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Abstract: In the age of Information Technology, the day-life required transmitting millions of images
between users. Securing these images is essential. Digital image encryption is a well-known
technique used in securing image content. In image encryption techniques, digital images are
converted into noise images using secret keys, where restoring them to their originals required
the same keys. Most image encryption techniques depend on two steps: confusion and diffusion.
In this work, a new algorithm presented for image encryption using a hyperchaotic system and
Fibonacci Q-matrix. The original image is confused in this algorithm, utilizing randomly generated
numbers by the six-dimension hyperchaotic system. Then, the permutated image diffused using
the Fibonacci Q-matrix. The proposed image encryption algorithm tested using noise and data cut
attacks, histograms, keyspace, and sensitivity. Moreover, the proposed algorithm’s performance
compared with several existing algorithms using entropy, correlation coefficients, and robustness
against attack. The proposed algorithm achieved an excellent security level and outperformed the
existing image encryption algorithms.

Keywords: image encryption; hyperchaotic system; fibonacci Q-matrix; attacks

1. Introduction

The transmission of digital images through various networks is a routine process
where thousands of digital images are transmitted every moment. In social networks, users
do not want others to access their images. In healthcare networks, medical images are
sensitive where any misuse of these images may lead to wrong diagnoses and inaccurate
medical decisions. Transmission of the military images via different networks requires
high-security levels to prevent intruders from getting them. Generally, owners of digital
images do not want others to access their images without permission. For these reasons,
securing images’ contents has become an important issue. Several security approaches are
used to achieve image confidentiality, so an unauthorized user cannot access image content.

Image security approaches are divided into three main categories: data hiding [1,2],
image watermarking [3–7], and encryption [8–11]. In data hiding techniques, a secrete
message is embedded in the cover image so that it is not detectable. In image watermarking
techniques, pieces of digital data inserted in the image where the original and watermarked
images’ perceptibility are similar. In image encryption techniques, the digital input image
converted to a noise image using a key, which is not understood or predicting its content.
Users cannot restore the encrypted image without knowing the key.

There are several techniques used in digital image encryption, such as the theory
of chaos [12–14], DNA [15–17], the method of quantum [18,19], and compressive sens-
ing [20,21]. Image encryption techniques depend on two significant steps. The first step
is confusion in which pixel arrangements changed. Diffusion is the second step, which
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depends on changing the values of pixels. Chaotic-based methods possess intrinsic proper-
ties such as non-periodicity, random behavior, and sensitivity to control parameters and
initial conditions [22]. These properties enable the successful utilization of chaotic-based
methods in the encryption of images.

Chai et al. [23] pointed out that digital images’ chaotic-based encryption systems are
classified into two main categories. The first category includes low-dimensional systems
such as 1D chaotic maps. The second one is the high-dimensional systems, such as hy-
perchaotic systems. The low-dimensional chaotic maps friendly applicable due to their
simple structures. Despite these intrinsic properties, these maps have a small keyspace and
achieve low-security levels [24].

Several numbers of chaos-based encryption exist, such as [25–31]. Chen and Hu [32]
proposed a medical image encryption method using a logistic-sine map for the confus-
ing process. The scrambled image is divided into blocks where a hyperchaotic system
is used for diffusing the image blocks. Chai et al. [33] utilized a memristive chaotic
system in image encryption, which improved its ability to resist the differential attack.
Chai et al. [34] presented a new image encryption algorithm based on the parameter-
varying chaotic system, elementary cellular automata (ECA), and block compressive sens-
ing (BCS). Tsafack et al. [35] designed a new 4D chaotic circuit and applied it in image
encryption. In [36], Ramasamy et al. proposed a new algorithm that depends on Block
Scrambling and Modified Zigzag Transformation to scramble the plain image, and then the
key was generated based on Enhanced Logistic–Tent Map (ELTM) to diffuse the scrambled
image. Zheng and Liu [37] designed a new scheme for encrypting gray images. First, a
new 2D chaotic map system (2D-LSMM) was introduced, which is based on both logistic
and sine maps. Then, the encryption scheme was based on DNA, where the encoding
and operation rules of DNA sequences were determined by 2D-LSMM chaotic sequences.
In [38], Kari et al. introduced a novel image encryption technique based on chaotic maps.
In this algorithm, pixel positions were changed in the confusion phase by using Arnold’s
cat map. Additionally, the contents of pixels were updated in the diffusion phase that
is controlled by the extension of the plain image matrix, XOR operation, and exchange
operation. The authors in [39] presented a fast image encryption technique based on
simultaneous permutation and diffusion operation (SPDO). The values of the pixels are
permuted and diffused simultaneously using a SineSine map.

