditional watermarking techniques extract the watermark from a suspected image,
allowing the copyright information regarding the image owner to be identified by the naked eye or
by similarity estimation methods such as bit error rate and normalized correlation. However, this
process should be more objective. In this paper, we implemented a model based on deep learning
technology that can accurately identify the watermark copyright, known as WMNet. In the past,
when establishing deep learning models, a large amount of training data needed to be collected. While
constructing WMNet, we implemented a simulated process to generate a large number of distorted
watermarks, and then collected them to form a training dataset. However, not all watermarks in
the training dataset could properly provide copyright information. Therefore, according to the set
restrictions, we divided the watermarks in the training dataset into two categories; consequently,
WMNet could learn and identify the copyright information that the watermarks contained, so as
to assist in the copyright verification process. Even if the retrieved watermark information was
incomplete, the copyright information it contained could still be interpreted objectively and accurately.
The results show that the method proposed by this study is relatively effective.

Keywords: convolutional neural network; deep learning; watermarking technique

1. Introduction

Hospitals and medical research centers are currently moving toward a digitalized
diagnosis and treatment environment. These environmental changes have made the se-
curity of the usage, management, and transmission of digital medical images extremely
important. In response, the standard format Digital Imaging and Communications in
Medicine (DICOM) was created as a storage standard for medical images based on the
Transmission Control Protocol/Internet Protocol as a foundation for communication to en-
sure a consistent format for storing, processing, printing, and transmitting medical images
and data between facilities. Using the DICOM standard, medical devices from different
manufacturers within a network can be used to transmit and use medical images. This
enables patients, physicians, and medical research units to share relevant medical images
through internet image servers to conduct real-time, convenient disease diagnosis, treat-
ment, and research. However, it cannot be ignored that in such a convenient environment,
stored data may be susceptible to attacks, tampering, or misplacement during transmission
or storage for diagnosis and treatment. This consideration is especially important in the
application of telemedicine [1–3]. Therefore, the problem of ensuring the security and
copyright of data when they are disseminated in open channels must be addressed.

Cryptography, steganography, watermarking, and other techniques have been devel-
oped to provide different solutions to ensure the security and protection of digital medical
image content [4–13]. Rahimi and Rabbani [7] presented a regional watermarking algo-
rithm for DICOM images. Their work illustrates that it is advantageous to apply current
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picture archiving and communication systems to digitalize the storage and transmission
of medical images. However, it is necessary to address the privacy and security of these
medical images. Cedillo-Hernandez et al. [8] proposed a discrete Fourier transform-based
watermarking mechanism that allows effective management of medical images. This
method encrypts the electronic patient record (EPR) with a secret key and embeds it into
the medical image as a watermark. Not only can this method verify the copyright of the
protected image, but it can also manage the image based on the embedded EPR data. Parah
et al. [9] hid the EPR data of patients in medical images to ensure the security of the data in
the electronic healthcare system. Singh et al. [10] proposed a multiple-watermark method
for medical images based on discrete wavelet transform (DWT). This method is designed
to place the highest priority on the safety of the EPR data.

However, most medical watermarking systems embed watermarks that represent
medical image ownership into medical images through algorithms. This causes the quality
of the watermark-embedded image and the original image to differ, and as medical images
contain many fine features, traditional watermarking methods may tamper with crucial
data inside the images. Even small changes may distort fine characteristics and affect
the decision-making of medical staff, resulting in unnecessary disputes. For example, a
watermark-embedded image produces an inexplicable afterimage because of the embed-
ding of watermark information. Medical staff cannot identify this afterimage as a symptom
of the distortion caused by watermark embedding. This leads to confusion among the
medical staff and influences their judgments. Therefore, some researchers have focused on
developing lossless medical watermarking techniques [14–24]. The key to lossless medical
watermarking techniques is the extraction of appropriate features from images. These
image features and watermarks are used to generate a verification image that can be used
to validate the image. This image is referred to as the ownership share image (OSI). For
image verification, image features are extracted in the same way and this feature can be
created the master share image (MSI). Finally, the previous OSI and MSI can be used to
recover the watermark. Thus, the image is not destroyed.

