i?‘lg electronics

Article

An Integrated Framework for Traceability and Impact Analysis
in Requirements Verification of Cyber-Physical Systems

Alachew Mengist **, Lena Buffoni

check for

updates
Citation: Mengist, A.; Buffoni, L.;
Pop, A. An Integrated Framework for
Traceability and Impact Analysis in
Requirements Verification of
Cyber-Physical Systems. Electronics
2021, 10, 983. https:/ /doi.org/
10.3390/ electronics10080983

Academic Editor: Anna Rita Fasolino

Received: 29 January 2021
Accepted: 13 April 2021
Published: 20 April 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Adrian Pop

Department of Computer and Information Science, Link&ping University, SE-581 83 Linkoping, Sweden;
lena.buffoni@liu.se (L.B.); adrian.pop@liu.se (A.P.)
* Correspondence: alachew.mengist@liu.se

Abstract: In the field of model-based design of Cyber—Physical Systems (CPS), seamless traceability
of the process, from requirements to models to simulation results, is becoming increasingly important.
It can be used to support several activities such as variant handling, impact analysis, component
reuse, software maintenance and evolution, verification, and validation. Despite the fact that the
relevance of traceability in the model-based design of CPSs is well known, current tools that support
traceability management are inadequate in practice. The lack of comprehensive whole-lifecycle
systems engineering support in a single tool is one of the main causes of such ineffective traceability
management, where traceability relationships between artifacts are still manually generated and
maintained. This paper aims at presenting an approach and a prototype for automatically generating
and maintaining the appropriate traceability links between heterogeneous artifacts ranging from
requirement models, through design models, down to simulation and verification results throughout
the product life cycle in model-based design of CPSs. A use case study is presented to validate and
illustrate the proposed method and prototype.

Keywords: traceability; impact analysis; requirements verification; model-based design; OSLC;
cyber—physical systems; requirements tracing; model evolution; simulation

1. Introduction

In recent years, the need for a more formal requirement verification process and the
need for language and tool support has been increasingly recognized by the cyber—physical
modeling community. Several research works on language and tool support have been
published in this area (e.g., [1-4]).

To ensure the proper operation of complex physical systems (e.g., power plants,
aircraft, vehicles, building automation, and robotics), requirements are issued at different
points in time during the system’s development life cycle: from the design phase to the
operation phase. Having both the requirements and the model in the same language
reduces the semantic gap in the terminology used to communicate between requirement
verification engineers and system modelers. It also simplifies the modeling effort and
allows for the automated combination and integration of requirement models.

However, in an industrial scale with projects involving complex systems with a large
number of requirements and several teams working on different parts of the system,
it is still difficult to analyze the results of the requirement verification process just by
inspecting the simulation results. Different artifacts in the system evolve at different
paces and are modified by different stakeholders. Analyzing how these changes inter-
relate and ensuring the consistency of the system can be very complicated. Traceability,
defined as “the ability to describe and follow the life of a requirement, in both a forwards
and backwards direction” [5], plays an important role in maintaining consistency in the
system as it can be used to reason about a logical connection between heterogeneous
artifacts throughout the development life cycle. It can be used to support several different
software and system engineering activities, including requirement tracing [6], change

Electronics 2021, 10, 983. https:/ /doi.org/10.3390/ electronics10080983

https:/ /www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9052-2491
https://orcid.org/0000-0002-3277-7979
https://orcid.org/0000-0003-0091-1181
https://doi.org/10.3390/electronics10080983
https://doi.org/10.3390/electronics10080983
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10080983
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10080983?type=check_update&version=2

Electronics 2021, 10, 983

20f21

impact analysis [7], software maintenance [8], reverse engineering [9], and consistency
checking [10].

In order to realize the benefits of traceability and to ensure that the resulting systems
are well-tested and evaluated, traceability needs to be established between artifacts that
are produced throughout the development life cycle. However, due to the heterogeneity
and complexity of CPSs, different modeling languages and tools are often utilized to
address the different aspects of the system and development activities such as requirements
engineering, system design, verification, etc. Hence, different stakeholders are usually
responsible for different artifacts and activities in the project and these are realized in
isolation using a variety of domain-specific tools and languages.

Several studies (e.g., [11-15]) report that diverse heterogeneous artifacts and tools
in the development life cycle are a challenge to be faced when establishing traceability
links. From the studies, one of the solutions for this challenge is tool integration where
all existing tools are connected so that it becomes possible to exchange information about
the heterogeneous artifacts and create traceability links between them. This was achieved
for CPS development in our previous work [16], in which some of the components of the
traceability framework were developed. What is currently missing is an integrated tool
platform to establish, maintain, and use the traceability links of heterogeneous artifacts and
activities (e.g., requirements, design models, scenario models, simulation results, validation,
and verification) in the development life cycle. The open-source environment OpenMod-
elica (see also: https://www.openmodelica.org accessed on 31 March 2021) [17] has the
potential to contribute to such a platform because it already supports all of the activities
in the development life cycle. This work integrates the previously developed traceability
components with new ones into an integrated system inside the OpenModelica tool. Open-
Modelica is an integrated open-source environment for modeling, simulation, optimization,
model-based development, and analysis of large-scale CPSs. The environment is based on
the equation-based object-oriented Modelica modeling language standard [18,19] and the
Functional Mockup Interface (FMI) standard [20,21] for model exchange and co-simulation.

This paper describes a semi-automatic and collaborative feature for creation and main-
tenance of traceability links within an integrated environment for modeling, simulation,
and model-based development of CPSs. The objective of this article was to answer the
following Research Question (RQ):

RQ. How can heterogeneous artifacts be enriched with links that are designed and
maintained to better support traceability and change impact analysis in requirements
verification of CPSs?

A design science approach [22,23] was used to tackle the research question. First,
traceability challenges that remain unresolved are identified. Then, a solution was de-
signed to address the problem; this design was implemented in a software prototype as a
proof-of-concept. A case study was used to demonstrate the applicability of the resulting
prototype design.

To address the research question, the following contributions were made to the model-
based development of CPSs:

* We designed a collaborative approach based on the Open Services for Lifecycle
Collaboration (OSLC) standard for creating and maintaining traceability links semi-
automatically.

* We developed an integrated framework for traceability in the development process
based on our design.

e We demonstrated the applicability and usefulness of our prototype in practice with a
use-case tracing of heterogeneous artifacts during the model-based development of
a CPS.

The remainder of this paper is organized as follows. Section 2 presents the current
traceability challenges. Section 3 discusses Virtual Verification of Designs against Require-
ments (vVVDR) and OSLC. The architectural design and the implementation aspects of the

https://www.openmodelica.org

Electronics 2021, 10, 983

3of21

integrated traceability framework are described in Sections 4 and 5, respectively. Section 6
presents a case study that demonstrates the applicability of our prototype implementation
followed by an overview of related work in Section 7. Finally, concluding remarks and
future research work are provided in Section 8.

2. Traceability Challenges

Over the past 30 years, several researchers have conducted empirical studies to
identify the challenges of traceability. Gotel and Finkelstein [5] conducted an empirical
study to analyze the problem regarding requirements traceability in industry. In 2012,
Gotel et al. [24,25] identified the grand traceability challenges that need to be addressed
before 2035—that traceability will be established in the background and will be seamless to
software and systems engineering tasks. According to this study, further research must be
done to ensure that traceability is: purposeful, cost-effective, configurable, trusted, scalable,
portable, valued, and ubiquitous.