Liu et al. [40] utilized a coupled hyperchaotic system in pathological image encryption.
Yu et al. [41] used Chen’s hyperchaotic system with fractional Fourier transform to encrypt
images. Hyperchaotic methods are used as alternatives to the low-dimensional chaotic
systems to overcome their limitations. The hyperchaotic methods outperformed the low-
dimension chaotic methods in terms of randomness, unpredictability, nonlinearity, and
initial conditions. The hyperchaotic methods produced key sequences that have a large
keyspace. Generally, the utilization of hyper-chaotic systems improves the level of security.
However, image encryption algorithms that used hyperchaotic methods have weaknesses
against different attacks. Moreover, the encrypted image histogram is not uniform for
some algorithms.

Related works have some limitations that can be summarized as follows:

1. Low keyspace and less sensitivity to the initial conditions.
2. The initial condition of the chaotic map does not depend on the plain image that leads

to weaknesses in resisting differential attacks.
3. When the encrypted image is attacked with noise and data cut, some of the encryption

algorithms failed to retrieve the plain image.
4. Some of these algorithms cannot resist statistical attacks as the histogram of the

encrypted image is not flat.

These weaknesses motivated the authors to propose a new algorithm for encrypting
images. The proposed algorithm utilized a six-dimension (6D) hyperchaotic system and
Fibonacci Q-matrix to encrypt grayscale images through two main steps. First, the pixels’
positions in the original image scrambled using the 6D hyperchaotic system. Only three
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sequences from this 6D hyperchaotic system were randomly selected to permit the original
image. Second, the Fibonacci Q-matrix is used in the diffusion process, where this process
is performed on a confused image’s sub-blocks. Based on performed experiments, the
proposed image encryption algorithm successfully encrypts gray images with excellent
performance. The contributions of this work are summarized as:

1. The first utilization of the Fibonacci Q-matrix in image encryption.
2. Using 6D hyperchaotic system in image encryption for the first time.
3. Integration of the 6D hyperchaotic system and Fibonacci Q-matrix assure high-

security level.
4. The large keyspace of the proposed algorithm leads to good resistance to brute

force attacks.
5. The proposed image encryption algorithm has super robustness to most attacks.
6. Analysis of the obtained results shows the excellent performance of the proposed algorithm.

The following sections are: The mathematical foundations of the 6D hyperchaotic
system and the Fibonacci Q-matrix presented in Section 2. The proposed algorithm is
presented in Section 3. Tests and results are discussed in Section 4. The conclusion is
presented in Section 5.

2. Mathematical Foundations
2.1. Six-Dimensional Hyperchaotic System

Generally, mathematical analysis shows that chaotic functions are nonlinear with
dynamic behavior. Therefore, their responses are unpredictable. Previous studies show
that the hyperchaotic functions’ dynamical behavior is much complicated than the cor-
responding one of the low-dimension chaotic functions. A hyperchaotic system should
have at least four dimensions. Moreover, low-dimension chaotic functions contain only
one positive Lyapunov exponent, while the hyperchaotic systems have at least two.

Wang and Yu [42] defined the 6D hyperchaotic system as:

.
x1 = a(x2 − x1) + x4 − x5 − x6.

x2 = cx1 − x2 − x1x3.
x3 = −bx3 + x1x2.
x4 = dx4 − x2x3.
x5 = ex6 + x3x2.

x6 = rx1

(1)

where a, b, c, d, e, and r are constants; x1, x2, x3, x4, x5, and x6 refer to state variables of the 6D hy-
perchaotic system. In thispaper, theconstantvaluesselectedare a = 10, b = 8

3 , c = 28, d = −1, e = 8,
and r = 3. This selection ensures that the system has two positive Lyapunov exponents
that achieve the condition (sum of all exponents is negative).

