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Abstract: In this study, we propose a method for minimizing the noise of Kinect sensors for 3D
skeleton estimation. Notably, it is difficult to effectively remove nonlinear noise when estimating 3D
skeleton posture; however, the proposed randomized unscented Kalman filter reduces the nonlinear
temporal noise effectively through the state estimation process. The 3D skeleton data can then be
estimated at each step by iteratively passing the posterior state during the propagation and updating
process. Ultimately, the performance of the proposed method for 3D skeleton estimation is observed
to be superior to that of conventional methods based on experimental results.

Keywords: state estimation; Kinect sensor; nonlinear noise; 3D skeleton posture

1. Introduction

Action recognition is necessary for a broad range of applications, such as video
surveillance, medical diagnosis, and sports analysis. Sensor-based systems provide the
information for a skeleton, such as body joints, for poses and activities [1,2]. However, the
body joints affect temporal noises because of the nonlinear properties of Kinect sensors.
Therefore, it provides accurate information of the body joints for the effective estimation of
a 3D skeleton. Moreover, it is possible to exploit it for various applications, such as fitness,
gesture recognition [3,4], augmented and virtual reality, bone growth evaluation, and gait
analysis [5].

The skeleton model consists of joints, such as ankles, knees, shoulders, elbows, wrists,
and limb orientation, incorporating the skeleton model of the body. In addition, it is based
on the x, y, and z-coordinates using the depth sensor [6,7] from RGB images. The Azure
Kinect camera [8], which has 32 skeleton joint points and depth libraries, is used to obtain
the skeleton data. In general, the noisy depth data [9,10] obtained by the Kinect does not
affect the videogames and entertainment applications; however, high depth accuracy is
required for the construction fields and mobile robot navigation [11]. For the skeleton
estimation, high-accuracy joint data are required. In this case, Kinect is able to extract the
noisy joint’s spatial coordinates [12] through software libraries. These libraries impose
errors in the skeleton data while estimating the poses with human physical conditions,
and affect the camera depth factors such as object distance, motion surface, and frame rate,
caused by the temporal noise [13–17]. While obtaining the skeleton data, the estimated
depth at the object point is not stable across frames.

Noise reduction [18–20] has been studied in other research to assess skeleton data. The
Skeleton data were recorded with the Kinect v2 sensor, and generate significant noise owing
to self-occlusion and fast movements. The Tobit Kalman filter (TKF) [21,22] was applied
to filter the noise from the acquisition device. Additionally, the extended Kalman filter
(EKF) [23,24] and unscented Kalman filter (UKF) [25] are well-known estimation techniques
applied in several applications, such as the smoothing of skeleton joints. The techniques
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are accurate and reduce the posture errors at a specific joint during hip acceleration and
trunk posture with motion sensor data. Further, improved skeleton data from the Kinect
sensor are applied in the senior fitness test using the UKF [26]. The above-mentioned
applications reduce noise and also improve accuracy in specific joints. However, there
are limitations to reducing the noise at each joint. This is because conventional methods,
such as a Kalman filter [27,28], are adapted to linear systems. The skeleton data from the
Kinect camera contains the nonlinear noise. The EKF can be applied to nonlinear systems
to reduce errors present in the data; this technique is limited to calculating the Jacobian
vector in many complex models.

The main purpose of this study is to estimate the skeleton after filtering the temporal
noise in the skeleton data obtained using Kinect cameras, and to compare the performance
of the proposed method called a randomized unscented Kalman filter (RUKF). The use of
the nonlinear estimator is considered for proper estimation of skeleton data, which consists
of nonlinear noise. In addition, the proposed method improves the accuracy of joints and
bone length measurements. The remainder of the paper is organized as follows. First,
related works are discussed in Section 2. Then, estimation of the 3D skeleton using the
proposed method is discussed in detail in Section 3. Section 4 presents the experimental
results. Finally, the conclusions of the paper are presented in Section 5.