In recent work, Salome et al. [15] conducted a literature review with an industrial case
study with the aim of identifying traceability challenges and solutions in the automotive
domain. They explored 17 traceability challenges applicable to the automotive industry out
of the 22 general challenges identified in the literature. In addition, they further identified
six challenges that were partially solved while six others remain unsolved based on their
industrial case even though some solutions are suggested in the literature. In the following,
we present the five challenges we selected to solve (four unsolved challenges and one
partially solved challenge in the industry identified by Salome et al. [15]). We intend to use
the remaining unselected challenges as a part of future work as they need industrial use
cases and close collaboration with industry.

C1: Manual work—Manually creating and updating traceability links that involve a large
number of heterogeneous artifacts is a time-consuming and error-prone task [26]
and should be performed by automated tools. To address this challenge, the use
of automated approaches (e.g., event-based techniques [12] and model-driven tech-
niques [27]) has been suggested in the literature.

C2: Traceability perceived as overhead—Managing trace links manually adds overhead
for developers since their primary goal is to develop software. The main reason
behind this is that the creators and actual beneficiaries of the traceability links are not
always the same people (e.g., [28-30]). To overcome this challenge, some literature
(e.g., [5,12,31-33]) proposed a solution to automate the generation of traceability links
whenever possible.

C3: Lack of visualization tools—Traceability links are usually presented in large tables or
lists where it is difficult to understand and analyze traceability information, especially
in large projects. The users need visualization tools to be able use the links and
facilitate development activities.

C4: Lack of universal standards—Traceability needs to be exchanged between stake-
holders who are involved in developing heterogeneous artifacts throughout the
development life cycle. Currently, traceability information is stored in different forms.
Accessing and exchanging traceability information is difficult without a common
standard that defines how it is created and stored. Hence, a common standardized
format is needed to facilitate the sharing and transfer of traceability information.

C5: Diverse artifacts and tools—A common situation in industry is that a system model
is composed of several sub-models that may have been developed using different
tools and operations, such as requirements modeling, model simulation, system
design, validation, and verification; therefore, the heterogeneous artifacts produced
can be specified using various modeling languages and tools. Most traceability tools
either do not support linking to artifacts located outside the tool or only support
linking to specific tools and a specific format [12,15,34].

Electronics 2021, 10, 983

40f21

With respect to the grand traceability challenges, the main problems are: making
traceability cost-effective (C1, C2), scalable (C3, C5), and portable (C4). The existence of
these challenges serves as the main motivation for our research. Since the overall objective
is to improve the traceability tools for CPSs, the aim of this paper was to provide a solution
through an integrated traceability tool in model-based development and demonstrate it in
practice on a use case.

3. Basic Concepts and Method

Model-Based Systems Engineering (MBSE) is defined as “the formalized application of
modeling to support system requirements, design, analysis, verification, and validation ac-
tivities beginning in the conceptual design phase and continuing throughout development
and later life cycle phases” [35]. It relies on building models that replace or complement re-
quirements expressed in natural language so that the system design can be verified against
requirements. An overview of existing methodologies used in industry is presented by Jeff
A. Estefan [36]. Some of them use standardized languages (e.g., SysML [37] and Unified
Modeling Language (UML) [38]) and tools (e.g., ModelicaML [39,40]) for system modeling.

The approach developed in this paper builds on previous work that automates the
generation of verification models [41] and adds support for requirement verification [42,43]
in Modelica. Traceability support is based on the OSLC specification. An overview of the
basic concepts and methods from the domain is given in the following subsections.

3.1. Virtual Verification of Designs against Requirements

Virtual verification of designs against requirements (vVDR) is a method that enables
model-based system design verification against requirements. The vVDR methodology
has been validated on a number of industrial use-cases [41,44]. Figure 1 shows the basic
steps of the vVDR method and the artifacts created.

Role Task Created Artifact

;- Formalize]
E’ Requirements n Requirement Models
[Formalize Design Models
d Designs

[i Formalize Scenario Models
ﬂi Scenarios

Create Verification

Models Verification Models

Execute and Reports

Create Report

] [
- T
W Analyze Results

Figure 1. vVDR flow of information—steps, roles, tasks, and artifacts [41].

The vVDR model defines the following modeling artifacts as the necessary build-
ing blocks:

Requirement Model—Each requirement is represented by a model and the requirement
status is computed throughout the simulation.

System Design Model—A particular design alternative or version of the system is repre-
sented by a model to be used for verification against requirements. Several design
alternatives can be included in the verification process (e.g., different configurations
of the system).

Scenario Model—A scenario defines how the system is stimulated during the simulation.

Electronics 2021, 10, 983 5o0f 21

Verification Model—A verification model is the combination of a set of requirements,
design alternatives, and a scenario. A verification model can be defined by the user
or generated automatically. It is used to perform design verification and to report on
requirement violations.

Requirement models are the output of the Formalize Requirements activity and
are the input to the Formalize Designs activity. Design and requirement models are
input to the Formalize Scenarios activity that output scenario models. Requirement,
design, and scenario models are input to the Create Verification Models activity, which
outputs verification models to be used for analysis in the Execute and Create Report step.
The generated reports and all the various models are, finally, input to the Analyze Results
activity. To facilitate the generation of verification reports, the vVDR library’s requirement
interface provides a status variable for each requirement. This status variable can take one
of the following values:

Violated—When the conditions of the requirement are not fulfilled by the design model
and is represented by —1 in the plots.

Not_violated—When the conditions of the requirement are fulfilled by the design model
and is represented by 1 in the plots.

Not_applicable—When the requirement does not apply. For instance, a requirement that
describes the behavior of the heating system when the power is lost cannot be verified
if there is no test scenario in which power loss occurs. This value is used to identify
requirements that were never tested during a simulation and is represented by 0 in
the plots.

For each requirement simulated, the status value is used to determine whether it is
verified, violated, or never tested during a particular system configuration.

3.2. Open Services for Lifecycle Collaboration

Open Services for Lifecycle Collaboration (OSLC) [45] is an open-source initiative
for creating a set of specifications that enables integration of development life cycle tools
(e.g., modeling tools, change management tools, requirements management tools, quality
management tools, and configuration management tools). The goal of OSLC is to make it
easier for tools to work together by specifying a light-weight protocol without standardizing
the behavior of a specific tool. OSLC is based on the RESTful [46] web services architectural
pattern, through which other applications can interconnect and access shared data. The
OSLC specifications use a linked data [47] model to enable integration at the data level
via links between artifacts. The structure and semantics of the artifact information being
exchanged between applications is represented using the Resource Description Framework
(RDF) [48]. RDF is a language used to represent information such as a web resource
identified by a unique Uniform Resource Identifier (URI) using various syntax notations
and data serialization formats. This enables the data from different sources to be connected
and queried by different clients.

4. Architectural Design

The design is based on a standardized interface and format using OSLC. Figure 2
depicts the architectural design of our approach showing the different components that it
relies on.

As illustrated in Figure 2, the architecture consists of four components:

Modeling and Simulation Tool—The modeling and simulation tools act as a front-end
to the traceability server. Any tool written in any programming language can inter-
connect with the traceability server, and provide or access the trace data. The tools
send the traceability information from activities that are performed within the tools
to an OSLC-based traceability server.

Electronics 2021, 10, 983 6 of 21

Traceability Server—The traceability server is an OSLC compliant tool interface imple-
mented as a set of RESTful services. Its main responsibility is to create an OSLC
compliant HTTP port to listen for the POST and GET actions. It acts as a front-end to
a triplestore database (both for writing traceability information into the database and
retrieving traceability data from the database).