2.2. Fibonacci Q-matrix

The elements of the Fibonacci sequence, Fn, are [43]:

Fn = Fn−1 + Fn−2 , n > 1 (2)

where F1 = F2 = 1.
The Fibonacci Q matrix is given by:

Q =

[
1 1
1 0

]
(3)

The nth power of the Fibonacci Q matrix is the matrix defined by:

Qn =

[
Fn+1 Fn

Fn Fn−1

]
(4)
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where Fn is the Fibonacci number, and the determinants of the Fibonacci Q-matrix is:

Det(Qn) = Fn+1Fn−1 − F2
n = (−1)n (5)

The inverse matrix Q−n has the following form:

Q−n =

[
Fn−1 −Fn
−Fn Fn+1

]
(6)

3. The Proposed Algorithm

The new algorithm utilized a 6D hyperchaotic system and Fibonacci Q-matrix to
encrypt the input image. Since the 6D hyperchaotic system has complex high-dynamic
behaviors and two positive Lyapunov exponents, its utilization improves the encryption
performance and increases security level. Fibonacci Q-matrix is very simple, fast, and
able to diffuse the scrambled image. A flowchart of the proposed encryption-decryption
algorithm is shown in Figure 1.

3.1. Encryption

The encryption depends on two steps: confusion and diffusion. The pixels’ arrange-
ments and values are modified in these processes, respectively. The confusion step is based
on the 6D hyperchaotic system. First, we calculate the initial condition of the system that
is based on the plain image. Then a new vector is obtained by iterating the hyper chaotic
system, and then we select three sequences (x1, x3, and x5). This vector is sorted, and the
position of the sorted numbers is used to confuse the plain image. After confusing the plain
image, the diffusion step is performed to obtain the encrypted image. In our algorithm,
the diffusion is based on the Fibonacci Q-matrix. The scrambled image is divided into
blocks, each with size 2× 2, and then each block is diffused using the Fibonacci Q-matrix.
Two rounds of confusion and diffusion steps are performed to get the encrypted image.
Algorithm 1 describes the encryption steps.

3.2. Decryption

The decryption steps are the reverse of the encryption steps. The plain image can be
retrieved from the encrypted image by doing the following steps:

1. The encrypted image (C) is divided into blocks, each with size 2× 2, and then the
diffusion equation with Q−10 is applied to image blocks by using the following equa-
tion:[

D′ i,j D′ i,j+1
D′ i+1, j D′ i+1,j+1

]
=

[
Ci,j Ci,j+1

Ci+1,j Ci+1,j+1

][
34 −55
−55 89

]
mod 256 (11)

where i = 1 : 3 : 5 . . . . . . . . . : M; j = 1 : 3 : 5 . . . . . . . . . : N.
2. The scrambled image (D′) obtained from the previous step is converted into vector W.
3. The vector S generated in the encryption step is used to return each pixel to its original

position by the following equation:

ER(Si) = Wi , i = 1 : MN (12)

4. Convert the vector ER in to matrix to obtain the decrypted image (D).
5. Two rounds of decryption steps are performed to get the decrypted image.
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Algorithm 1 The image encryption algorithm.

1: i = 1
2: Transform the image array to a vector P.

3:

Calculate the initial key of the hyperchaotic system as follows:

x1 = ∑MN
i=1 P(i)+(M×N)

223+(M×N)
(7)

xi = mod
(

xi−1 × 106, 1
)

i = 2, 3, .., 6 (8)
With the initial conditions; x1, x2, . . . , x6.

4:
Iterate the hyperchaotic system in (1) N0 + MN/3 times then discard the N0 values to make
a new sequence L with size M× N. (we select three sequences (x1, x3, and x5) from the
system in (1)).

