Sheet Resistance Measurements of Conductive Thin Films: A Comparison of Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation/Configuration
2.2. Four-Point Probe
2.3. Microwave Resonator
2.4. Terahertz Time-Domain Spectroscopy
3. Results and Discussion
3.1. Microwave Resonator
3.2. Terahertz TIME-Domain Spectroscopy
3.3. Comparison of Sheet Resistance Measurement Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 2012, 6, 809–817. [Google Scholar] [CrossRef]
- Cao, W.; Li, J.; Chen, H.; Xue, J. Transparent electrodes for organic optoelectronic devices: A review. J. Photonics Energy 2014, 4, 040990. [Google Scholar] [CrossRef]
- Gao, J.; Kempa, K.; Giersig, M.; Akinoglu, E.M.; Han, B.; Li, R. Physics of transparent conductors. Adv. Phys. 2016, 65, 553–617. [Google Scholar] [CrossRef]
- Huang, S.; Liu, Y.; Zhao, Y.; Ren, Z.; Guo, C.F. Flexible electronics: Stretchable electrodes and their future. Adv. Funct. Mater. 2019, 29, 1805924. [Google Scholar] [CrossRef]
- Hosono, H.; Paine, D.C.; Ginley, D. (Eds.) Handbook of Transparent Conductors; Springer: Boston, MA, USA, 2011. [Google Scholar]
- Valdes, L.B. Resistivity measurements on germanium for transistors. Proc. IRE 1954, 42, 420–427. [Google Scholar] [CrossRef]
- Smits, F.M. Measurement of sheet resistivities with the four-point probe. Bell Syst. Tech. J. 1958, 37, 711–718. [Google Scholar] [CrossRef]
- Topsøe, H. Geometric Factors in Four Point Resistivity Measurement. Bridge Technol. 1968, 472, 58–59. [Google Scholar]
- Miccoli, I.; Edler, F.; Pfnür, H.; Tegenkamp, C. The 100th anniversary of the four-point probe technique: The role of probe geometries in isotropic and anisotropic systems. J. Phys. Condens. Matter 2015, 27, 223201. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Gallop, J.C.; Purnell, A.J.; Cohen, L.F. Intermodulation measurements on high temperature superconducting thin films. J. Supercond. 2001, 14, 29–33. [Google Scholar] [CrossRef]
- Shen, Z.-Y.; Wilker, C.; Pang, P.; Holstein, W.; Face, D.; Kountz, D. High-T/sub c/-superconductor-sapphire microwave resonator with extremely high Q-values up to 90 K. IEEE Trans. Microw. Theory Tech. 1992, 40, 2424–2431. [Google Scholar] [CrossRef]
- Hao, L.; Gallop, J.; Goniszewski, S.; Shaforost, O.; Klein, N.; Yakimova, R. Non-contact method for measurement of the microwave conductivity of graphene. Appl. Phys. Lett. 2013, 103, 123103. [Google Scholar] [CrossRef] [Green Version]
- Bøggild, P.; Mackenzie, D.M.A.; Whelan, P.R.; Petersen, D.H.; Buron, J.D.; Zurutuza, A.; Gallop, J.; Hao, L.; Jepsen, P.U. Mapping the electrical properties of large-area graphene. 2D Mater. 2017, 4, 042003. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.; Gallop, J.C.; Liu, Q.; Chen, J. Microwave method for high-frequency properties of graphene. IET Circuits Devices Syst. 2015, 9, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Walther, M.; Cooke, D.G.; Sherstan, C.; Hajar, M.; Freeman, M.R.; Hegmann, F.A. Terahertz conductivity of thin gold films at the metal-insulator percolation transition. Phys. Rev. B 2007, 76, 125408. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-W.; Lin, Y.-C.; Chang, C.-H.; Yu, P.; Shieh, J.-M.; Pan, C.-L. Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared. IEEE J. Quantum Electron. 2010, 46, 1746–1754. [Google Scholar] [CrossRef]
- Wang, T.; Zalkovskij, M.; Iwaszczuk, K.; Lavrinenko, A.V.; Naik, G.V.; Kim, J.; Boltasseva, A.; Jepsen, P.U. Ultrabroadband terahertz conductivity of highly doped ZnO and ITO. Opt. Mater. Express 2015, 5, 566–575. [Google Scholar] [CrossRef]
- Tomaino, J.L.; Jameson, A.D.; Kevek, J.W.; Paul, M.J.; Van Der Zande, A.M.; Barton, R.A.; McEuen, P.L.; Minot, E.D.; Lee, Y.-S. Terahertz imaging and spectroscopy of large-area single-layer graphene. Opt. Express 2011, 19, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackenzie, D.M.A.; Whelan, P.R.; Bøggild, P.; Jepsen, P.U.; Redo-Sanchez, A.; Etayo, D.; Fabricius, N.; Petersen, D.H. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping. Opt. Express 2018, 26, 9220–9229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, B.-J.; Liu, T.-A.; Yu, H.-C.; Chen, S.-F.; Cheng, Y.-C. Non-contact resistance measurement of transparent electrodes deposited on flexible display substrates under repetitive bending test by terahertz time domain spectroscopy. Displays 2016, 45, 58–62. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naftaly, M.; Das, S.; Gallop, J.; Pan, K.; Alkhalil, F.; Kariyapperuma, D.; Constant, S.; Ramsdale, C.; Hao, L. Sheet Resistance Measurements of Conductive Thin Films: A Comparison of Techniques. Electronics 2021, 10, 960. https://doi.org/10.3390/electronics10080960
Naftaly M, Das S, Gallop J, Pan K, Alkhalil F, Kariyapperuma D, Constant S, Ramsdale C, Hao L. Sheet Resistance Measurements of Conductive Thin Films: A Comparison of Techniques. Electronics. 2021; 10(8):960. https://doi.org/10.3390/electronics10080960
Chicago/Turabian StyleNaftaly, Mira, Satyajit Das, John Gallop, Kewen Pan, Feras Alkhalil, Darshana Kariyapperuma, Sophie Constant, Catherine Ramsdale, and Ling Hao. 2021. "Sheet Resistance Measurements of Conductive Thin Films: A Comparison of Techniques" Electronics 10, no. 8: 960. https://doi.org/10.3390/electronics10080960
APA StyleNaftaly, M., Das, S., Gallop, J., Pan, K., Alkhalil, F., Kariyapperuma, D., Constant, S., Ramsdale, C., & Hao, L. (2021). Sheet Resistance Measurements of Conductive Thin Films: A Comparison of Techniques. Electronics, 10(8), 960. https://doi.org/10.3390/electronics10080960