GraphDB Database—The GraphDB database is an RDF triplestore serving as a global
database to store the The Provenance Notation (PROV) and OSLC triples (trace links)
that make up the traceability data.

Version Control System—The Git Version Control System is used as a central artifact
management system that interacts with the modeling tools by establishing a unique
URI for artifacts that are evolved by different users. The traceability links are unique
as they are based on the Git commit hash. This allows multiple users to work on the
project and maintain traceability links simultaneously.

o

Trace data

) — N

Trace data

‘ Traceai)iii}y server GraphDB Database Trace links

i \Version Control System|

Ffj

Trace date \CERENED

Modeling and Simulation Tool

Figure 2. The architecture of the traceability framework.

The concepts from the PROV [49] and OSLC [45] specifications are used to represent
the traceability information. PROV provides a set of relations to describe the use and
creation of entities by activities, which may be influenced in various ways by agents.

Entities—An entity is a physical, digital, conceptual, or other kind of thing with certain
fixed aspects. In the case of our prototype, this would include artifacts such as
requirement documents and models, design models, scenario models, verification
models, verification reports, simulation results, etc.

Activities—An activity is something that occurs over a period of time and acts upon or
together with entities. It may include using, processing, transforming, modifying,
or generating entities. In our work, activities include creating and modifying models,
simulations, verifications, and reports.

Agents—An agent is a user who performs an activity and bears some form of respon-
sibility for the existence of an entity. Agents include individual engineers such as
developers, architects, analysts, and project managers.

In addition, relations are defined that describe the connection between entities, activi-
ties, and agents. In the context of traceability, the traceability data consist of triples made
up of subject, predicate, and object, where subject and object are either an entity, activity,
or agent. The predicate is either an OSLC [50] or PROV [49] relationship type.

Electronics 2021, 10, 983

7 of 21

4.1. PROV Relationship Type

The PROV relationships that are supported in our prototype are illustrated in Table 1
and by the UML diagram in Figure 3.

Table 1. PROV relations supported in our prototype.

Object
Entity Activity Agent
] Entity wasDerivedFrom wasGeneratedBy wasAttributedTo
Subject . .
Activity used wasAssociated With
wasDerivedFrom
used
| Entity Activity
wasGeneratedBy -
wasAttributedTo
- wasAssciated\With
Agent

Figure 3. UML diagram for the PROV relationships supported in our prototype.

The arrows point backwards in time, from the subject to the object. For example,
when recording the relation: entity X was generated by activity Y, the arrow will point to
the activity.

4.2. OSLC Relationship Type

Logical linking between artifacts is supported based on the OSLC specification.
The type of link (i.e., the predicate used in the link triple) defines the semantics of the link
and thus provides traceability between artifacts. For instance, “Model (Subject) satisfies
(Predicate) a requirement (Object)”. This allows a user (or a machine) to understand the
meaning of the link.

The full set of OSLC relations is available in [50]. This paper uses a subset of these.
However, it can be extended depending on the need of the stakeholder or the type of
project. Table 2 lists the OSLC relationships supported in our prototype to link artifacts
across various domains.

Table 2. OSLC relations (with PREFIX oslc) supported in our prototype.

- elaborates
- satisfies
- verifies
- violates

4.3. Traceability Links Representation

Traceability links for artifacts and their relationships are represented using an N-
triples [51] format, which is a line-based, plain text serialization format for storing and
transmitting data. The structure of the N-triples consists of RDF triples grouped into graphs
identified with URIs: artifacts (subjects), relations (predicates), and what they belong to

Electronics 2021, 10, 983

8 of21

(objects). An example of traceability information represented as an RDF graph data model
is given in Figure 4.

RDF Triple

)
f 1

Subject Predicate Object
(Always a URI) (Always a URI) (URI or literal)

4 4

[
>

=http:/l.. Volume_of a_tank.mo= =http:/f___Volume_of_a_tank.txts

<http:!._prov:wasattibutedTo= Agent userName

Figure 4. Trace link representation using an RDF triple (subject—predicate-object).

5. Prototype Implementation

In this study, a prototype was implemented to validate the architectural design.
A traceability server with a RESTful API was implemented in JavaScript using the Node]S
Framework. The traceability client implementation in a model-based development envi-
ronment is an extension of the OpenModelica Connection Editor (OMEdit) [52]. OMEdit is
the Graphical User Interface (GUI) of OpenModelica. Previously developed components
that generate traceability data in OMEdit were reused, enhanced, and integrated together
with a new traceability server developed from scratch.

The traceability server is the core component of the traceability solution. It implements
the traceability protocol, which allows a triplestore (which, in our implementation, is
a GraphDB database) to expose resources so that trace links can be created, updated,
and retrieved by the clients over HTTP. It stores the data sent via a POST message and
returns a suitable response to a GET request. The requests are sent from different tools
(clients), and the received data are stored in the GraphDB database. The different tools
(clients) send data to an IP address (or hostname) at which the traceability server is running
(which, in our implementation, can be configured in the settings). This allows multiple
users to work on the project simultaneously, thus keeping the traceability links consistent
and up-to-date.

Visualization and Queries

Recent research works suggest various techniques for traceability visualization to help
end users to efficiently track, understand, and analyze the relationships between linked
artifacts [53,54]. The most common visualizations of traceability links are: a matrix, lists,
graphical notations, and hyperlinks. According to an empirical study by Yang Li [55],
graphs are the preferred way to obtain an overview of linked artifacts, and hyperlinks are
adequate in facilitating implementation and testing tasks. Further studies [5,12,56] deduced
that the appropriate traceability visualization is highly dependent on the usage context
and the project characteristics. Therefore, a traceability tool should support a combination
of various visualization techniques since they all have advantages and disadvantages [12].

In a matrix view, the artifacts and various relations connecting them are displayed in
a two-dimensional representation in a table format. However, the use of a matrix-based
approach in a large-scale project makes it difficult to visualize specific relationships due to
the large number of trace links and their lack of scalability [55]. Hence, the matrix view is
not implemented due to the heterogeneity of different artifact types (requirement, design,
scenario, verification model, verification report, and simulation results).

In this research work, hyperlinks, lists, and graph visualization techniques were real-
ized by integrating the built-in GraphDB interface into our framework. In the hyperlinks

Electronics 2021, 10, 983

9 of 21

view, traceability links are displayed as hyperlinks from an artifact and can be clicked
to navigate to the linked artifacts. The graph-based visualization approach represents
different entities (artifacts, agents, and activities) as nodes and the links as edges in a graph.
Also, different types of entities are identified using specific colors. However, in the case of
large amounts of data, it is less intuitive to display relationships. To make it more intuitive,
the tool allows for the querying of the traceability data, which filters the set of relationships
to be displayed.

To better support browsing and change impact analysis, query-based link/artifact
search from the database using an RDF query language, SPARQL, was used. Some exam-
ples of queries are given below:

e Listall verified (Listing 1) or violated (Listing 2) requirements.
e Listall artifacts created by a user named “John”: Listing 3.
¢ List all simulation results: Listing 4.