2. Related Works

The data acquisition and processing system consist of two parts: data acquisition
and data processing, as shown in Figure 1. The data acquisition consists of Microsoft’s
Azure Kinect camera with inbuilt RGB, depth, Infrared (IR), and a motion sensor (IMU) to
acquire the position of the body joints of a user. The Azure Kinect camera uses modulated
illumination in the near-IR (NIR) spectrum. It then measures the time the NIR spent
traveling from the camera to the object, and back. A depth map is generated by these
measurements, and represented as values for every pixel of the image on z-coordinate.
The Kinect camera information entered through the software development kit (SDK)
interface provides 5, 15, and 30 frames/s. In addition, there are manual frame rate setting
options available through program settings. However, the Kinect camera sensor contains a
significant amount of nonlinear noise, even at a fixed position, which limits the position of
the joint point’s changes over time. Therefore, we are using the Kalman filters to estimate
the time-varying states for noisy data measurements.
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Filtering involves the problem of estimating the current state of a system. Based on the
estimation of known or unknown states, filters are categorized into two types: batch filters
and recursive filters. The estimation of unknown states involves a batch filter, and that of
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the known states involves recursive filters. This study focuses on recursive filters such as
the Kalman filter (KF), EKF, UKF, and particle filter (PF) [29–32]. Recursive filters can be
further categorized into two types: linear and non-linear filters. If both the system and
measurement model are linear, a linear filter can be utilized (such as a KF). With regard to
the KF, the data filtering process uses the covariance between sensor noise and process noise.
This method involves the assumption that the noise is Gaussian, and that linear models
maintain this noise. The basic system models the state of an object with its position and
velocity and uses them to correct the covariance between the predicted state information
about the object along with the object coordinates observed by the sensor. If any one of
the systems or measurement models is nonlinear, then a nonlinear filter must be used. A
skeleton model typically requires a nonlinear method for model construction. For instance,
nonlinear modeling methods such as the EKF and UKF exist. In nonlinear filtering, based
on approximation and sampling, methods can be categorized as analytical approximation
or sample-based methods. The EKF involves the Taylor series-approximated Jacobian
estimation method, which is explained in Section 2.1. The UKF involves a sample-based
method, which is explained in Section 2.2. In addition, a few examples of sample-based
filters are heuristic filters, such as simplex [33] and genetic [34] filters. In this study, we did
not focus on heuristic filters, but we discuss how a skeleton system can be incorporated
in detail.

2.1. Extended Kalman Filter (EKF)

The Kalman filter that can model the extended nonlinear system is known as an EKF.
The EKF is the first estimator that linearizes the nonlinear model about an estimate of
the current mean and covariance through the Jacobian vector. The EKF process consists
of three steps: time update, prediction step, and measurement update. The goal of this
filter is to compute and update the Jacobian vector at each time step (k) while considering
the initial parameters, i.e., k = 1, initial mean x̂0, initial covariance P0, and the predicted
state x̂−k , through the state-transition function f . The following equations include the hat
operator (̂), which is an estimate of a variable and the superscript (−), which denotes the
predicted (prior) estimate, as follows:

x̂−k = f (x̂k−1) (1)

The covariance matrix can be predicted as P−k , from the updated estimate Pk−1, F is a
state Jacobian vector, and the process noise covariance Qk, as follows:

P−k = Fk−1Pk−1FT
k−1 + Qk (2)

The Jacobian estimation Hk computed in the time update through the observation
function h, measurement-noise covariance Rk, and measurement prediction as follows:

Hk =
∂h
∂x

∣∣∣∣
x̂−k

(3)

ẑ−k = h
(
x̂−k
)

(4)

Pẑk ẑk = HkPk − HT
k + Rk (5)

The measurement update of the cross-covariance Pxk zk updated through the Jacobian
estimation and sensor measurement zk as

Pxk zk = Pk − HT
k (6)
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To combine all observation models, the Kalman gain Kk contributes more or less
weight to predict the observation model as

Kk = Pxkzk P−1
ẑk ẑk

(7)

To combine all the updated state x̂k, and covariance Pk, information from state-
transition and observation models is given as follows,

x̂k = x̂−k + Kk
(
zk − ẑ−k

)
(8)

Pk = P−k − KkPẑk ẑk KT
k (9)

After being updated at k = k + 1, the Jacobian estimation is expressed as

Fk−1 =
∂ f
∂x

∣∣∣∣
x̂k−1

(10)

The pseudocode of Algorithm 1 is shown below.

