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Abstract: The study of Deoxyribonucleic Acid (DNA) methylation has allowed important advances
in the understanding of genetic diseases related to abnormal cell behavior. DNA methylation analysis
tools have become especially relevant in recent years. However, these tools have a high computational
cost and some of them require the configuration of specific hardware and software, extending the
time for research and diagnosis. In previous works, we proposed some tools for DNA methylation
analysis and a new tool, called HPG-DHunter, for the detection and visualization of Differentially
Methylated Regions (DMRs). Even though this tool offers a user-friendly interface, its installation
and maintenance requires the information technology knowledge specified above. In this paper,
we propose our tool as a web-based application, which allows biomedical researchers the use of a
powerful tool for methylation analysis, even for those not specialized in the management of Graphics
Processing Units (GPUs) and their related software. The performance evaluation results show that
this web-based version of HPG-DHunter tool improves the response time offered to the user, also
offering an improved interface and higher visualization quality, while showing the same efficiency in
DMR identification than the standalone version.

Keywords: DNA methylation; wavelet transform; GPU computing; web-based application

1. Introduction

DNA methylation is a representative mechanism of epigenetics. Epigenetics refers to
changes in DNA that do not change the actual DNA sequence, meaning that these changes
are potentially reversible. In particular, DNA Methylation consists of the addition of a
methyl group (CH3) to a cytosine, forming a 5mC link [1,2]. When this addition happens,
that DNA position is methylated. DNA methylation inhibits the expression of certain genes
by preventing the proteins responsible for DNA transcription to initiate this process [3]. In
fact, it was originally proposed as a “silencing” epigenetic mark [4].

DNA methylation analysis requires a specific treatment of DNA that modifies its
sequence, as well as software tools for their analysis. The methylation data can be obtained
through bisulfite sequencing, which provides comprehensive DNA methylation maps at
single-base pair resolution [5]. Figure 1 illustrates this process. The first step is the DNA
extraction. Next, the Polymerase Chain Reaction (PCR) breaks up the DNA sequences into
many fragments and makes multiple copies of these fragments, which are called reads and
are the actual samples to be analyzed. At this point, bisulfite is added to the resulting DNA
reads. Bisulfite treatment converts unmethylated cytosines (Cs) into thymines (Ts), which
gives rise to C-to-T changes in DNA sequence after sequencing, while leaving methylated
cytosines (5mCs) unchanged. Finally, the bisulfite-treated reads are processed by a se-
quencer, which reads each read and yields a text containing the sequence of nucleotides in
the read, together with other meta-information such as the quality of the read, etc. (this is
known as fastq format). Since the sequencer carries out this process with all the reads, the
output of the sequencer is a text file in fastq format (usually huge) containing the sequence
detected for each sample (read).
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Figure 1. Bisulfite sequencing process of a single biological sample: after DNA extraction, the
Polymerase Chain Reaction (PCR) breaks up the DNA sequences into many fragments and makes
multiple copies of these fragments, which are called reads. Then, bisulfite is added to the DNA reads.
Finally, the bisulfite-treated reads are processed by a sequencer, which reads each read and yields a
text containing the sequence of nucleotides in the read, together with other meta-information

By aligning and comparing bisulfite sequencing reads to the reference genomic DNA
sequence, it is possible not only to align the read, but also to infer DNA methylation
patterns at base-pair resolution. However, the data to be processed are huge, and a high
computational power is required for an efficient operation. For example, the length of
the DNA chain in the human genome is 3 × 109 nucleotides, and each sample in a fastq
file, whose size typically does not exceed hundreds of nucleotides, must be compared
to the whole DNA chain of the genome to find the correct location (this is known as
the alignment operation). Each fastq file coming from a next generation sequencer can
easily contain tens or hundreds of millions reads. Also, typical study cases require the
analysis and comparison of different biological samples coming from different tissues
or different individuals, to detect different methylation levels in different genes, cells,
tissues and/or individuals. These differences are called Differentially Methylated Regions
(DMRs). There are a lot of software tools for the alignment of bisulfite-treated samples and
their methylation study (Bismark [6], BS-Seeker [7], BRAT-BW [8], and HPG-Methyl [9]).
These tools provide the user with single-base methylation results, indicating the absolute
methylation level of each nucleotide found in the DNA of the analyzed sample. Most
of them yield the results in Sequence Alignment Map (SAM) or Binary Alignment Map
(BAM) files. Sequence Alignment Map is a text-based format originally designed for storing
biological sequences aligned to a reference sequence, but it can also contain information
about the methylation context of each methylated cytosine. The binary equivalent of a
SAM file is a BAM file, which stores the same data in a compressed binary representation.
Anyway, the results of a methylation analysis are a huge data file with the alignment and
methylation results for every nucleotide in the samples.