Listing 1 List all verified requirements

PREFIX oslc: <http://openmodelica.org/>
select ?verified_requirements where {
?s oslc:verifies 7verified_requirements .
?verified_requirements rdf:type oslc:Requirement .
} limit 100

Listing 2 List all violated requirements

PREFIX oslc: <http://openmodelica.org/>
select ?7violated_requirements where {
?s oslc:violates 7violated_requirements .
?violated_requirements rdf:type oslc:Requirement .
} limit 100

Listing 3 List all artifacts created by a user named “John"’

PREFIX oslc: <http://openmodelica.org/>

select 7artifacts_created_by_John where {
7artifacts_created_by_John oslc:wasAttributedTo "Agent.John"

}limit 100

Listing 4 List all simulation results

PREFIX oslc: <http://openmodelica.org/>

select 7simulation_results where {
?simulation_results rdf:type oslc:SimulationResult

} limit 100

6. Use Case

The use case presented in this paper is a simple heating system (see available
repository: https://github.com/lenaRB/TraceabilityHeatedExample.git accessed on 31
March 2021).

It consists of a single design alternative illustrated in Figure 5, two scenarios to
illustrate different usage patterns and the four requirements specified as follows:

https://github.com/lenaRB/TraceabilityHeatedExample.git

Electronics 2021, 10, 983

10 of 21

Req. 001 The element temperature should never exceed 35 degrees Celsius.

Req. 002 To prevent system damage, once the heater is turned on/off it should not be
turned off/on, respectively, for at least 3 s.

Req. 003 After the first 2 s, the controller will keep the temperature above 21.5 degrees.

Req. 004 If the power is lost, the controller should open the switch and sound an alarm

within 2 s.
tem...
» [>
GVAVE
alarmOn
constantVolt... :
switch f
objectT
A o =
V=4V []
switchSignal
resistor _{
ground
temperatures... thermalCond... roomTemp
outsideHeat degC G=1.2 WK

sunshine
.

heatCapacitor
Figure 5. Small system with heating element.

Figure 6 shows the overall structure of the package.

v E HeatedExample
Design
'319? HeatedElement
s+ TemperatureController
v IE Requirements
" - noOverheating
- switchingDelay
" : maintainMinHeat
Mediators
Scenarios
E¢ SunnyDay
= ColdDay

AutoGenVerifScenarios

o]

UserGenVerifScenarios

v

ool

Figure 6. The contents of the HeatedExample package.

11 of 21

Electronics 2021, 10, 983

While building the system, when saving any of the models in OMEdit, traceability

data are automatically generated, such as in Figure 7.

ActiateModelCreation

+ OMEdit - OpenModelica Connection Editor
File Edit View Simulation Debug SSP Sensitivity Optimization Tools Help
v OQE SY%99 ¥~
o

HeatedElement
C:

Heee X \oHNOTH < =
8 x o4
= Design.

2420 kA B @ | Wiitable |Model Diagram View +

FveBR
Libraries Browser

Filter Classes

Libraries
ModelicaServices
Complex

7 Modelica

ME] HeatedExample

vIBl Design

- HeatedElement

TemperatureController

v[B] Requirements

noOverheating

switchingDelay
maintainMinHeat
energylLoss

vIB Mediators constantVoltage switch

Il temperatureLevel _ 4

I*linputTemperature L

I*linputOutsideHeat

Il switchPosition V=4V

vIB)Scenarios

SunnyDay

switchSignal

1

ith

tempe.

:

alarmOn

Sdg
K SD(‘E-
“aten,,.
ol

wa,

objectT

wasGenerated By

ColdDay
resistor

v[B] AutoGenVerifScenarios
verif_ model_autogen_1
verif_ model_autogen_0
B serGenveriscenaro 1 1
UserGenVerifScenario Agent:John
MBI VWDRIib)
thermalConductor roomTemp

[B] Verification
[RIReqStatus

[B)Bindings (emperatﬁ_iSensor /%
dcht G=1.2 W/K

outsideHeat

sunshine
.
g g
HeatedElement.mo

heatCapacitor
>

ground

X:-134,Y:58 @ Welcome oA Modelng EBPlotting @ Debugging

Figure 7. The HeatedElement model in OMEdit and its automatically generated traceablity data.

When a user drags and drops a component into a model, a “used” link is generated
in the traceablity data (such an example can be seen in Figure 10). For existing models
that were not built using the OMEdit graphical editor, the tool queries the OpenModelica
interactive compiler for all of the defined components to generate the “used” traceability
links. This way we can also automatically build traceability data for existing legacy models

and libraries.

Once the different components of the system are defined, the binding algorithm
implemented in OpenModelica can be used to generate all possible verification models
(Figure 8). This is done by collecting all of the possible design alternatives, scenarios,
and requirements from the selected packages. For each design alternative and for each
scenario, a set of all the requirements that can be verified is collected and a verification
model is generated. Since in this use case, there is a single design alternative and two
possible scenarios, this results in two possible combinations, one for each scenario. Every

verification model includes the set of requirements for which bindings could be computed.
Traceability data that links all these models are also generated automatically.
Once one of these models is simulated, requirement status values can be plotted for
each requirement to verify whether they were violated during the simulation. Figure 9
shows that Req. 003 is fulfilled for this simulation scenario as the temperature rises above

21.5 degrees in the first 2 s, and stays above the threshold.

Electronics 2021, 10, 983

12 of 21

scenario

\ 4

requirements >

Figure 8. An example of a verification model with a sunny day scenario, the design alternative, and
four requirements.

minHeat.temp minHeat. minT minHeat.status

30

25

20

S T T T T 1
0 10 20 30 40 50
time (s)

Figure 9. Requirement Req. 003 is fulfilled for the sunny scenario.

However, verifying requirements one by one is complicated for a large system. More-
over, when re-simulating a modified system, it should be possible to quickly detect whether
or not the changes to the design or the requirement model have affected the system’s ability
to fulfill the requirements. To this end, we introduce the first prototype for traceability
support and visualization as shown in Figure 10.

Figure 10 shows all the artifacts created for the heating system starting from the stake-
holder’s requirement document, through design alternative model, down to verification
results and their relationships.

Electronics 2021, 10, 983

13 of 21

Activity.GenerateVerific

ActivityModelCreation ationModels Activity:Simulation e
ra‘hu‘?ﬁt‘rdv;‘.qu
”’%G {eatsdEXaMPIE.Design
. .HeatedElement_res..
R
G ceof™
%, ered O
£ o wash®
= o€
= N
T &7 UserGenVerifScenario
g 5 mo
< <
P 5
&
Ey ? 5 .
2 S
5 h % %4 2N
e 2 S REY T56q,
5 ? 2. e, Dey,
(U]) <, I a’&‘ =) o
5 = S o & & ®
g kS >(§, 8, b g & 5
2 N - S B 3
-
Agent:John » b c I u
& g 5 5o
a
HeatedElement.mo
SunnyDay.mo switehingDelay.mo noOverheating.mo maintainMinHeat mo

Figure 10. An example of traceability links between artifacts visualized in the GraphDB database.

All the artifacts and activities are represented by vertices connected by edges to illus-
trate the relationships between them. Requirement models are shown in blue, the de-
sign model is shown in violet, the scenario model is shown in lime, the verification
model is shown in yellow, the simulation result is shown in red, activities (e.g., “Ac-
tivity ModelCreation”, “Activity.Simulation”, and “Activity.GenerateVerificationModel”)
are shown in blue-violet, the user who performed the activity (e.g., “Agent.John”) is shown
in green, and their relationships (e.g., “wasGeneratedBy”, “wasDerivedFrom”, “used”,
and “verifies”) are shown with arrows. OMEdit supports the creation of the links (i.e., the
PROV and OSLC triples describing the activity) automatically by generating a unique URI
based on the Git commit hash for each artifact, except for links to external documents such

as requirement documents in natural language.