5: Sort L in ascending order and return their positions in vector S.

6:
Permit the image vector P to generate newly shuffled sequence R as follows:
Ri = P(Si), i = 1 : MN (9)

7: Convert the sequence R into the matrix R′ and divide it into sub-blocks, each with size 2× 2.

8:

Get the Chipper image C by multiplying each 2× 2 sub-block in R′ with the Fibonacci Q
matrix (Q10):[

Ci,j Ci,j+1
Ci+1,j Ci+1,j+1

]
=[

R′ i,j R′ i,j+1
R′ i+1,j R′ i+1,j+1

][
89 55
55 34

]
mod 256

(10)

with i = 1 : 3 : . . . . . . : M, j = 1 : 3 : . . . . . . : N.
9: Let I = C then i = i + 1.
10: Replicates steps 2 TO 8 for i <= 2.

4. Tests and Results

The proposed algorithm’s effectiveness was tested using different standard grayscale
images (Baboon, Pepper, Boat, Airplane, and Lena) with sizes 512× 512 and 256× 256.
Additionally, the proposed algorithm compared with existing algorithms for image en-
cryption. All performed experiments executed using MATLAB (R2015a) with a Laptop
computer equipped with Core i5-2430M 2.4GH CPU and 4 GB RAM.

Eight experiments were performed to evaluate the proposed encryption algorithm
using entropy, correlation coefficients, differential attack, noise and data cut attacks, his-
tograms, keyspace, key sensitivity, and NIST Statistical Test.

4.1. Entropy

The image randomness measured by entropy can be defined by:

H(m) =
2w−1

∑
i=1

P(mi)log2
1

P(mi)
(13)

where the occurrence probability of mi is P(mi); the number 2w refers to the total number of
mi, where the total number of image pixels is represented by the integer w. An ideal value
of entropy for gray images is 8. The entropy of a few gray images encrypted using the new
and existing algorithms [44–48] shown in Tables 1 and 2. Our proposed method records the
highest average entropy value. Additionally, our proposed algorithm is tested on 10 images
of the size 512× 512, and 10 images of the size 256× 256 are selected from SIPI datasets.
The average of entropy values for each image size obtained using our proposed algorithm
is listed in Table 3. Then, the results are compared with methods [44–48]. All entropy values
for the chipper images that encrypted with the new method approached 8. The chipper
images encrypted using the proposed encryption method have the highest randomness.
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Table 1. Entropy values of images with size 512× 512 with our algorithm and other encryption algorithms.
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Image Size Proposed Hua et al. [44] Wu et al. [45] Li et al. [46] Niyat et al. [47] Enayatifar et al. [48]

512× 512 7.9992 7.9992 7.9993 7.992 7.9991 7.9984
256× 256 7.9973 7.9973 7.9973 7.9911 7.9972 7.9954

4.2. Correlation Coefficient

Generally, the input images’ adjacent pixels have a high correlation in the diagonal,
horizontal, and vertical directions. A successful encryption algorithm must minimize this
correlation. Any two neighboring pixels, x and y, have the following correlation coefficient:

rx,y =
E((y− E(y))(x− E(x)))√

D(y)D(x)
(14)

E(x) =
1
T

T

∑
i=1

xi (15)

D(x) =
1
T

T

∑
i=1

(xi − E(x))2 (16)

where the integer T refers to the total number of adjoining pixels; D(x) and E(x) are the
variance and expectation of x, respectively. In the successfully encrypted image, the
correlation between adjoining pixels should approach 0.

In this experiment, nearby pixels are grouped in pairs, where 40,000 of these pairs
are randomly selected, then the correlation coefficients computed for the three directions.
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Tables 4 and 5 shows the encrypted images’ calculated correlation coefficients’ absolute
values using the new and existing image encryption algorithms [44–48]. The average
coefficient correlations for the new encryption algorithm are very close to 0. All the results
confirm that our proposed algorithm can remove the correlation between adjacent pixels in
the encrypted image.