In addition, a watermarking system generally involves a watermark embedding proce-
dure and a watermark extraction procedure. During watermark embedding, a watermark
representing image ownership is embedded by an algorithm into the image to be pro-
tected. During watermark extraction, the algorithm is used to extract the watermark from
suspected images to authenticate those images. However, conventional measurement
systems for watermarks use human vision to identify the information contained within the
extracted watermark or use similarity estimation methods, such as bit error rate (BER) or
normalized correlation (NC), to confirm that the system can retrieve the watermark. This
process is not completely objective. For example, if an extracted watermark has already
been distorted and the original content cannot be discerned from the overall appearance,
the watermark will still be considered valid if the calculated BER or NC is high.

In this paper, a deep learning model for detecting distortion watermarks, called
WMNet, is proposed. WMNet is designed based on the convolutional neural network
(CNN) architecture [25]. In recent years, the most popular network architecture for deep
learning for images is the CNN and shows very good performance in the application of
deep learning [26,27]. When beginning the WMNet construction phase, the watermark
that the user intends to use for medical image registration is used in simulated attacks to
generate a large number of simulated distorted watermarks, and a detection threshold is
set. These watermarks are divided into two categories, namely “Correct” and “Incorrect.”
Finally, a convolutional neural network is used to generate WMNet for subsequent de-
tection of the watermark ownership. Thus, the image owner can be identified by a more
objective method.

The remainder of this paper is organized as follows. Section 2 briefly reviews a lossless
watermarking scheme. Section 3 describes the proposed scheme. Section 4 discusses
validation of the effectiveness through simulation experiments, and Section 5 concludes
the paper.
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2. Lossless Watermarking Scheme

Traditionally, when designing a watermarking mechanism to be applied to multimedia,
it is expected to meet the characteristics of security, invisibility, robustness, and capacity
of an effective watermarking mechanism. However, this is usually a trade-off problem,
and several scholars have devoted themselves to identifying the best solution. Shoron
et al. [28] proposed a copyright protection mechanism based on DWT and successive
mean quantization transform successive mean quantization transform for medical images.
Although this scheme achieved satisfactory experiment results, the approaches of malicious
attacks that can be resisted do not include most image processing methods. Din et al. [29]
explored the security protection of electronic health records adopting different biometrics
in the arena of the internet of medical things, which effectively improved the watermark
information embedding of algorithms. To develop a better watermarking mechanism,
scholars subsequently put forward the lossless watermarking scheme [14–24]. The major
key point in the design of a lossless watermarking scheme lies in the extraction of image
features. As long as the quality of the protected image is not compromised, this scheme is
ideal for protecting sensitive images, such as military and medical images. The flow chart
of the generalized lossless watermarking scheme is shown in Figure 1. Image features are
extracted from the host image through image capture technology (such as discrete cosine
transform and DWT), and then an OSI is generated, which is submitted to a third party for
registration. When the ownership of a suspected image needs to be verified, the image is
extracted by the same image capture technology, and after the features are extracted, the
MSI is generated. Finally, the OSI and MSI are calculated to obtain the watermark and the
copyright is confirmed.
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Mechanisms of this type have several notable characteristics. First, the image features
extracted from the image are combined with the watermark to generate the OSI and
MSI, and the OSI and MSI can be combined with an encryption algorithm to improve
the security of the watermarking mechanism. For example, the generated OSI and MSI
can be combined with visual cryptography [30] or visual secret sharing [31]. Second, the
watermark used by this type of mechanism is not limited by the size of the protected
image. In conventional watermarking mechanisms, the size of the watermark used to
verify the image is usually clearly defined, which limits the number of watermarks that can
be embedded in the image. However, the size of the watermark is independent of the host
image in a lossless watermarking scheme. For the mechanism proposed by Wang et al. [14],
watermarks of different sizes used in the experiment did not affect the quality of the
protected images. Moreover, building on this idea, Fan et al. [15] encoded the watermark



Electronics 2021, 10, 932 4 of 12

using error correction codes and then generated the OSI and MSI with the image features.
Although the damage resistance of the watermark is improved, the size of the resulting
OSI is much larger than that of the original watermark. This requires additional processing
time to validate the image, which is not suitable for real-time systems.