6.1. Tracing Requirement Violations

The goal of the verification status report is to simulate all of the models in the selected
package that extend the special vVDR interface VerificationModel and to produce a
simulation report that will quickly allow identification of the areas of interest.

The algorithm for the generation of verification models builds a graph of the relation-
ships between the scenarios, requirements, and design alternatives, which is then passed
to the function generating the report. The report is created by collecting all the instances of
the requirements for each verification model and by checking the simulation results for
each instance. This information can be used to detect several types of problems:

Not all the requirements are bound. This means that one of the requirements is not
applicable to the chosen design alternative. For example, a requirement is written
for a heating system where the heater power can be adjusted dynamically, but in
the current system design, the power is constant. This is to be expected, as the
requirements are written from a specification rather than for a particular system
implementation choice, but can be a sign of something missing in the design.

Not all the bound requirements are tested. If a requirement is bound but never tested it
may be a sign that none of the scenarios cover the test conditions necessary for this
requirement. This is the case for Req. 004, because the power was not lost in any of
the scenarios. This can be a sign that parts of the behavior have not been correctly or
fully tested.

Electronics 2021, 10, 983 14 of 21

A number of requirements have been violated. The report provides a list of requirement
violations across scenarios. Looking into the violated requirement will bring up more
details. This will provide a list of scenarios in which the requirement was violated
and the time of the first violation of the requirement.

For the heated element use-case, two verification scenarios were simulated and a
report was generated. For simplicity, in the rest of this section, traceability is illustrated for
a single verification scenario generated for a SunnyDay.

The list of all violated requirements can be queried as follows (Listing 5):

Listing 5 List all violated requirements

PREFIX oslc: <http://openmodelica.org/>
select ?violated_requirements where {
?s oslc:violates 7violated_requirements .
?violated_requirements rdf:type oslc:Requirement .
} limit 100

The corresponding result is visualized using hyperlinks as shown in Figure 11. By click-
ing on hyperlinks, users can access the artifacts and their modifications from the central
artifacts repository. The list is empty because the SunnyDay verification scenario does not
violate any requirements.

Traceability

SPARQL Query & Update @ Editor only ~ Editor and results D]

Table Raw Response Pivot Table Google Chart Download as

. Showing results from Oto Oof O Query took 0.1s, today at 22:22
violated_requirements

“»

#]

i

keyboard shortcuts

Figure 11. List of violated requirements.

6.2. Traceability and Impact Analysis

The previous section illustrates that it is possible to trace problems in a particular
system design using requirements. If the modeler makes a change to the design and
goes through the verification process again, some requirements might be affected (e.g.,
a requirement that was satisfied in all scenarios before might now be violated in some
scenarios). In order to support the verification process throughout the development life
cycle variant, traceability in OpenModelica can be coupled with requirement violation
monitoring to track the changes that might have caused the system to violate requirements
that were previously satisfied.

Because all artifacts and actions are versioned and traced, one can use the traceability
information and the Git repository to provide impact analysis, i.e., what is affected (with
regards to verification) by a change in: a requirement, a scenario, or a design. One could
also start from two different verification reports and highlight their differences tracing back
to original requirements, development, etc.

Example 1. The engineer developing the system wants to see if it is possible to halve the voltage of
the heating unit and still fulfill all of the system requirements in order to produce a more cost-effective
design solution. The voltage of the power source is thus changed from 4 to 2 V (see Figure 12).

Electronics 2021, 10, 983 15 of 21

on Editor - o

o OMEdit - OpenMo

b 1-1-] H oo ¥ \OHOTH < E H- Q99E 999 &~
Libraries Browser 8 X of HeatedElement

Filter Classes 2420 b oA E @ | Wiitable | Model| Diagram View Design. e pos/Traceabil 1/usecase/t i mo

Libraries

ModelicaServices
Complex
7 Modelica
MP] HeatedExample
v[Bl Design tempe
. HeatedElement e — /\/\/
TemperatureController
v[B]Requirements
noOverheating
switchingDelay
maintainMinHeat
energyLoss
v[Bl Mediators constantVoltade
Il temperatureLevel switeh bjectT
P T\ obje
I*linputTemperature U L
I*linputOutsideHeat
1 switchPosition V=4V . =
vIBlScenarios
SunnyDay
ColdDay

vIBl AutoGenVerifScenarios Parameters

verif_ model_autogen_1

alarmOn

+ OMEdit - Element Parameters - constantVoltage in HeatedExample.Design.HeatedElement

switchSignal

verif model_autogen_0 General Modifiers
vIB] UserGenVerifScenarios
UserGenVerifScenario
ME| VWDRIib Name: constantVoltage
[B] Verification
[RReqStatus Class
[BIBindings Path: Modelica. Electrical.Analog.Sources.Ct ctor - roomTemp
Comment: Source for constant voltage

Component

outsideHeat Parameters

v 2 V Value of constant voltage
cres

53K

heatCapacitor

Figure 12. Changing the voltage in the HeatingElement via OMEdit.

The question that the traceability can answer is: how will this change impact the previous
verification of the requirements?

When simulating the new configuration, it should be possible to detect that while Req.
001 and Req. 002 are fulfilled for the SunnyDay scenario and Req. 004 is not applicable,
Req. 003 is now violated because the power of the heating unit is insufficient.

The fist step is to query for violated requirements again. This operation will identify
one violated requirement (Figure 13).

Traceability

SPAROL Ouery & Update @ Editoronly Editor and results M

Table Raw Response Pivot Table Google Chart Download as

ter quer ts Showing results from 1 to 1 of 1. Query took 0.1s, today at 23:22.

violated_requirements =]

https:/github.com/alash325/Traceabilitydournal2021/blob/master/usecase/HeatedExample/Requirements/maintainMinHeat.mo

keyboard shortcuts

Figure 13. List of violated requirements.

By comparing with previous results it is possible to detect that requirement Req. 003
was previously validated but is now violated once. This can be confirmed by plotting the
simulation results (Figure 14).

Electronics 2021, 10, 983

16 of 21

30

minHeat.temp

minHeat.minT

minHeat.status

25

20

20 30
time (s)

40 50

Figure 14. Requirement Req. 003 is violated after the first 2 s because the room is warming up

too slowly.

To further investigate this issue using traceability, one can start from the artifacts
filtered on those that have a relation with Req. 003, (See Figure 15) walk the relation to the
(new) verification models, and run them creating new simulation results artifacts. In the
figure one can see that HeatedElement was created and then modified and used in the new
UserGenVerifScenario, which produced the new result that violates requirement maintain-

MinHeat.
Activ]
Acti tion
\=
2
[
B
3
@
=
kY
2
HeatedElement.mo

Ac

ificat

wasDerivedFrom

HeatedElement.mo

wasGeneratedBy Heat
o

G
®,
=%

used
UserGenVerifScenario.
mo

used

https://github.com/lenaRB/TraceabilityHeated Exam;ﬁe/commit/d?be2d0f5b551c4937e537f3109f28134c70156f

sign
res.
b
e,
/);@A‘
P
> [
%, switchingDelay.mo
<
o
%
&
>
K
noOverheating.mo
7
et

maintainMinHeat.mo

Figure 15. Traceability links showing the change impact of verification of the requirements.