Algorithm 1: Extended Kalman Filter (EKF) [23]

Input: zk denotes the sensor-measured values of the k-frames.
Output: xk denotes the estimated values of the k-frames.
1: Initial parameters each time step (k) = 1, initial mean x̂0 = 0, initial covariance P0 = 0
2: for k = 1 to N (max no. of iterations) do
3: Compute Jacobian: Fk−1 (defined in the Equation (10))
Time update (prediction):

4: State prediction step: Calculate the predicted state x̂−k (defined in Equation (1)), and
predicted covariance P−k (defined in Equation (2)) using state transition function f and state
vector Fk−1 (using step. 3)

5: Compute Jacobian: Calculate the Jacobian Hk (defined in Equation (3)) using the
observation matrix h

6: Measurement prediction step: Predict ẑ−k (defined in Equation (4)) and Pẑk ẑk (defined in
Equation (5)) using h, Hk, and Pk (using step. 5)

Measurement update (correction):

7: Update the cross-covariance Pxk zk (defined in Equation (6)), Kalman gain Kk (defined in
Equation (7)), state estimate x̂k (defined in Equation (8)), and state covariance Pk (defined in
Equation (9))

end for
return estimated data ( xk)

2.2. Unscented Kalman Filter (UKF)

The model, which is highly nonlinear for both state transition and observation models,
is known as UKF. The UKF selects the sigma points from the mean through unscented
transform (UT). The new mean and covariance are obtained from sigma points, which are
propagated through the nonlinear functions. The procedure of UKF consists of three steps:
time update, prediction step, and measurement update. The goal of this filter is to generate
the 2L + 1 sigma points twice at each time step (k), while considering initial parameters,
i.e., k = 1, initial mean x̂0, initial covariance P0, and set of points called sigma points χ,
weights W and for both mean reconstruction (m), and covariance reconstruction (c). In the
time update, the sigma points are propagated, and the state can be expressed through the
nonlinear function as

χ∗k|k−1 = f (χk−1) (11)
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The predicted state, covariance matrix, and process noise covariance Qk can be ex-
pressed as

x̂−k =
2L

∑
i=0

W(m)
i χ∗i,k|k−1 (12)

P−k =
2L

∑
i=0

W
(c)

i

(
χ∗i,k|k−1 − x̂−k

) (
χ∗i,k|k−1 − x̂−k

)T
+ Qk (13)

The regenerating 2L + 1 sigma points χk|k−1 (L is the dimension of the state) are
obtained as

χk|k−1 =

[
x̂−

k
x̂−k + γ

√
P−k x̂−

k
− γ

√
P−k

]
(14)

These newly generated sigma points are instantiated through the observation model
h for the measured observation state and predicted observation state

(
Zk|k−1

)
through

the weights followed by the covariance matrix, and measurement-noise Rk covariance,
as follows

Zk|k−1 = h
(

χk|k−1

)
(15)

ẑ−k =
2L

∑
i=0

W(m)
i Zi,k|k−1 (16)

Pẑk ẑk =
2L

∑
i=0

W
(c)

i

(
Zi,k|k−1 − ẑ−k

) (
Zi,k|k−1 − ẑ−k

)T
+ Rk (17)

In the measurement update, the cross-covariance is computed with the sensor mea-
surement zk with the state transition model and Kalman gain as

Pxk zk =
2L

∑
i=0

W
(c)

i

(
χi,k|k−1 − x̂−k

) (
Zi,k|k−1 − ẑ−k

)T
(18)

Pxk zk =
2L

∑
i=0

W
(c)

i

(
χi,k|k−1 − x̂−k

) (
Zi,k|k−1 − ẑ−k

)T
(19)

To combine all the updated state and covariance information from state-transition and
observation models are as follows;

x̂k = x̂−k + Kk
(
zk − ẑ−k

)
(20)

Pk = P−k − KkPẑk ẑk KT
k (21)

The regenerating 2L + 1 sigma points χk−1 at k = k + 1 are obtained as follows

χk−1 =
[

x̂−
k−1

x̂−k−1 + γ
√

Pk−1 x̂−
k−1
− γ

√
Pk−1

]
(22)

According to the equations, 2L + 1 sigma points are generated, where L is defined as
the dimension of the state. In our proposed method, the number of sigma points is set to
13 because the dimension of the state is six. Moreover, our simulation occurs separately for
the lower body and upper body using two UKF models. At this time, the number of total
sigma points generated is 436, of which those for the lower body and upper body are 101
and 335, respectively. When nonlinearity increased in the system, then UT automatically
deteriorates. Therefore, we proposed state estimation using a randomized unscented
Kalman filter for 3D skeleton posture in order to improve the performance of conventional
methods. The pseudocode of Algorithm 2 is shown below.
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Algorithm 2: Unscented Kalman Filter (UKF) [26]

Input: zk denotes the sensor-measured values of the k-frames.
Output: xk denotes the estimated values of the k-frames.
1: Initial parameters each time step k = 1, initial mean x̂0 = 0, initial covariance P0 = 0
2: for k = 1 to N (total number of iterations) do
3: Generate sigma points: χk−1 using the Equation (14)
Time update (prediction):
4: State prediction step: Predict x̂−k , and P−k using χ∗k|k−1 (defined in Equa tion (11)).