Table 4. Correlation coefficients in three directions: Horizontal (H), Vertical (V), and Diagonal (D) for images with the size
of 512× 512.

Method
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Average 

Proposed 
H 0.0251 0.0044 0.0041 0.0269 0.0019 0.0125 
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4.3. Differential Attack

In this attack, the attacker aims to decrypt the encrypted images without using the
key through determining the relation between original and encrypted images. Therefore,
small pixel changes in the original image significantly affect the encrypted image, making
it more difficult for attackers to crack the encrypted image. Successful algorithms for image
encryption must resist this attack. Robustness to this attack based on the Number of Pixels
Change Rate (NPCR) and Unified Average Changing Intensity (UACI):

NPCR =
1

M× N

M

∑
i=1

N

∑
j=1

DIF(i, j)× 100(%) (17)

UACI =
1

M× N

M

∑
i=1

N

∑
j=1

|C2(i, j)− C1(i, j)|
255

× 100(%) (18)

with

DIF(i, j) =
{

0 , C2(i, j) = C1(i, j),
1 , C2(i, j) 6= C1(i, j),

(19)

The symbol C2 refers to the chipper image that encrypted from the original image by
changing only one pixel, while C1 refers to the chipper image encrypted from the same
plain image.

Table 6 shows the computed values of the five gray images encrypted using the
proposed and the existing image encryption algorithms [44–48]. In addition, the average
values of NPCR and UACI of the images selected from SIPI datasets are presented in
Table 7. To confirm the efficiency of our algorithm, the results are compared with other
methods [44–48].
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Table 6. Number of Pixels Change Rate (NPCR) and Unified Average Changing Intensity (UACI) of the encrypted image using different encryption algorithms.

Size Method
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UACI 33.5016 33.5323 33.4726 33.5317 33.5024 19/20 256 × 256 
NPCR 99.6081 99.6601 99.6154 99.6532 99.6217 - 
UACI 33.4125 33.4415 33.5057 33.5098 33.4159 - 512 × 512 

Enayatifar 
et al. [48] 

NPCR 99.2394 99.3017 99.2918 99.4883 99.6304 - 
UACI 33.3144 33.0026 32.4162 33.3562 33.5989 3/20 256 × 256 NPCR 99.1051 98.4975 99.25 99.4176 99.5193 - 
UACI 33.2517 32.9483 33.3928 33.5254 33.5851 - 

Pass Rate

512× 512
Proposed

NPCR 99.6075 99.5876 99.6101 99.6082 99.6174

19/20
UACI 33.4742 33.4012 33.4688 33.4585 33.4322

256× 256
NPCR 99.5941 99.6033 99.6078 99.6017 99.6246
UACI 33.4610 33.4274 33.4188 33.5053 33.4226

512× 512
Hua et al. [44]

NPCR 99.5995 99.6128 99.6029 99.6181 99.5960 -
UACI 33.5250 33.5513 33.4745 33.4384 33.4858 18/20

256× 256
NPCR 99.6307 99.6231 99.5682 99.6231 99.5850 -
UACI 33.4534 33.6805 33.3633 33.4665 33.5582 -

512× 512
Wu et al. [45]

NPCR 99.5903 99.6112 99.6124 99.6261 99.6002 17/20
UACI 33.5281 33.5265 33.5891 33.5782 33.5079 -

256× 256
NPCR 99.5925 99.6078 99.6170 99.6231 99.6200 -
UACI 33.3822 33.4953 33.6609 33.6358 33.4169 -

256× 256 Li et al. [46]
NPCR 0.0862 × 10−4 0.0862 × 10−4 0.0862 × 10−4 0.0862 × 10−4 0.0862 × 10−4 -
UACI 1.9946 × 10−6 1.9946 × 10−6 1.9946 × 10−6 1.9946 × 10−6 1.9946 × 10−6 -

512× 512
Niyat et al. [47]

NPCR 99.5966 99.6202 99.6057 99.4350 99.6152 -
UACI 33.5016 33.5323 33.4726 33.5317 33.5024 19/20

256× 256
NPCR 99.6081 99.6601 99.6154 99.6532 99.6217 -
UACI 33.4125 33.4415 33.5057 33.5098 33.4159 -

512× 512 Enayatifar
et al. [48]

NPCR 99.2394 99.3017 99.2918 99.4883 99.6304 -
UACI 33.3144 33.0026 32.4162 33.3562 33.5989 3/20

256× 256
NPCR 99.1051 98.4975 99.25 99.4176 99.5193 -
UACI 33.2517 32.9483 33.3928 33.5254 33.5851 -
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Table 7. Comparison of average values of NPCR and UACI.