Electronics 2021, 10, 983

17 of 21

By clicking on the URI (See also: https:/ /github.com/lenaRB/TraceabilityHeated Ex
ample/commit/d7be2d0f5b551c4937e537£3109£28134c70156f accessed on 31 March 2021),
users can access the artifacts from the central version control system repository and see the
difference from the previous version of the entity as shown in Figure 16 (in this case, the
HeatedElement model change that triggered the violation of the requirement).

trying a design change Browse files
¥ master

Lena Buffoni committed 3 hours ago 1 parent 5a82bc2 commit d7be2ddf5b551c4937e5374310928134c70156F
Showing 1 changed file with 1 addition and 1 deletion. Unified Split

v 32 Em HeatedExample/Design/HeatedElement.mo (7

L @ -6,7 model HeatedElement

Figure 16. Different versions of a design model.

7. Related Work

Several techniques exist to support traceability among heterogeneous artifacts in
model-based cyber—physical product design. However, most tools (e.g., IBM Rational
DOORS Next Generation [57], Enterprise Architect [58], The AUTomotive Open System
ARchitecture (AUTOSAR) [59], Eclipse Capra [60], and EMFTrace [61]) are limited to a
specific domain and problem, and lack support for automatic traceability link creation
and maintenance.

e IBM Rational DOORS Next Generation supports traceability between requirements.
In addition, it provides an OSLC interface to link requirements with other artifacts.

¢ Enterprise Architect provides traceability for requirement models. It links require-
ments to the design and implementation through tool integration.

e The AUTomotive Open System ARchitecture only supports traceability for a specific
type of requirements (i.e., safety-critical ones).

¢ Eclipse Capra with EMFTrace provides tracing between different artifacts modeled
in different domain-specific languages. However, trace links are created and main-
tained manually.

Domain specific solutions have been proposed in previous research work such as
a traceability model supporting heterogeneous artifacts for the automotive domain [62].
However, this solution only supports specific types of trace links and cannot be extended
to support new traceability links or different modeling languages.

The previous research work in the INTO-CPS project [16] supports traceability in
the model-based design of CPSs between heterogeneous artifacts from different life cycle
modeling languages and simulation tools through tool integration. The integration is based
a standardized interface and format using OSLC, which allows artifacts from different
tools to be connected to the workflow. Similarly, Amalfitano et al. [63] developed a tool
integration solution for managing traceability between Polarion ALM and MATLAB testing
environments. The architecture can be extended if new tools have to be integrated with the
ALM platform. This is not a trivial task however, and requires a considerable effort and
may be costly especially if there are many tools that need to be integrated [64].

In comparison with the above mentioned tools and approaches, this paper presents
a traceability framework developed in an integrated virtual verification environment for
modeling systems, requirements, and test cases. This is achieved with a model-driven
technique where most artifacts are represented as models (with the exception of simulation

https://github.com/lenaRB/TraceabilityHeatedExample/commit/d7be2d0f5b551c4937e537f3109f28134c70156f
https://github.com/lenaRB/TraceabilityHeatedExample/commit/d7be2d0f5b551c4937e537f3109f28134c70156f

Electronics 2021, 10, 983

18 of 21

results or external documents) using the same modeling language and are accessible from
the same tool.

8. Conclusions and Future Work

Supporting an integrated traceability framework in model-based design environments
enables different stakeholders to collaborate and to interact with heterogeneous artifacts
and enables them to track changes and dependencies in the system by providing support
for creating and establishing traceability links between such artifacts.

This paper presents an approach and a prototype implementation for generating
traceability links throughout the development life cycle for change impact analysis in
requirements verification of CPS design. A traceability software architecture was designed
and implemented using a central graph database as a repository for all traceability links.
Using a version control system as a central global repository for artifact management
and for collaborative work involving multiple users is supported. An OSLC compliant
interface as a set of RESTful services for writing and retrieving traceability information
from the database was also developed.

The prototype provides automatic creation, storage, and maintenance of traceability
links between artifacts created during the development of CPSs. This solution supports
different artifacts of heterogeneous systems ranging from requirements models, through
design models, down to simulation and verification results.

For impact analysis, support is provided for a query-based link and artifact search
over the traceability data. The first version of the prototype displays a list of all verified
and violated requirements in a pre-defined query using hyperlink visualization. Further-
more, users can easily query the traceability graph database directly to retrieve specific
information about the links between different artifacts such as requirements, users, test
results, or design using the SPARQL querying language. The combination of a pre-defined
hyperlink visualization with a direct query using the SPARQL querying language provides
the basic features to perform change impact analysis on design models.

However, drawing more benefits from traceability links that have been created be-
tween artifacts requires highly configurable, flexible, and scalable visualization techniques
that enable users to navigate a large number of traces efficiently. To achieve this target
and enhance the change impact analysis features, we aim to extend our work with new
visualization options and evaluate these techniques in terms of usability.

Author Contributions: Conceptualization, A.M., A.P. and L.B.; methodology, L.B. and A.M.; software,
AM.,, LB. and A.P; validation, A.M,; investigation, A.M.; writing—original draft preparation, A.M.;
writing—review and editing, A.P. and L.B.; supervision, A.P.; project administration, A.P. and L.B.;
funding acquisition, A.P. and L.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been supported by the Swedish Government has been received from the Eu-
ropean Union in the H2020 INTO-CPS project, and by Vinnova in the ITEA OPENCPS and EMBRACE
project. The OpenModelica development is supported by the Open Source Modelica Consortium.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

OSLC Open Services for Lifecycle Collaboration

RDF Resource Description Framework
FMI Functional Mockup Interface
PROV The Provenance Notation

URI Uniform Resource Identifier

CPS Cyber—Physical Systems

Electronics 2021, 10, 983 19 of 21

vVDR Virtual Verification of Designs against Requirements
OMEdit OpenModelica Connection Editor

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Garro, A ; Tundis, A.; Bouskela, D.; Jardin, A.; Thuy, N.; Otter, M.; Buffoni, L.; Fritzson, P; Sj6lund, M.; Schamai, W.; et al. On for-
mal cyber physical system properties modeling: A new temporal logic language and a Modelica-based solution. In Proceedings
of the IEEE International Symposium on Systems Engineering (ISSE), Edinburgh, UK, 3-5 October 2016.

Otter, M.; Thuy, N.; Bouskela, D.; Buffoni, L.; Elmqvist, H.; Fritzson, P.; Garro, A.; Jardin, A.; Olsson, H.; Payelleville, M.; et al.
Formal Requirements Modeling for Simulation-Based Verification. In Proceedings of the 11th International Modelica Conference,
Versailles, France, 21-23 September 2015.

Liang, F.; Schamai, W.; Rogovchenko, O.; Sadeghi, S.; Nyberg, M.; Fritzson, P. Model-based Requirement Verification: A Case
Study. In Proceedings of the 9th International Modelica Conference, Munich, Germany, 3-5 September 2012.

David, P; Idasiak, V.; Kratz, F. Reliability study of complex physical systems using SysML. Reliab. Eng. Syst. Saf. 2010, 95, 431-450.
[CrossRef]

Gotel, O.C.Z.; Finkelstein, A.C.W. An analysis of the requirements traceability problem. In Proceedings of the IEEE International
Conference on Requirements Engineering, MColorado Springs, CO, USA, 18-21 April 1994.

Letelier, P. A Framework for Requirements Traceability in UML-based Projects. In Proceedings of the 1st International Workshop
on Traceability in Emerging Forms of Software Engineering, Edinburgh, UK, 28 September 2002.