5: Regenerate 2L + 1 (defined in Equation (14)) sigma points χk|k−1 using x̂−k
6: Measurement prediction step: Predict ẑ−k and Pẑk ẑk using Zk|k−1 (de fined in Equation (15)).
Measurement update (correction):

7: Update the cross-covariance Pxk zk (defined in Equation (18)), Kalman gain Kk (defined in
Equation (19)), state estimate x̂k (defined in Equation (20)) and state covariance Pk (defined
in the Equation (21))

end for
return estimated data (xk)

3. Proposed 3D Skeleton Posture Estimation Using a Randomized Unscented
Kalman Filter

An EKF linearizes the nonlinear process model to estimate the state vector through
Jacobian calculation. The EKF struggles to obtain the Jacobian estimate, which assumes
nearly linear behavior for both the transition and observation function for more motion
poses. This causes a significant difference in error while reconstructing the non-motion
skeleton estimation and motion skeleton estimation. It is known that UKF is one of the
methods for noise reduction while estimating a skeleton. It caused occasional instability in
terms of state and measurement when reconstructing a skeleton estimation. To overcome
these limitations, a novel noise reduction method based on an RUKF is proposed. The
proposed method uses the data obtained from Microsoft Azure SDK. The concept of a
skeleton is provided from the Kinect camera. The entire process, from the data acquisition
to 3D skeleton estimation, through the filtering methods and expected simulated skeleton
poses, is shown in Figure 2. These sensor data were modeled using conventional methods;
as there is noise present in the data, to minimize, we proposed our method that includes
key steps such as predict and update. The state transition function is used to predict the
next state for the transition matrix, which is also called a state transition vector.
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Let us consider the state transition function f , state x, and there is uncertainty w (mean
0, and covariance Q), as follows:

xk = f (xk−1) + wk (23)

The observation function h used to obtain the transformations which use the rotation
matrix to find the next joint obtained by the Euler angle and uncertainty v (mean 0, and
covariance R) along with the next joint state, as follows

zk = h (xk) + vk (24)

The procedure of RUKF consists of three steps: time update, prediction step, and
measurement update. The proposed method is based on a stochastic integration rule
(SIR) [35]. The SIR computed using the UT with spread and rotation Nmax sigma point sets
is random, which is represented as a randomized unscented transform (RUT) [36]. The
purpose of this filter is to update the state covariance function at each time step (k). The
initial parameters, i.e., k = 1, initial mean x̂0 = 0, initial covariance P0 = 0, maximum
number of iteration steps Nmax = 1, process noise covariance Qk, predicted state x̂−k , and
covariance P−k , can be expressed through the state transition function as follows:

x̂−k = SI alg(x̂k−1, Pk−1, f (x), Nmax) (25)

P−k = SI alg(x̂k−1, Pk−1, f (x), Nmax) + Qk (26)

The measurement estimate prediction can be obtained through the observation func-
tion h by the stochastic integration algorithm (SI alg) as

ẑ−k = SI alg
(

x̂−k , P−
k

, h(x), Nmax

)
(27)

The defined measurement covariance update function a(x), obtained through the
observation function and measurement estimate prediction ẑ−k as

a(x) =
(

h(x)− ẑ−
k

)(
h(x)− ẑ−

k

)T
(28)

The measurement covariance prediction Pẑk ẑk can be obtained through covariance
update function a(x), measurement-noise covariance Rk, and cross-covariance update
function b(x); computed from the observation function h as follows:

Pẑk ẑk = SI alg
(

x̂−
k

, P−
k

, a(x), Nmax

)
+ Rk (29)

b(x) =
(

x− x̂−
k

)(
h(x)− ẑ−

k

)T
(30)

