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Abstract: In this study, the effects of the total ionizing dose (TID) on a nanowire (NW) field-effect
transistor (FET) and a nanosheet (NS) FET were analyzed. The devices have Gate-all-around (GAA)
structure that are less affected by TID effects because GAA structures have better gate controllability
than previously proposed structures, such as planar MOSFETs and FinFETs. However, even for
GAA devices with the same channel cross-sectional area and equivalent oxide thickness, structural
differences can exist, which can result in different tolerances of TID effects. To observe the device
and circuit operation characteristics of these GAA devices with structural differences, n-type and
p-type devices were designed and simulated. The circuit simulation according to TID effects was
conducted using Berkeley short-channel insulated-gate FET model (BSIM) common multi-gate (CMG)
parameters. The NS-FET generated more VT shift than the NW-FET because the NS-FET had a wider
gate oxide area and channel circumference, resulting in more interface hole traps. The abnormal VT

shift leads to causing unstable circuit operation and delays. Therefore, it was confirmed that the
ability of the NW-FET to tolerate TID effects was better than that of the NS-FET.

Keywords: total ionizing dose (TID); gate-all-around (GAA); threshold voltage (VT); circuit simula-
tion; nanowire (NW) FET; nanosheet (NS) FET; inverter

1. Introduction

Semiconductor devices are widely used in many areas, such as aerospace applications,
radiation therapy, and nuclear reactors, where accumulative damage caused by high-energy
radiation particles can be a significant threat. High-energy radiation can cause the following
phenomena by changing the characteristics of the device, which can interfere with the
stable operation of the device: total ionizing dose (TID) effects, displacement damage, and
single-event effects [1–4]. In TID effects, when radiation particles pass through the gate
dielectric area, electron–hole pairs are generated. Because the mobility of electrons is faster
than that of holes, they can exit the area, but some of the holes are trapped at the insulator
while moving in the opposite direction to that of the electron by the hopping mechanism.
These trapped holes affect the inversion layer charge, generating a threshold voltage (VT)
shift, and the VT shift decreases the reliability of the operating device [5,6]. For n-type metal-
oxide-semiconductor (NMOS) with TID effects, VT is decreased because of the trapped
holes, and this results in more leakage current. For p-type metal-oxide-semiconductor
(PMOS), VT is increased owing to TID effects, and less on current occurs.

To reduce the influence of the short-channel effect (SCE) as the gate length of the
device decreases, the structure has been changed so that the gate surrounds the channel to
achieve better gate controllability to prevent increasing leakage current or for other reasons,
which increases the area of the gate oxide, making it more vulnerable to TID effects [7].
Because the gate oxide becomes thinner, the thickness of the gate oxide can be tunneled
by electrons in the channel. To prevent this, a high-k material is used as the gate oxide.
This is to maintain the same equivalent oxide thickness and increase the thickness of the
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gate oxide [8]. For this reason, the gate oxide area of the gate-all-around (GAA) structure is
wider than before, which is necessary to analyze the TID effects.

However, because these radiation-induced phenomena tend to recover slightly within
a short time after their occurrence, analysis by measurement has many difficulties [9].
Therefore, the TID effects of the device were analyzed using technology computer-aided
design (TCAD) simulation. Because the oxide area of the nanosheet (NS) FET device is
wider than that of the nanowire (NW) FET device, there are more hole traps in the NS-FET.
However, the oxide area was not the only difference between the devices.

Finally, an inverter SPICE simulation was conducted using device characteristics
affected by TID effects owing to the faster operation time of the SPICE simulation. The
extraction of TID effects characteristic of irradiated devices was performed using Berkeley
short-channel insulated-gate FET model (BSIM) common multi-gate (CMG) parameters.

2. Method of Analyzing TID Effects

In this study, the TID effects between similar GAA structures, the NS-FET, and NW-
FET were analyzed. Figure 1 shows the structures designed using TCAD, and Table 1 lists
the device design parameters. For an accurate comparison, the channel cross-sectional
area was designed in a similar manner. N-type doping of the device was performed using
phosphorus, and p-type doping was done with boron. Silicon nitride was used as the spacer
between the contacts of the device, and SiO2 and HfO2 were used as the gate oxides. Both
devices had 0.5-nm-thick SiO2 and 2-nm-thick HfO2. The corner of the NS-FET channel
was designed in a circular shape with a radius of 1 nm. Owing to the difference in channel
shape, the NS-FET had an 8.2-nm-longer channel circumference than the NW-FET.

Figure 1. The structures of NS-FET and NW-FET designed by TCAD: (a) NS-FET 3D structure; (b) the
cross section of NS-FET; (c) NW-FET 3D structure; (d) the cross section of NW-FET.
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Table 1. Device design parameters.