In addition, lossless watermarking scheme performance depends on the method used
to extract the image features, such as using different frequency domains. Lou et al. [16]
used DWT to extract low-frequency features of different resolution levels in the image
and, thereby, generate the OSI and MSI for image verification. Wang et al. [17] divided
an image into non-overlapping blocks and conducted DCT conversion to obtain the low-
frequency features of each block as the basis for generating the OSI and MSI. This concept
can effectively resist common image compression attacks. Wu et al. [18] adopted a mixed-
domain approach, which makes the mechanism resistant to damage from different types
of attacks. In addition to using different frequency domain techniques, Thanh et al. [19]
and Fan et al. [20] also believed that important features of images should be extracted from
scattered locations to better resist clipping or tampering attacks in an area of an image.

The above studies demonstrate that a good watermarking mechanism should satisfy
security, invisibility, and robustness requirements. These characteristics can be satisfied
using a lossless watermarking scheme. Robust watermarking mechanisms have higher
NC and BER values; thus, during validation, the NC or BER is typically calculated after
the watermark extraction to determine whether the image belongs to the corresponding
copyright. However, although this is reasonable, it is not entirely objective, and it does not
allow for the timely interpretation of highly distorted watermarks. Therefore, this paper
presents a WMNet detection model with a lossless watermarking scheme. This model does
not require a person to interpret image ownership. It can verify and determine directly
whether the copyright of the watermark obtained from an image is correct.

3. Proposed Method

In the previous section, we introduced a lossless watermarking system that can be
used to extract the watermark from the suspected medical image during authentication,
which then allows the information in the watermark to be used to authenticate image
ownership. However, if the extracted watermark is severely distorted, the interpretation of
information from that watermark becomes extremely subjective. Therefore, WMNet was
designed to determine objectively whether the information in the watermark can be used
to prove ownership of the image after watermark extraction. In this study, a model for
copyright verification based on CNN, known as WMNet, was designed. Generally, to build
a CNN model, a large number of training datasets needs to be prepared. The proposed
method involved the generation of several distorted watermark images by simulation,
but not all distorted watermarks can provide copyright information reasonably. These
watermarks were divided into two categories, namely “Correct” and “Incorrect”, based
on the set restrictions so that they can generate WMNet to distinguish users’ copyrights.
Finally, WMNet was designed to determine objectively whether the information in the
watermark can be used to prove the ownership of the image after watermark extraction.
The WMNet flow chart is shown in Figure 2, and the detailed steps are discussed below.

With regard to a binary watermark W of size m1 × m2 that is prepared by the user for
registration, a simulated W, distorted dataset α needs to be constructed before constructing
a WMNet that is specific to W. Therefore, the function Ψ(W, i)τ is defined, where 1 ≤
i ≤ m1 × m2. The role of Ψ(W, i)τ is to generate τ copies of distorted watermarks W̃τ

that are of size W, with the ith pixel values randomly chosen from each W̃τ using the
NOT Boolean operation so that i random pixels in W̃τ are the opposite of W. Next,
to simulate the actual situation, α is

{
Ψ(W, 1)τ , Ψ(W, 2)τ , · · · , Ψ(W, z)τ}, where z =

1, 2, · · · , (m1 × m2)× 0.7. After the processing described above, α has τ × (m1 × m2)× 0.7
distorted watermarks. For example, if W is a watermark of size 64 × 64 with τ set to 5, α
will have 14,336 distorted watermarks.
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After generating α, the distorted watermarks are categorized as “Correct” and “In-
correct.” NC is used to assess the similarities between these distorted watermarks and
the original watermark. For example, Figure 3 presents the results of different NC values.
Figure 3a is the original image. Figure 3b–d are distorted watermarks with the correspond-
ing NC values being 0.87, 0.77, and 0.67. It can be seen that different NC values correspond
to different degrees of similarity between the distorted and original watermarks. The
threshold value Tc is defined to provide training categories to WMNet. If the NC value of
the distorted watermark is greater than the threshold value Tc, it is categorized as “Correct”.
Otherwise, it is categorized as “Incorrect”.
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Figure 3. Distorted watermark images with different normalized correlation (NC) values. (a) Original
image, (b) distorted watermark 1 (NC = 0.87), (c) distorted watermark 2 (NC = 0.77), and (d) distorted
watermark 3 (NC = 0.67).