Image Size Proposed Hua et al. [44] Wu et al. [45] Niyat et al. [47] Enayatifar et al. [48]

NPCR
512× 512 99.6087 99.6162 99.6081 99.58553 99.35947
256× 256 99.6124 99.5925 99.61238 99.63142 99.13223

UACI
512× 512 33.4678 33.4696 33.54787 33.49192 33.18788
256× 256 33.4797 33.4321 33.52045 33.4595 33.30098

As mentioned in [49], the critical values of NPCR and UACI are N∗α and uα, respec-
tively, which are calculated as follows:

N∗α =

(
G−−1 (α)

√
G

MN

)
G + 1

(20)

u∗−α = µu −−1
(α

2

)
σu (21)

u∗+α = µu +
−1
(α

2

)
σu (22)

µu =
G + 2

3G + 3
(23)

σu =
(G + 2)

(
G2 + 2G + 3

)
18(G + 1)2GR

(24)

To resist the differential attacks, the value of NPCR for the encrypted image should
be larger than N∗α , and the value of UACI should be in the range of (u∗−α , u∗+α ). When
significant level α = 0.05, then N∗α = 99.5693% and (u∗−α , u∗+α ) = (33.2824% , 33.6447%) for
the image with size 256× 256. However, when the size of the image is 512× 512, the N∗α is
99.5893% and (u∗−α , u∗+α ) = (33.3730%, 33.5541%). In Tables 6 and 7, the values that did
not pass the test are displayed in bold. Our proposed algorithm achieves the highest pass
rate compared to other methods, reflecting excellent robustness of the differential attack.

4.4. Noise and Data Cut Attacks

When images are transmitted over the network, they are vulnerable to noise or
cropping (data cut). Successful image encryption algorithms should have robustness
against noise and cropping attacks. The well-known measure, PSNR (peak signal to noise
ratio), is used to evaluate the decrypted image quality. Mathematically, for original and
decrypted images, IO and ID, the PSNR is:

PSNR = 10× log10

(
2552

MSE

)
(db), (25)

where MSE refers to the mean square error:

MSE =
1

M× N

M

∑
i=1

N

∑
j=1
|IO(i, j)− ID(i, j)|2 (26)

A higher PSNR value reflects high image quality. For a PSNR > 35, original and
decrypted images are indistinguishable.

This experiment was performed to test robustness against noise and data cut attacks.
In this experiment, an encrypted image is contaminated with “salt and peppers” noise of
2 different levels, 0.002 and 0.005, decrypted using the new method. The encrypted images
were also attacked by a data cut of 128× 128 and 64× 64 and then decrypted using the
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new algorithm. The PSNR for the five tested images with noise and data cut with a size of
512× 512 is shown in Table 8.

Table 8. Peak signal to noise ratio (PSNR) (dB.) values for noise and data cut attacks.

Standard Grayscale Images Lena Baboon Peppers Boat Airplane

Salt and Pepper with noise level 0.002 28.2751 30.5936 29.6619 30.4091 29.3654
Salt and Pepper with noise level 0.005 24.4812 26.6862 25.5269 26.5629 25.0544

Data cut with block size 128 × 128 16.7418 18.5936 17.5580 18.3569 17.1245
Data cut with block size 64 × 64 22.7112 24.5162 23.6008 24.4023 23.1438

The new algorithm is robust against “salt and peppers” noise with density 0.002,
where all values of PSNR are approaching 30db. When the level of noise increased to 0.005,
the average value of PSNR decreased to 25.6db. For the data cut off size 64× 64, the PSNR
values are around 24db, and the decrypted image’s content is visible. Moreover, when the
encrypted image is attacked with the data cut off size 128 × 128, a relatively big cut off
(i.e., the encrypted image lost 1/8 information), the PSNR is decreased to 18dB. Despite the
reduction in PSNR values, the decrypted image is recognizable.