Device Parameter NS-FET NW-FET

Channel length 5 nm 5 nm
Cross section of oxide area (HfO2 + SiO2) 155 nm2 118 nm2

Cross section of channel area 119.14 nm2 120.70 nm2

Equivalent oxide thickness 0.812 nm 0.812 nm
Circumference of channel 47.14 nm 38.94 nm

For the TID simulation, the Silvaco Victory device was used [10]. In the simulation,
radiation stress was applied after the gate and drain voltages were applied to the device.
Among the radiation particles, γ-rays of 60Co, which causes large changes in the properties
of the device because of its comparatively strong energy between other radiation particles,
was used as the radiation source [9]. Various models (trap-detrap, mobility, etc.) were used
to improve the accuracy of the simulation [11–14]. After irradiation at 1 rad/s, when the
desired amount of radiation stress was applied, the gate voltage was swept to 0 V again. In
the study, the TCAD simulation was performed at 100 k, 1 M, 10 M, 100 M rad per each
devices, respectively.

3. The Procedure of Parameter Extraction
3.1. Result of TID Effect Simulation

Figure 2 shows the VT shift for each device as the total radiation dose increased.
Both the NMOS and the PMOS graph shifted to the left. This is because VT decreased in
NMOS, but VT increased in PMOS, resulting in opposite characteristic changes. In the case
of NMOS, it was confirmed that VT decreased, so the on current increased and leakage
current increases. In addition, in the case of PMOS, it was confirmed that the on current
and leakage current decreased as VT increased.

Figure 2. TID simulation ID–VG curve of each device: (a) NMOS NS-FET; (b) NMOS NW-FET;
(c) PMOS NS-FET; (d) PMOS NW-FET.

Figure 3 shows the transconductance for each device as the total radiation dose
increased. In the case of NMOS, the transconductance tends to increase as the total dose
of radiation increases. On the other hand, a section in which the transfer conductance is
seen as a reversal of the tendency is observed at a gate voltage of 0.5 V or more, which
is a phenomenon that occurs only in a section in which the transconductance decreases
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or the increases are temporarily delayed [15]. It can be seen that the same phenomenon
occurred in PMOS as well. In the case of PMOS, as the total radiation dose increased, the
transfer conductance tended to decrease, and the period in which the inversion of the trend
occurred was also confirmed.

Figure 3. TID simulation transconductance curve of each device: (a) NMOS NS-FET; (b) NMOS
NW-FET; (c) PMOS NS-FET; (d) PMOS NW-FET.

Table 2 shows the trapped hole densities and hole trap capture rates at the SiO2 and
Si interface. In the NS-FET and NW-FET devices, interface hole traps occurred because of
the TID effects. Because of the wider gate oxide of the NS-FET, more hole traps occurred
than in the NW-FET. In addition, in the corner region of the NS-FET, on average, more
interface hole traps were generated by approximately 30% more than in the flat region.
This is because the gate controllability of the corner region of the NS-FET was weaker than
that of the flat region owing to the corner effect, making it more vulnerable to TID effects.

Table 2. Hole-trapping characteristics at the SiO2 and Si interface for the 100 M rad irradiated device:
the criterion for measuring the characteristics of NS-FET was at the flat region.

NMOS NS-FET NMOS NW-FET

Interface trapped holes 9.02 × 1011 cm−2 8.12 × 1011 cm−2

Trap hole capture rate 6.78 × 1011 cm−3 2.6 × 1011 cm−3

Table 3 shows VT data of the TID simulation at each total dose rate. Although the
numbers of trapped holes per unit area for the two devices are not significantly different,
it was confirmed that the more VT shift at NS-FET. This is not only affected by the total
area of the oxide–the circumference of the channel also affected this. The TID effect is a
phenomenon that occurs because of the hole trapped in the interface. Even if the trap is
the same amount per unit area, the total amount increases in proportion to the channel
circumference so that the NS-FET with a wider channel circumference eventually traps
more holes.
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Table 3. VT data of TID simulation.

Total Dose Rate
NMOS PMOS

NS-FET NW-FET NS-FET NW-FET

Initial 430 mV 390 mV 400 mV 365 mV
100 k rad 430 mV 390 mV 400 mV 365 mV
1 M rad 429 mV 389 mV 401 mV 365 mV

10 M rad 420 mV 382 mV 407 mV 371 mV
100 M rad 406 mV 370 mV 425 mV 385 mV

Figure 4 shows the shifted VT according to each total dose rate. It has been already
known that the VT shifts of PMOS is larger than that of NMOS in planar MOSFET because
the gate length is long, and there are many places where trapping can occur in the inter-
face [16,17]. In contrast, the GAA structure has a much shorter channel length and supe-rior
gate controllability, with less variation occurring because of TID effects.