After the simulated distorted dataset is generated, it can be segmented into the
training, validation, and testing datasets. The WMNet framework shown in Table 1 is used
for the design. WMNet is based on the design of CNN. Table 1 shows the type, input size,
filter size, and output size for each layer. The padding and stride of each layer, which are
not listed in the table, were set as “same” and 2, respectively. In addition, the learning
rate was set as 0.0005, batch size as 40, and epoch as 50, and the filter numbers of the two
convolution layers were set as 16 and 32, respectively. Finally, after the WMNet is complete,
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the watermark can be extracted from the suspected medical image for testing to obtain
the copyright.

Table 1. WMNet parameters.

Layer Type Input Filter Size Output

1 Convolution 64 × 64 × 1 3 × 3 32 × 32 × 16
2 Max pooling 32 × 32 × 16 3 × 3 16 × 16 × 32
3 Convolution 16 × 16 × 32 3 × 3 8 × 8 × 32
4 Max pooling 8 × 8 × 32 3 × 3 4 × 4 × 32
5 Fully connected 4 × 4 × 32 3 × 3 1 × 2
6 Softmax 1 × 2 - Result

4. Experimental Results

In this section, we show the actual simulation results of WMNet in the ownership
authentication verification phase. Figure 4 shows the medical images used in the simulation,
which are of size 512 × 512 pixels. The medical images are computed tomography (CT)
and X-ray images. Figure 5 shows the watermarks used in the simulation, which are
binary images of sizes 64 × 64 and 32 × 32, respectively. Figure 6 shows the simulated
result using Fan’s lossless watermarking system [15] with no imaging processing damage
done to the medical images by the proposed system. Figure 6a,b show the 128 × 128
OSI and MSI generated from the 128 × 128 CT image, and Figure 6c shows the extracted
watermarks. Figure 6d,e show the 128 × 128 OSI and MSI generated from the X-ray image,
and Figure 6f shows the extracted watermarks. From the simulation results, we can see
that the lossless watermarking system can correctly retrieve the watermark if the image
has not been attacked by image-processing methods.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 13 
 

 

  

(a) (b) 

Figure 4. Medical images used in the experiment. (a) Computed tomography (CT) and (b) X-ray. 

 
 

(a) (b) 

Figure 5. Watermark images used in the experiment: (a) 64 × 64 and (b) 32 × 32. 

.  
 

(a) (b) (c) 

  
 

(d) (e) (f) 

Figure 6. Simulation results when the medical image was not attacked by any image processing. 
(a,b) are the ownership share image (OSI) and master share image (MSI) (128 × 128) and (c) is 
retrieved watermarks (64 × 64) after CT image simulation; (d,e) are the OSI and MSI (128 × 128), 
and (f) is the retrieved watermark (64 × 64) after X-ray image simulation. 

For WMNet, we used MATLAB 2020b with an NVIDIA GeForce GTX 1080Ti, ߬ was 
set to 5, and ߙ contained 14,336 distorted watermarks. During training, ߙ was divided 
into the training, validation, and testing datasets in the ratios of 80%, 10%, and 10%, re-
spectively. In addition, ܶ was set as 0.65. This meant that when the NC value for the 
distorted watermark was greater than ܶ, it was defined as “Correct” and the number of 
images was 7165 images. Otherwise, it was defined as “Incorrect” and the number of im-
ages was 7170 images. Figure 7 shows the accuracy and loss during the WMNet training 
processing phase. From Figure 7, we can see that during training, accuracy continuously 

Figure 4. Medical images used in the experiment. (a) Computed tomography (CT) and (b) X-ray.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 13 
 

 

  

(a) (b) 

Figure 4. Medical images used in the experiment. (a) Computed tomography (CT) and (b) X-ray. 