Figure 2 shows the noise and data cut attacks for an encrypted image, demonstrat-
ing that the reader can easily recognize the decrypted images’ content in different cases
(i.e., noise, data cut). Therefore, the new algorithm is durable and resistant to these attacks.
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Figure 2. (a) The encrypted image, (b) noisy encrypted image with 0.002, (c) noisy encrypted image with 0.005 and
(d) encrypted image with 128 × 128 data cut. (e) Encrypted image with 64 × 64 data cut. (f–j) Decrypted images of (a–e).

4.5. Histograms

Visual representation of image pixels distribution is called “Image Histogram,” used
to evaluate image encryption algorithms. A successful algorithm for image encryption
must generate a flat histogram for the encrypted image.

Three standard gray images, Peppers, Airplane, and Boat, encrypted using the new
algorithm. The histogram of the original and encrypted images displayed in Figure 3.
Based on the distinguishable contents of the original images, their histograms are different.
On the other side, the encrypted images have very similar and uniform histograms. At-
tackers are not able to recover the original images from encrypted image histograms. To
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ensure the uniform distribution of the histogram, the chi-square test is calculated by the
following equation:

χ2 =
256

∑
i=1

(Oi − EV)2

EV
(27)

where Oi refers to the recurrence rate of the grey value i; EV = O/256 is the expected
frequency of each grey value. Assume a significant level of 0.05, χ2(255.05) = 293.2478.
The histogram of the encrypted image is considered to be uniform if the value of χ2 is
less than 293. Here we calculate the χ2 for the encrypted images and record the results in
Table 9. All values in Table 9 are less than 293, so the histograms of images encrypted using
the proposed algorithm have uniform distribution. These results ensure the efficiency of
the new algorithm.Electronics 2021, 10, x FOR PEER REVIEW 12 of 16 
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Table 9. Chi-square test.

Lena Baboon Peppers Boat Airplane

512× 512 242.9590 255.6563 266.0371 259.4941 250.1230
256× 256 264.8750 224.2578 268.4766 219.9297 253.9063

4.6. Keyspace

The keyspace size is crucial in the encryption process. The encryption algorithm is
robust to brute force attacks if its keyspace size >2100. The proposed encryption algorithm
has different security keys: x1, x2, x3, x4, x5, x6, N0, a, b, c, d, e, and r. If we assume the
accuracy of the initial value equals to 1016, then the total keyspace is larger than N0 × 1096,
which shows robustness to the brute force attack.

4.7. Key Sensitivity

Successful image encryption algorithms must show high sensitivity to the secrete keys,
which results in a noticeable change in a decrypted image with minimal modifications in
initial conditions of the utilized secrete key used in the encryption process. An experiment
was performed to test the key sensitivity of the new algorithm. The original image of
“Lena” encrypted using the initial conditions (0.1, 0.1, 0.1, 0.1, 0.1, and 0.1). Figure 4a,b
show the original and encrypted images of Lena.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 16 

 

Table 9. Chi-square test. 

 Lena Baboon Peppers Boat Airplane 

512 × 512 242.9590 255.6563 266.0371 259.4941 250.1230 

256 × 256 264.8750 224.2578 268.4766 219.9297 253.9063 

4.6. Keyspace 

The keyspace size is crucial in the encryption process. The encryption algorithm is 

robust to brute force attacks if its keyspace size > 2100. The proposed encryption algo-

rithm has different security keys: 𝑥1, 𝑥2, 𝑥3 , 𝑥4 , 𝑥5, 𝑥6, 𝑁0, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑟. If we as-

sume the accuracy of the initial value equals to 1016, then the total keyspace is larger than 

𝑁0 × 10
96, which shows robustness to the brute force attack. 