Figure 4. NS-FET and NW-FET VT shift by TID effects.

3.2. Compact Modeling Using BSIM–CMG Model Parameters

Simulation with TCAD requires an extremely long computation time, so it is difficult to
immediately check the simulation results of devices that have changed characteristics (gate
length, channel diameter, etc.); however, the SPICE simulation method with the extracted
BSIM model parameter can obtain device characteristics faster than TCAD simulation.

The BSIM–CMG model parameters were used instead of various other commercially
available BSIM model parameters to extract the device characteristics for TID effects. This
is because other models, such as BSIM 4, are based on planar MOSFETs, so it is not easy to
adjust a graph between simulation data values and BSIM 4 parameter values in 3D structure
devices. Therefore, the BSIM–CMG model parameters were used for consistent fitting.

Figure 5 shows a flow chart of compact modeling considered with TID effects. First,
the characteristics of the TID effect simulation data from the TCAD simulation were
used for compact modeling. It is similar to an irradiation source, TCAD designs, etc.
Next, the BSIM–CMG model parameters with TID effect characteristics were extracted,
and the ID–VG curve was adjusted between the TCAD simulation data and BSIM–CMG
data. The extracted BSIM model parameters include the physical parameters (structure,
doping, material, channel length, etc.), linear region fitting parameters (mobility, series
resistance, etc.), SCE parameters (drain-induced barrier lowering parameter, gate-induced
drain leakage parameter, etc.), temperature, output conductance, etc. With BSIM model
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parameters and adjusted data with simulation results, a SPICE circuit simulation can be
initiated with a circuit netlist.

Figure 5. Flowchart of compact modeling according to TID effects.

Figure 6 shows the adjusted ID–VG curve between the TCAD simulation data and
the BSIM–CMG model parameter data. All TCAD simulation data expressed in Figure 2
were also adjusted using the BSIM–CMG model parameters. This adjustment process must
be carried out carefully and consistently because consistency with the simulation data
determines the reliability of the circuit simulation.

Figure 6. ID–VG curve adjustment between TCAD simulation data and BSIM–CMG model parameter
data: all curves are nonirradiated device simulation ID–VG curves: (a) NMOS NS-FET; (b) NMOS
NW-FET; (c) PMOS NS-FET; (d) PMOS NW-FET.
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4. SPICE Circuit Simulation

Figure 7 shows inverter operation reflecting TID effects. Because the VT shift occurred,
there was a delay in the operation of the inverter circuit [18]. The delay of the rising edge at
inverter operation was caused by the VT shift of the PMOS so that the shifted VT made the
PMOS turn on later in order to start rising later than the nonirradiated device, and the delay
of falling edge was caused by the NMOS turning off earlier than the nonirradiated device.
Every rising and falling edge delay generated and accumulated after the VT shift. The more
VT shift that occurred for the NS-FET, the more the delay generated at the NS-FET inverter.

Figure 7. NS-FET and NW-FET inverter operation graph reflecting radiation accumulation: (a) NS-FET inverter rising
edge; (b) inverter output pulse; (c) NS-FET inverter falling edge; (d) NW-FET inverter rising edge; (e) inverter output pulse;
(f) inverter falling edge; (a,d) magnified region was at 4.034–4.036 µs; (c,f) magnified region was at 3.024–3.026 µs.

Figure 8 shows the time delay as a percentage of the inverter operation of NS-FET
and NW-FET. The ratio was calculated by extracting the time delay between the device not
affected by radiation and the device to be affected at output voltage 0.35 V and dividing it
by 10–90% rise time (70 mV–0.63 V) of the device not affected by radiation. Both upsweep
and downsweep showed that the delay of the NS-FET was more severe.

Figure 8. Time delay percentage versus nonirradiated device in upsweep and downsweep during
inverter operation of NS-FET and NW-FET.
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5. Conclusions

In this study, two different GAA structure devices, NS-FET and NW-FET, were de-
signed and simulated according to the TID effects. The larger number of holes trapped in
the NS-FET device was caused by the wider gate oxide area. The channel corners of the
NS-FET and channel circumference differences also affected this. Owing to this structural
difference, more VT shift occurred in the NS-FET than in the NW-FET.

The results indicate that it is important to reduce the total oxide area in order to have
tolerance of TID effects in the GAA structure, but it is more important to design a device
that can reduce the channel circumference or corner effect.

In addition, the BSIM–CMG model parameters were extracted to simulate the inverter
circuit with device operation characteristics according to the TID effects. The NS-FET
inverter operation had more delay variation than that of the NW-FET inverter because
the NW-FET had better tolerance of TID effects, under these assumptions and structural
differences, that can reduce VT shift variation.
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