In the measurement update, cross-covariance Pxk zk , can be obtained from sensor
measurement, a cross-covariance update function b(x); and to combine all observation
models, the Kalman gain Kk contributes more or less weight to predict the observation as

Pxk zk = SI alg
(

x̂−
k

, P−
k

, b(x), Nmax

)
(31)

Kk = Pxkzk P−1
ẑk ẑk

(32)

All the updated state x̂k and covariance Pk information from the state transition and
observation models are combined as

x̂k = x̂−k + Kk
(
zk − ẑ−k

)
(33)

Pk = P−k − KkPẑk ẑk KT
k (34)
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At k = k + 1, the updated state covariance update g(x) is expressed as

g(x) = ( f (x)− x̂k−1)( f (x)− x̂k−1)
T (35)

Therefore, an RUKF is used to predict, update, and filter the kinematics motion for
different skeleton poses. These skeleton poses are estimated by reducing the temporal
noise for nonlinear estimation in state and observation transition models through the
propagation and updating process iteratively. For each iteration, it will obtain the data
from both the propagation and updating of RUKF. Moreover, it is possible to obtain the
coordinates of each joint at computing state through the observation function. According
to the authors of [30], the convergence of the system depends on an arbitrary function.
We implemented the RUKF with an improved version of the SIR. Therefore, the arbitrary
function is approximately constant, enabling the proposed algorithm to reach convergence.
The pseudocode of Algorithm 3 is shown below.

Algorithm 3: Proposed method (RUKF)

Input: zk denotes the sensor-measured values of the k-frames.
Output: xk denotes the estimated values of the k-frames.
1: Initial parameters k = 1, initial mean x̂0 = 0, initial covariance P0 = 0
2: for k = 1 to N (maximum no. of iterations) do
3: State covariance update function: g(x) (defined in the Equation (35))
Time update (prediction):
4: State prediction step: Predict x̂−k , and P−k (defined in the Equations (25) and (26))
5: Measurement estimate prediction ẑ−k using x̂−k , and P−k (using step. 4)
6: Measurement covariance update function a(x) using ẑ−k and an observation function
h(x)(Using step. 5)
7: Measurement covariance update function Pẑk ẑk (defined in the Equation (29)) using a(x), ẑ−k
and P−k (Using the step. 6)
8: The cross-covariance update function b(x) defined in the Equation (30) using x̂−k , h(x) and ẑ−k
Measurement update (correction)
9: Update the cross-covariance Pxk zk defined in Equation (31), Kalman gain Kk defined in
Equation (32), state estimate x̂k defined in Equation (33) and sate covariance Pk (defined in
Equation (34))
end for
return estimated data (xk)

4. Experimental Results

The proposed method, tested with twelve poses, is considered as a manually anno-
tated [37–39] dataset to evaluate its performance. It has been difficult to find standard
public datasets for pose and skeleton estimation. Therefore, reference actions from [40,41]
chose twelve poses, and the experiment was conducted with 20 participants to process the
data. In this paper, the twelve pose datasets are as follows: Crossing arms, extending arms,
flexion and extending, hands up, left standing, right standing, standing, unipedal, right
flexion and extending, left flexion and extending, o–leg stand, and x–leg stand.

The tested dataset consists of 32 joints with the 30-s data, including the RGB and
Depth information of each pose. The person would perform the pose in front of the Kinect
camera to capture the pose. In the skeleton, each joint has its own joint coordinate system
which is related to the depth camera 3D coordinate system. A skeleton includes 32 joints,
with each connection linking the parent joint with a child joint. The pelvis is the root joint,
fixed in the center of the human body followed by the child joints. For instance, the pelvis,
which is the root joint, links to the spine_naval, which is the child joint; and the spine_navel
(parent joint) links to the spine_chest (child joint). Euler angles and angular velocities are
needed for the next child joint as the state, except for the root position, rather than using
the 3D position coordinates of all skeletons. In each frame, the x, y, and z-coordinates
of each joint are used to create a joint object instance for each of the 32 joints. Using the
depth-first search algorithm, bone lengths are calculated and stored in the skeleton. To
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generate the skeleton map, the human body kinematic model splits into two: upper and
lower body. In the calibration phase, the initial mean state vector of the lower body, and
the initial mean state vector of the upper body, will be returned.