 
 

(a) (b) 

Figure 5. Watermark images used in the experiment: (a) 64 × 64 and (b) 32 × 32. 

.  
 

(a) (b) (c) 

  
 

(d) (e) (f) 

Figure 6. Simulation results when the medical image was not attacked by any image processing. 
(a,b) are the ownership share image (OSI) and master share image (MSI) (128 × 128) and (c) is 
retrieved watermarks (64 × 64) after CT image simulation; (d,e) are the OSI and MSI (128 × 128), 
and (f) is the retrieved watermark (64 × 64) after X-ray image simulation. 

For WMNet, we used MATLAB 2020b with an NVIDIA GeForce GTX 1080Ti, ߬ was 
set to 5, and ߙ contained 14,336 distorted watermarks. During training, ߙ was divided 
into the training, validation, and testing datasets in the ratios of 80%, 10%, and 10%, re-
spectively. In addition, ܶ was set as 0.65. This meant that when the NC value for the 
distorted watermark was greater than ܶ, it was defined as “Correct” and the number of 
images was 7165 images. Otherwise, it was defined as “Incorrect” and the number of im-
ages was 7170 images. Figure 7 shows the accuracy and loss during the WMNet training 
processing phase. From Figure 7, we can see that during training, accuracy continuously 

Figure 5. Watermark images used in the experiment: (a) 64 × 64 and (b) 32 × 32.



Electronics 2021, 10, 932 7 of 12

Electronics 2021, 10, x FOR PEER REVIEW 7 of 13 
 

 

  

(a) (b) 

Figure 4. Medical images used in the experiment. (a) Computed tomography (CT) and (b) X-ray. 

 
 

(a) (b) 

Figure 5. Watermark images used in the experiment: (a) 64 × 64 and (b) 32 × 32. 

.  
 

(a) (b) (c) 

  
 

(d) (e) (f) 

Figure 6. Simulation results when the medical image was not attacked by any image processing. 
(a,b) are the ownership share image (OSI) and master share image (MSI) (128 × 128) and (c) is 
retrieved watermarks (64 × 64) after CT image simulation; (d,e) are the OSI and MSI (128 × 128), 
and (f) is the retrieved watermark (64 × 64) after X-ray image simulation. 

For WMNet, we used MATLAB 2020b with an NVIDIA GeForce GTX 1080Ti, ߬ was 
set to 5, and ߙ contained 14,336 distorted watermarks. During training, ߙ was divided 
into the training, validation, and testing datasets in the ratios of 80%, 10%, and 10%, re-
spectively. In addition, ܶ was set as 0.65. This meant that when the NC value for the 
distorted watermark was greater than ܶ, it was defined as “Correct” and the number of 
images was 7165 images. Otherwise, it was defined as “Incorrect” and the number of im-
ages was 7170 images. Figure 7 shows the accuracy and loss during the WMNet training 
processing phase. From Figure 7, we can see that during training, accuracy continuously 

Figure 6. Simulation results when the medical image was not attacked by any image processing. (a,b)
are the ownership share image (OSI) and master share image (MSI) (128 × 128) and (c) is retrieved
watermarks (64 × 64 ) after CT image simulation; (d,e) are the OSI and MSI (128 × 128 ), and (f) is the
retrieved watermark (64 × 64) after X-ray image simulation.