4.7. Key Sensitivity 

Successful image encryption algorithms must show high sensitivity to the secrete 

keys, which results in a noticeable change in a decrypted image with minimal modifica-

tions in initial conditions of the utilized secrete key used in the encryption process. An 

experiment was performed to test the key sensitivity of the new algorithm. The original 

image of “Lena” encrypted using the initial conditions (0.1, 0.1, 0.1, 0.1, 0.1, and 0.1).  

Figure 4a,b show the original and encrypted images of Lena. 

  

(a) (b) 

  

(c) (d) 

Figure 4. Key sensitivity: (a) original “Lena,” (b) encrypted “Lena” with the original initial condi-

tions, (c) decrypted “Lena” with the modified key, and (d) decrypted “Lena” with the original key. 

The key is modified with only one-bit difference (0.1, 0.1, 0.1, 0.1, 0.1, and 0.1000001). 

The decryption process with the modified key failed to restore the original image, as 

shown in Figure 4c. On the other side, decryption using the original secret key successfully 

recovered the original image, as displayed in Figure 4d. 

  

Figure 4. Key sensitivity: (a) original “Lena,” (b) encrypted “Lena” with the original initial conditions,
(c) decrypted “Lena” with the modified key, and (d) decrypted “Lena” with the original key.

The key is modified with only one-bit difference (0.1, 0.1, 0.1, 0.1, 0.1, and 0.1000001).
The decryption process with the modified key failed to restore the original image, as
shown in Figure 4c. On the other side, decryption using the original secret key successfully
recovered the original image, as displayed in Figure 4d.

4.8. NIST Statistical Test

A good encryption algorithm should produce an encrypted image with high random-
ness. The NIST statistical test suite provides statistical tests to respect the randomness
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of the sequence generated with the encryption algorithm. The significance level is set to
0.01 for all tests in NIST. In this experiment, we calculate p-values for encrypted peppers
image of a size 512× 512, which is being changed into a binary sequence. Then we record
the results for different statistical tests in Table 10. The p-values ≥ 0.01 and indicates
the randomness of the binary sequence. From the results, we can see that the sequence
generated using the proposed algorithm passed all tests, which assures the randomness of
the binary sequence.

Table 10. NIST statistical test.

Test Name p-Value Conclusion

Frequency 0.4718 Random
Block-frequency 0.2090 Random

Runs 0.9161 Random
Longest run 0.1318 Random

Discrete Fourier Transform Test 0.8831 Random
Non-overlapping template 0.7616 Random

Cumulative sums (forward) 0.3469 Random
Cumulative sums (reverse) 0.7083 Random

4.9. Computational Complexity

The steps required to perform the encryption process are used to measure the computa-
tional complexity of the algorithm. For the plain image of size M× N, the time complexity
of the confusion steps in the proposed algorithm is O(M× N). Regarding the diffusion
step, the time complexity is O((M× N)/Bs), where Bs is the number of blocks in the
image. Therefore, the total time complexity of the proposed algorithm is O(M× N).

5. Conclusions

The authors proposed a new algorithm for gray image encryption. In this algorithm,
the Fibonacci Q-matrix is integrated with a 6D hyperchaotic system. First, we generate
random sequences using a 6D hyperchaotic system, and we select three of these sequences
to change the pixel position. Then, we use the Fibonacci Q-matrix with n = 10 to change
the pixels value for each sub-block (size(2 × 2)) of the shuffled image. Double confu-
sion/diffusion operations are applied to increase the security level.

The new algorithm is sensitive to minimal modifications in pixel distribution, and
the secret key, where an entirely different encrypted image, is obtained. Therefore, the
proposed algorithm successfully resists the differential attack. The new algorithm resists a
brute force attack where the keyspace size is large enough. Moreover, the new algorithm’s
security performance was evaluated using information entropy, correlation coefficients,
noise, and data cut attack and histogram. The new algorithm can encrypt gray images
with high-security levels. In the future, we will study the effectiveness of our algorithm in
encrypting color images.
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