Lindvall, M.; Sandahl, K. Traceability Aspects of Impact Analysis in Object-Oriented Systems. J. Softw. Maint. 1998, 10, 37-57.
[CrossRef]

Bianchi, A.; Fasolino, A.R.; Visaggio, G. An exploratory case study of the maintenance effectiveness of traceability models.
In Proceedings of the 8th International Workshop on Program Comprehension, Limerick, Ireland, 10-11 June 2000.

Maletic, J.I; Munson, E.; Marcus, A.; Nguyen, T.N. Using a Hypertext Model for Traceability Link Conformance Analysis.
In Proceedings of the 2nd International Workshop on Traceability in Emerging Forms of Software Engineering, Montreal, QC,
Canada, 7 October 2003.

Olsson, T.; Grundy, J. Supporting Traceability and Inconsistency Management between Software Artifacts. In Proceedings of the
6th IASTED International Conference on Software Engineering and Applications, Cambridge, MA, USA, 4-6 November 2002.
Kannenberg, A.; Saiedian, H. Why software requirements traceability remains a challenge. Crosstalk J. Def. Softw. Eng. 2009, 22,
14-19.

Winkler, S.; Pilgrim, J. A survey of traceability in requirements engineering and modeldriven development. Softw. Syst. Model.
(SoSyM) 2010, 9, 529-565. [CrossRef]

Regan, G.; McCaffery, E; McDaid, K.; Flood, D. The barriers to traceability and their potential solutions: Towards a reference
framework. In Proceedings of the 38th EUROMICRO Conference on Software Engineering and Advanced Applications, Cesme,
Turkey, 5-8 September 2012.

Parizi, RM,; Lee, S.P,; Dabbagh, M. Achievements and challenges in state-of-the-art software traceability between test and code
artifacts. IEEE Trans. Reliab. 2014, 63, 913-926. [CrossRef]

Maro, S.; Steghofer, J.; Staron, M. Software traceability in the automotive domain: Challenges and solutions. J. Syst. Softw. 2018,
141, 85-110. [CrossRef]

Koenig, C.; Mengist, A.; Gamble, C.; Holl, J.; Lausdahl, K.; Bokhove, T.; Brosse, E.; Moéller, O.; Pop, A. Traceability in the
Model-based Design of Cyber-Physical Systems. In Proceedings of the American Modelica Conference 2020, Boulder, CO, USA,
23-25 March 2020.

Fritzson, P.; Pop, A.; Abdelhak, K.; Ashgar, A.; Bachmann, B.; Braun, W.; Bouskela, D.; Braun, R.; Buffoni, L.; Casella, E,; et al.
The OpenModelica Integrated Environment for Modeling, Simulation, and Model-Based Development. Model. Identif. Control
2020, 41, 241-295. [CrossRef]

Fritzson, P. Principles of Object Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach, 2nd ed.; Wiley IEEE
Press: New York, NY, USA, 2014.

Modelica: A Unified Objectoriented Language for Physical Systems Modeling, Language Specification Version 3.5. Available
online: https://www.modelica.org/modelicalanguage (accessed on 11 March 2021).

Functional Mock-Up Interface (FMI) Specification 2.0.2. Available online: https://fmi-standard.org (accessed on 11 March 2021).
Blochwitz, T.; Otter, M.; Arnold, M.; Bausch, C.; Claufs, C.; Elmqvist, H.; Junghanns, A.; Mauss, J.; Monteiro, M.; Neidhold, T.; et al.
The Functional Mockup Interface for Tool independent Exchange of Simulation Models. In Proceedings of the 8th International
Modelica Conference, Dresden, Germany, 20-22 March 2011.

Hevner, A.R,; March, S.T.; Park, J.; Ram, S. Design Science in Information Systems Research. MIS Q. 2004, 28, 75-105. [CrossRef]
Wieringa, R.J. Design Science Methodology for Information Systems and Software Engineering, 1st ed.; Springer: Berlin/Heidelberg,
Germany, 2014.

Gotel, O.; Cleland-Huang, J.; Hayes,].H.; Zisman, A.; Egyed, A.; Griinbacher, P; Antoniol, G. The quest for Ubiquity: A
roadmap for software and systems traceability research. In Proceedings of the 20th IEEE International Requirements Engineering
Conference (RE), Chicago, IL, USA, 24-28 September 2012.

http://doi.org/10.1016/j.ress.2009.11.015
http://doi.org/10.1002/(SICI)1096-908X(199801/02)10:1<37::AID-SMR163>3.0.CO;2-R
http://doi.org/10.1007/s10270-009-0145-0
http://doi.org/10.1109/TR.2014.2338254
http://doi.org/10.1016/j.jss.2018.03.060
http://doi.org/10.4173/mic.2020.4.1
https://www.modelica.org/modelicalanguage
https://fmi-standard.org
http://doi.org/10.2307/25148625

Electronics 2021, 10, 983 20 of 21

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.
35.

36.
37.
38.
39.

40.

41.

42.

43.

44.

45.
46.
47.
48.
49.
50.
51.

52.

53.

54.

Gotel, O.; Cleland-Huang, J.; Hayes,]. H.; Zisman, A.; Egyed, A.; Griinbacher, P.; Dekhtyar, A.; Antoniol, G.; Maletic, J. The Grand
Challenge of Traceability (v1.0). In Software and Systems Traceability; Cleland-Huang, J., Gotel, O., Zisman, A., Eds.; Springer:
London, UK, 2012; pp. 343—409.

Egyed, A.; Biffl, S.; Heindl, M.; Griinbacher, P. A Value-Based Approach for Understanding Cost-Benefit Trade-Offs during
Automated Software Traceability. In Proceedings of the 3rd International Workshop on Traceability in Emerging Forms of
Software Engineering, Long Beach, CA, USA, 7-11 November 2005.

Galvao, I.; Goknil, A. Survey of Traceability Approaches in Model-Driven Engineering. In Proceedings of the 11th IEEE
International Enterprise Distributed Object Computing Conference (EDOC 2007), Annapolis, MD, USA, 15-19 October 2007.
Pavkovi¢, N.; Bojceti¢, N.; Frani¢, L.; Marjanovi¢, D. Case Studies to Explore Indexing Issues in Product design traceability
framework. In Proceedings of the ICED 11—18th International Conference on Engineering Design-Impacting Society through
Engineering Design, Copenhagen, Denmark, 15-18 August 2011; Volume 6.

Konigs, S.E,; Beier, G.; Figge, A.; Stark, R. Traceability in Systems Engineering—Review of industrial practices, state-of-the-art
technologies and new research solutions. Adv. Eng. Inform. 2012, 26, 924-940. [CrossRef]

Arkley, P; Riddle, S.; Brookes, T. Tailoring Traceability Information to Business Needs. In Proceedings of the 14th IEEE
International Requirements Engineering Conference (RE’06), Minneapolis/St. Paul, MN, USA, 11-15 September 2006.
Cleland-Huang, J.; Gotel, O.C.Z.; Hayes, J.H.; Méader, P; Andrea, Z. Software Traceability: Trends and Future Directions.
In Proceedings of the Future of Software Engineering, Hyderabad, India, 31 May-7 June 2014.

Balasubramania, R. Factors Influencing Requirements Traceability Practice. Commun. ACM 1998, 41, 37-44.

Maéder, P; Jones, P.L.; Zhang, Y.; Cleland-Huang,]. Strategic Traceability for Safety-Critical Projects. IEEE Softw. 2013, 30, 58-66.
[CrossRef]

Spanoudakis, G.; Zisman, A. Software traceability: A roadmap. Handb. Softw. Eng. Knowl. Eng. 2005, 3, 395-428.