For WMNet, we used MATLAB 2020b with an NVIDIA GeForce GTX 1080Ti, τ was set
to 5, and α contained 14,336 distorted watermarks. During training, α was divided into the
training, validation, and testing datasets in the ratios of 80%, 10%, and 10%, respectively.
In addition, Tc was set as 0.65. This meant that when the NC value for the distorted
watermark was greater than Tc, it was defined as “Correct” and the number of images
was 7165 images. Otherwise, it was defined as “Incorrect” and the number of images was
7170 images. Figure 7 shows the accuracy and loss during the WMNet training processing
phase. From Figure 7, we can see that during training, accuracy continuously increased
while loss continuously decreased. In addition, the accuracies of the final WMNet training,
validation, and testing datasets were 99.8%, 97.9%, and 97.3%, respectively. Furthermore,
the confusion matrices of the training, validation and testing datasets, shown in Figure 8,
indicate that the rate of incorrect classification is low. Figure 9 shows the corresponding
NC values of the incorrectly classified distorted watermarks. It was found that most of
the NC values of distorted watermarks that were incorrectly classified by WMNet were
located near the set Tc value. In other words, WMNet had good classification results on
most distorted watermarks. The Tc value was set at 0.65, which is considered a sufficient
threshold in most of the previously published watermarking systems.
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In addition, WMNet was evaluated using 5-fold cross validation, with the aim of
ensuring that such training materials for simulating distorted watermarks were not specif-
ically composed of sliced data used to train effective WMNets. The simulated 14,336
distorted watermarks were divided into five groups, and the datasets of each group served
as the testing dataset once, while the subsets of the other four groups served as the training
dataset, so that five WMNets were obtained. The performance results of these five WMNets
were evaluated in the testing dataset. In addition, we analyzed the performance using
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the following performance measures, where TP is true positive, TN is true negative, FP
is false positive, and FN is false negative; the results are compiled in Table 2. It can be
seen from the table that the results of each test dataset are very approximate, showing
that such datasets generated by the simulation distorted watermark method and WMNet
constructed through deep learning techniques have very good efficacy. Thus, WMNet is
not only able to generalize the dataset, but overfitting also does not occur. Moreover, it was
confirmed that the method of generating several distorted watermarks by simulation and
then collecting them into a dataset is free from the problem of data selection bias and can
train valid WMNets effectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Speci f icity =
TN

TN + FP
(2)

Sensitivity =
TP

TP + FP
(3)

Negative predictive value =
TN

TN + FN
(4)

Positive predictive value =
TP

TP + FP
(5)

F − measure =
2TP

2TP + FP + FN
(6)

Table 2. Results of 5-fold cross validation.

Performance
Metrics (%)

Testing Dataset

1 2 3 4 5 Average

Accuracy 97.2 97.9 98.1 98 97.9 97.8
Specificity 96.4 98.4 97.8 97.7 97.4 97.5
Sensitivity 97.9 98.4 97.8 97.7 97.4 97.8

Negative predictive value 97.9 97.4 98.4 98.3 98.4 98
Positive predictive value 96.5 98.4 97.8 97.7 97.4 97.6

F-Measure 97.2 97.9 98.1 98 97.9 97.8

The main purpose of the proposed WMNet was to assist in the watermark system
verification process. Specifically, if the extracted watermark was distorted because the
protected image was attacked by image processing, we intended to determine the effective-
ness of confirming the watermark information using WMNet. For simulation experiments
using the actual watermarking system, we distorted the medical images using several
common image-processing methods: JPEG compression (quality factor = 10%), JPEG 2000
(compression ratio = 8), Gaussian noise addition (mean = 0, variance = 0.5), salt-and-pepper
noise addition (noise density = 50%), median filtering (window size = 4 × 4), rotation (7◦),
cropping (cropped area of 25%), and scaling (reduction to 1/16). We used peak signal-
to-noise ratio (PSNR) [20] and NC to measure the attack intensity of the image. Table 3
summarizes the PSNR results for each medical image that was subjected to each attack.
Different image-processing attacks cause different degrees of image distortion.

The copyright protection mechanisms published in recent years have good robustness;
hence, we chose those lossless image watermarking systems published in the past that
still have room for breakthrough in terms of effectiveness [14,18], applied them to medical
images, and used WMNet to assist in the watermark verification stage. Table 4 shows the
NC results after a medical image was subjected to attack, the watermark extraction results
after the image underwent each image-processing attack, and the WMNet interpretation
results. The results in the table show that there is some distortion in most medical images
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after an image-processing attack. In addition, the NC of extracted watermarks all showed
that lossless image watermarking systems have varying degrees of resilience, primarily
because the core methods used by each technology are different, requiring the process to
be adapted to resist damage from different types of image-processing attacks. However,
even if the extracted watermark is distorted, WMNet can interpret whether the copyright
information in the watermark is correct. Note that the watermark size is 64 × 64 when
WMNet is constructed. When watermarks of different sizes are verified, the watermarks
need to be resized to 64 × 64 before being interpreted by WMNet. Here, double linear
interpolation is used to adjust the watermark size. Even after resizing, WMNet can clearly
determine whether the copyright information in the watermark is correct.