A model-filter controller function utilizes the lower and upper body properties to
apply the proposed method. The Kinect data contained a number of frames, where
the estimated data of the proposed method used every single frame. Subsequently, the
estimated data were calculated with the help of filter objects, made in the previous step.
The algorithm for one iteration was as follows. From the skeleton object list, the kth number
of skeleton objects was selected, which was the skeleton for the kth frame. Then, the joint
position of each joint of this frame was obtained, and the measurement vector (zk) was
calculated. Additionally, zk was used to calculate the updated state estimate for the kth
frame. The updated mean and covariance are computed in the filter update method of the
proposed method. From the updated state mean, the updated data for the current step are
calculated by passing them through the observation function again. The updated mean
and covariance are computed for lower and upper body models separately.

Finally, filter controller function retrieves and returns the covariance matrices for the
upper and lower body using the proposed method. For comparison, we obtained the
manually annotated ground truth [24,42–46] for the set of twelve poses captured by the
camera. To analyze the original data and the estimated data, we employed the proposed
method for determining the coordinates of each joint by incorporating the observation
function at each iteration. The numerical comparison was conducted by incorporating the
RMSE mean value (RMSE_mean) and the RMSE standard deviation value (RMSE_(±SD))
associated with the estimated data and ground truth, which were measured in millimeters
(mm). The results show a comparison of the RMSE _mean and standard deviation (±SD)
values in comparison with UKF, EKF and the proposed method. Examples of four joint
points, i.e., pelvis, spine_naval, head and nose, are shown in Figure 3. In Figure 3a,
the x-axis depicts the 30-s frame data, and the y-axis depicts the RMSE. There are rapid
enhancements and large errors on the EKF.
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The UKF and proposed method have similar results on Figure 3. Further, we will
compare these with skeleton data on x, y, and z-coordinate systems. The joint variables and
mean (±SD) of the RMSE values among the three nonlinear filters EKF, UKF, and proposed
method are presented in Table 1.

Table 1. Results of RMSE_mean and RMSE_(±SD) of skeleton joints for each method.

Joints
EKF UKF Proposed

Mean ±SD Mean ±SD Mean ±SD

Pelvis 1.11 ±0.46 0.58 ±0.40 0.35 ±0.26
Spine_Naval 1.78 ±0.85 0.72 ±0.60 0.28 ±0.29
Spine_chest 1.31 ±0.78 1.11 ±0.81 0.39 ±0.39

Shoulder_left 1.64 ±0.72 1.41 ±1.04 0.35 ±0.19
Elbow_Left 1.77 ±0.92 1.55 ±1.80 0.49 ±0.26
Hand_left 4.82 ±3.04 4.78 ±2.90 1.43 ±0.86

Hand_Right 3.51 ±1.80 3.18 ±1.79 1.21 ±0.77
Wrist_Left 4.23 ±2.46 2.94 ±1.91 1.37 ±0.83
Eye_Right 3.42 ±9.86 4.05 ±9.68 1.58 ±5.47
Ear_Right 5.83 ±17.63 4.63 ±15.6 1.60 ±4.78

Joints of each pose are affected by the noise; the effected nonlinear temporal noise
was filtered with nonlinear filters. Further, the EKF has the largest RMSE at the ear_right
(5.83 ± 17.63) and the smallest RMSE at the pelvis (1.34 ± 0.57). Utilizing the UKF method,
RMSE at the ear_right is (4.63 ± 15.6) and the value of the pelvis is (0.58 ± 0.40), the
data demonstrate that there is a possibility to reduce the noise further. Finally, upon
implementing the proposed method, the RMSE value for “ear_right” was found to be
(1.60 ± 4.78), and the RMSE value for the pelvis was found to be (0.35 ± 0.26). Specifically,
parts of the head including ‘eye_right’ and ‘ear_right’ moved more rapidly than the other
joints of the body. This resulted in an increase in the SD compared to the other joints.

Finally, depending on the RMSE, the proposed method is proven to have superior
performance across all the joints of the twelve poses. The estimated results of the x, y, z
joint by UKF and the proposed method on the x, y, and z-coordinate systems are shown
in Figure 4. This presents examples of four joint positions, i.e., pelvis, spine naval, head,
and nose. Here, the x-axis is on a time domain, and the y-axis shows the position and its
error. The error results of the UKF is indicated with the red line and the proposed method
with the blue line. The error fluctuation by the proposed method is less than that by the
UKF, as shown in Figure 4. This is because the proposed method compensates for the error,
while using both the observation and state transition functions on a RUKF method. The
performance of joint position connects to the skeleton estimation directly. The graphical
results of skeleton estimate for twelve poses according to each algorithm are presented in
Figure 5.