The INCOSE Systems Engineering Vision 2020. Available online: http:/ /www.omgwiki.org/MBSE/doku.php (accessed on 13
January 2021).

Estefan, J.A. A Survey of Candidate Model-Based Systems Engineering (MBSE) Methodologies; rev. B, INCOSE. INCOSE-TD-2007-003-
02; International Council on Systems Engineering: Seattle, WA, USA, 2015.

System Modeling Language (SysML). Available online: https:/ /www.omg.org/spec/SysML/ (accessed on 13 January 2021).
Unified Modeling Language (UML). Available online: https://www.omg.org/spec/UML/ (accessed on 13 January 2021).
Schamai, W. Modelica Modeling Language (ModelicaML) a UML Profile for Modelica; Technical Report; Linkdping University Electronic
Press: Linkoping, Sweden, 2009.

Schamai, W.; Fritzson, P,; Paredis, C.; Pop, A. Towards Unified System Modeling and Simulation with ModelicaML Modeling of
Executable Behavior Using Graphical Notations. In Proceedings of the 7th International Modelica Conference, Como, Italy, 20-22
September 2009.

Schamai, W. Model-Based Verification of Dynamic System Behavior against Requirements: Method, Language, and Tool. Ph.D.
Thesis, Department of Computer and Information Science, Linképing University, Linkoping, Sweden, 2013, No. 1547.

Buffoni, L.; Fritzson, P. Expressing Requirements in Modelica. In Proceedings of the Scandinavian Conference on Modeling and
Simulation), Aalborg, Denmark, 21-22 October 2014.

Schamai, W.; Buffoni, L.; Albarello, N.; De Miranda, P.F.; Fritzson, P. An Aeronautic Case Study for Requirement Formalization
and Automated Model Composition in Modelica. In Proceedings of the 11th International Modelica Conference, Palais des
Congres de Versailles, France, 21-23 September 2015.

Schamai, W.; Helle, P,; Fritzson, P.; Paredis, C. Virtual verification of system designs against system requirements. In Pro-
ceedings of the 2010 International Conference on Models in Software Engineering, Oslo, Norway, 3-8 October 2010; Springer:
Berlin/Heidelberg, Germany, 2010.

Open Services for Lifecycle Collaboration. Available online: http://openservices.net/ (accessed on 13 January 2021).
Richardson, L.; Ruby, S. RESTful Web Services, 1st ed.; OReﬂly: Boston, MA, USA, 2007.

Heath, T.; Bizer, C. Linked Data: Evolving the Web into a Global Data Space. Synth. Lect. Semant. Web Theory Technol. 2011, 1,
1-136. [CrossRef]

RDF Primer. Available online: https:/ /www.w3.org/TR /2004 /REC-rdf-primer-20040210/ (accessed on 13 January 2021).
PROV-N: The Provenance Notation. Available online: https://www.w3.org/TR/prov-n/ (accessed on 13 January 2021).

OSLC Relationships. Available online: https:/ /archive.open-services.net/bin/view/Main/RmSpecificationV2?rev=46 (accessed
on 13 January 2021).

N-Triples-A Line-Based Syntax for an RDF Graph. Available online: https://www.w3.org/TR/n-triples/ (accessed on 13
January 2021).

Asghar, S.A ; Tariq, S.; Torabzadeh-Tari, M.; Fritzson, P,; Pop, A.; Sjolund, M.; Vasaiely, P.; Schamai, W. An Open Source Modelica
Graphic Editor Integrated with Electronic Notebooks and Interactive Simulation. In Proceedings of the 8th International Modelica
Conference, Dresden, Germany, 20-22 March 2011.

Duan, C.; Cleland-Huang, J. Visualization and Analysis in Automated Trace Retrieval. In Proceedings of the First International
Workshop on Requirements Engineering Visualization, Minneapolis, MN, USA, 11 September 2006.

Heim, P.; Lohmann, S.; Lauenroth, K.; Ziegler, J. Graph-based Visualization of Requirements Relationships. In Proceedings of the
2008 Requirements Engineering Visualization, Barcelona, Spain, 8 September 2008.

http://doi.org/10.1016/j.aei.2012.08.002
http://doi.org/10.1109/MS.2013.60
http://www.omgwiki.org/MBSE/doku.php
https://www.omg.org/spec/SysML/
https://www.omg.org/spec/UML/
http://openservices.net/
http://doi.org/10.2200/S00334ED1V01Y201102WBE001
https://www.w3.org/TR/2004/REC-rdf-primer-20040210/
https://www.w3.org/TR/prov-n/
https://archive.open-services.net/bin/view/Main/RmSpecificationV2?rev=46
https://www.w3.org/TR/n-triples/

Electronics 2021, 10, 983 21 of 21

55.

56.
57.
58.
59.
60.

61.

62.

63.

64.

Li, Y.; Maalej, W. Which traceability visualization is suitable in this context? a comparative study. In Proceedings of the 18th
International Conference on Requirements Engineering Foundation for Software Quality, Essen, Germany, 19-22 March 2012;
Springer: Berlin/Heidelberg, Germany, 2012.

Winkler, S. On Usability in Requirements Trace Visualizations. In Proceedings of the 2008 Requirements Engineering Visualization,
Barcelona, Spain, 8 September 2008.

Rational DOORS Next Generation. Available online: https:/ /www.ibm.com/us-en?Ink=m (accessed on 13 January 2021).
Enterprise Architect. Available online: https://sparxsystems.com/ (accessed on 13 January 2021).

The AUTomotive Open System ARchitecture (AUTOSAR). Available online: https:/ /www.autosar.org/ (accessed on 13 Jan-
uary 2021).

Maro, S.; Steghofer, J. Capra: A configurable and extendable traceability management tools. In Proceedings of the 2016 IEEE 24th
International Requirements Engineering Conference (RE), Beijing, China, 12-16 September 2016.

Bode, S.; Lehnert, S.; Riebisch, M. Comprehensive model integration for dependency identification with emftrace. In Proceedings
of the First International Workshop on Model-Driven Software Migration (MDSM 2011) and the Fifth International Workshop on
Software Quality and Maintainability (SQM 2011), Oldenburg, Germany, 1 March 2011.

Dang, H.L.; Dubois, H.; Gerard, S. Towards a traceability model in a MARTE-based methodology for real-time embedded systems.
Innov. Syst. Softw. Eng. 2008, 4, 189-193. [CrossRef]

Amalfitano, D.; Simone, V.D.; Maietta, R.R.; Scala, S.; Fasolino, A.R. Using tool integration for improving traceability management
testing processes: An automotive industrial experience. J. Softw. Evol. Process 2019, 31, e2171. [CrossRef]

Maro, S.; Anjorin, A.; Wohlrab, R.; Steghofer,].P. Traceability maintenance: Factors and guidelines. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, Singapore, 3-7 September 2016.

https://www.ibm.com/us-en?lnk=m
https://sparxsystems.com/
https://www.autosar.org/
http://doi.org/10.1007/s11334-008-0053-4
http://doi.org/10.1002/smr.2171

	Introduction
	Traceability Challenges
	Basic Concepts and Method
	Virtual Verification of Designs against Requirements
	Open Services for Lifecycle Collaboration

	Architectural Design
	prov Relationship Type
	oslc Relationship Type
	Traceability Links Representation

	Prototype Implementation
	Use Case
	Tracing Requirement Violations
	Traceability and Impact Analysis

	Related Work
	Conclusions and Future Work
	References