Table 3. Peak signal-to-noise ratio (PSNR) of the medical images after various attacks.

Attacks
PSNR

CT X-ray

JPEG Compression 26.13 29.84
JPEG 2000 41.63 38.18

Gaussian Noise Addition 7.49 7.67
Salt-pepper Noise Addition 6.71 7.37

Median Filtering 18.71 28.48
Rotation 12.79 16.91
Cropping 17.49 13.26

Scaling 16.93 23.21

Table 4. The simulated results of medical images after various attacks with other lossless image watermarking systems.

Attack
Wang’s Method [14] Wu’s Method [18]

CT X-ray CT X-ray
NC 1 W1 NC 2 W2 NC W1 NC W2 NC W1 NC W2 NC W1 NC W2

JPEG Compression 0.99 Y 0.99 Y 0.99 Y 0.99 Y 0.99 Y 0.99 Y 0.99 Y 1 Y

JPEG 2000 0.98 Y 0.98 Y 0.99 Y 1 Y 1 Y 1 Y 1 Y 1 Y

Gaussian Noise
Addition 0.95 Y 0.95 Y 0.98 Y 0.98 Y 0.92 Y 0.93 Y 0.95 Y 0.95 Y

Salt-pepper Noise
Addition 0.93 Y 0.96 Y 0.98 Y 0.99 Y 0.94 Y 0.93 Y 0.95 Y 0.96 Y

Median Filtering 0.97 Y 0.98 Y 1 Y 0.99 Y 0.99 Y 0.99 Y 1 Y 0.99 Y

Rotation 0.94 Y 0.92 Y 0.95 Y 0.93 Y 0.97 Y 0.97 Y 0.93 Y 0.94 Y

Cropping 0.93 Y 0.94 Y 0.92 Y 0.92 Y 0.94 Y 0.94 Y 0.91 Y 0.92 Y

Scaling 0.97 Y 0.96 Y 0.99 Y 0.99 Y 0.99 Y 0.99 Y 0.98 Y 0.99 Y
1 W1: Results for 64 × 64 watermark; 2 W2: results for 32 × 32 watermark; “Y” indicates the extracted watermark is interpreted
correctly by WMNet; “N” indicates the extracted watermark is interpreted incorrectly by WMNet.

The above-mentioned experimental results demonstrate that WMNet, as proposed in
this study, is effective. Even if the protected image is subjected to different types of image
processing attacks, which cause the watermark to produce different distortion conditions,
WMNet can be used to interpret watermark information for all watermarks extracted,
regardless of the extraction method. This shows that WMNet is relatively flexible and
can be used with different watermarking systems. It can improve the verification of the
watermarking mechanism of a system for data security without changing the original
system. The interpretation of the copyright information in the watermark is more accurate
and objective.
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5. Conclusions

In recent years, hospitals and medical research centers have been transformed into
digitized environments. This evolution has made the security of the usage, management,
and transmission of digital medical images an issue of extreme importance. Here, we
proposed WMNet, which assists in confirming the ownership of watermarks in a lossless
medical image watermarking system. The primary objective of WMNet was to examine the
extracted watermark when authenticating suspected medical images. The advantages of
WMNet are as follows: (1) WMNet interpretation makes the determination more objective.
(2) Even if the extracted watermark is distorted, WMNet interpretation is also relatively
successful. (3) WMNet is flexible and can be used to examine distorted watermarks that
have been extracted using other schemes. Finally, the experimental results show that the
WMNet in this paper has good efficacy, which can be extended to different multimedia
applications in the future. The corresponding copyright attribution of the watermark ex-
tracted from a protected image can be read directly through WMNet, making the proposed
system more objective and suitable for real-time systems.
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