The skeleton estimation by the UKF and RUKF method is indicated as blue and green
lines, respectively. These captured images are shown only single frame among 30-s in
each pose. Therefore, there are some limitations to showing the experiments entirely.
However, it is possible to evaluate the performance of the RUKF method using Table 1.
The 3D skeleton map estimation by the proposed method has better results in terms of the
quantitative results of RMSE_mean (±SD) than that of the UKF method in Figure 5.



Electronics 2021, 10, 971 11 of 13

Electronics 2021, 10, x FOR PEER REVIEW 12 of 15 
 

 

Finally, depending on the RMSE, the proposed method is proven to have superior 
performance across all the joints of the twelve poses. The estimated results of the x, y, z 
joint by UKF and the proposed method on the x, y, and z-coordinate systems are shown 
in Figure 4. This presents examples of four joint positions, i.e., pelvis, spine naval, head, 
and nose. Here, the x-axis is on a time domain, and the y-axis shows the position and its 
error. The error results of the UKF is indicated with the red line and the proposed method 
with the blue line. The error fluctuation by the proposed method is less than that by the 
UKF, as shown in Figure 4. This is because the proposed method compensates for the 
error, while using both the observation and state transition functions on a RUKF method. 
The performance of joint position connects to the skeleton estimation directly. The graph-
ical results of skeleton estimate for twelve poses according to each algorithm are presented 
in Figure 5. 

 
Figure 4. Comparison of the position error of joints with the UKF, and proposed method; (a) Pel-
vis, (b) Spine_navel, (c) Head, and (d) Nose. 
Figure 4. Comparison of the position error of joints with the UKF, and proposed method; (a) Pelvis,
(b) Spine_navel, (c) Head, and (d) Nose.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 15 
 

 

 
Figure 5. Results of 3D skeleton estimation using UKF and the proposed method. 

The skeleton estimation by the UKF and RUKF method is indicated as blue and green 
lines, respectively. These captured images are shown only single frame among 30-s in each 
pose. Therefore, there are some limitations to showing the experiments entirely. However, 
it is possible to evaluate the performance of the RUKF method using Table 1. The 3D skel-
eton map estimation by the proposed method has better results in terms of the quantita-
tive results of RMSE_mean (±SD) than that of the UKF method in Figure 5. 

5. Conclusions 
This study proposed a method of 3D skeleton pose estimation using a randomized 

unscented Kalman filter to reduce nonlinear noises on a Kinect camera. The proposed 
method analyzed the propagation and updating process for temporal noises of skeleton 
data on the x, y, and z-coordinate systems. The accuracy of state estimation and prediction 
of the data are enhanced owing to the use of randomized UT. This enables the proposed 
method to correct errors that occur with the nonlinear temporal noise. Therefore, the ex-
perimental results show that the performance of the proposed method reduces the RMSE 
and SD while estimating the 3D skeleton map. 

Author Contributions: Conceptualization, Y.R.M. and O.-S.K.; methodology, Y.R.M. and O.-S.K.; 
investigation, Y.R.M. and O.-S.K.; writing—original draft preparation, Y.R.M.; writing—review and 
editing, Y.R.M. and O.-S.K.; supervision, O.-S.K.; project administration, O.-S.K. All authors have 
read and agreed to the published version of the manuscript. 

Funding: This research was supported by Basic Science Research Program through the National 
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning 
(2019R1F11058489). 

Figure 5. Results of 3D skeleton estimation using UKF and the proposed method.



Electronics 2021, 10, 971 12 of 13

5. Conclusions

This study proposed a method of 3D skeleton pose estimation using a randomized
unscented Kalman filter to reduce nonlinear noises on a Kinect camera. The proposed
method analyzed the propagation and updating process for temporal noises of skeleton
data on the x, y, and z-coordinate systems. The accuracy of state estimation and prediction
of the data are enhanced owing to the use of randomized UT. This enables the proposed
method to correct errors that occur with the nonlinear temporal noise. Therefore, the
experimental results show that the performance of the proposed method reduces the RMSE
and SD while estimating the 3D skeleton map.
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