Therefore, biomedical research of DNA methylation should compare the information
of methylation level at different scales (DNA segments, encoding regions, DNA chromo-
somes, etc.), comparing the results across different biological samples, minimizing the
inherent impact of biological variability. With that purpose, different tools have been
proposed for the visualization of methylation level and the identification of differentially
methylated regions (DMRs) [10–16]. However, many of these tools, such as BSmooth [10],
DSS-single [13] or methylKit [17], are based on statistical techniques, adding a large compu-
tational workload to the typical large files with methylation data. As a result, the execution
time required for these tools is very large, adding an excessive delay between the sample
extraction from bisulfite DNA sequencers and the yielding of the results of the analysis.
Moreover, the visualization of the methylation analysis results with the current tools is far
from becoming user-friendly. Another disadvantage of these tools is that most of them are
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R scripts or some Python programs designed to be used through a command line terminal.
This feature requires programming and/or computer systems administration knowledge
from the users.

In previous works, we proposed the representation of methylated data as a methy-
lation signal, and the implementation of the wavelet transform into the GPU [18], as
well as a graphic tool called HPG-Dhunter [19] for an efficient detection and visualiza-
tion of DMRs with a high level of usability. This tool can identify and display DMRs
of different samples at different levels, and it is freely available at grev-uv github site.
Nevertheless, HPG-Dhunter [19] was developed as a standalone tool to be installed on
a high-performance platform server with new generation GPU devices. Therefore, this
tool requires knowledge about GPU installation, setting up and maintenance. This re-
quirement limits its use by biomedical researchers with little or no knowledge about this
hardware and related software packages. To remove this limitation, in this paper we
propose our tool as a web-based application, which allows biomedical researchers the use
of a powerful tool for methylation analysis even for those not specialized in the manage-
ment of GPUs and their related software. The web application is available at the URL
https://fermidi1.informat.uv.es/hpgDhunter. The performance evaluation results show
that this web-based version of HPG-DHunter tool improves the response time offered
to the user, also offering an improved interface and higher visualization quality, while
showing the same efficiency in DMR identification than the standalone version.

The rest of the paper is organized as follows: Section 2 shows the related work about
web-based tools for DNA methylation analysis. Next, Section 3 describes the web tool
architecture and use cases. Section 4 analyzes the performance of the proposed architecture
under several stress tests. Finally, Section 5 present some concluding remarks.

2. Related Work

Most of the web-based existing tools for DMR detection and visualization [20–22]
are R scripts [16,22], Python applications [21], or C/C++ applications, developed to be
used into the RStudio environment or through a command line terminal. Curiously, this
implies that the user of these applications needs programming skills. Nevertheless, R and
its related packages are very common tools in the biological field, and most of the biological
researchers have acquired these skills, so this requirement does not prevent these tools
from being widely used.

On the other hand, there are many web-based applications for DNA analysis. Almost
all of them are developed as a result of a new approach about a specific research. The rest
of them are commercial software packages or software environments where the researcher
can deploy new tools. For example, DBCAT [23] analyzes short fragments of DNA, but it
does not analyze the whole genome nor the DMRs. Illumina Dragen Bio-IT on BaseSpace
Sequence Hub [24] is a commercial package that provide genomic analysis of sequencing
data, including methylation analysis and DMR identification. Qlucore Omics Explorer [25]
is a visualization-based data analysis tool with built-in statistics that delivers immediate
results and provides instant exploration and visualization of big data. In the same way,
some other bioinformatics suites with different web-based tools are BABELOMICS [26],
a suite of web tools for the functional profiling of genome scale experiments, or Meta-
Core [27], a web-based bioinformatics suite that allows researchers to upload data analysis
results from experiments such as microarray, next generation sequencing, metabolic, SAGE,
siRNA, microRNA, and screening. Galaxy [28] is a software system that provides support
through a framework that gives experimentalists simple interfaces to powerful tools, while
automatically managing the computational details.

Also, there are many specialized genomic tools. For example, for a Gene Ontology-
term complex analysis, some visualization tools can be used: ProfCOM [29] is a unique
tool with the ability to profile enrichment of not only available Gene Ontology (GO) terms
but also of complex functions. GOEAST [30] is a toolkit providing easy to use, visualizable,
comprehensive and unbiased Gene Ontology analysis for high-throughput experimental

https://grev-uv.github.io/
https://fermidi1.informat.uv.es/hpgDhunter
https://fermidi1.informat.uv.es/hpgDhunter
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results, especially for results from microarray hybridization experiments. CARMAweb [31]
is a tool that performs data preprocessing (background correction, quality control and
normalization), detection of differentially expressed genes, cluster analysis, dimension
reduction and visualization, classification, and Gene Ontology-term analysis.

There are other tools with only visualization purposes, such as DNAPlotter [32], which
generates circular and linear representations of genomes. AutoGRAPH [33] is an interactive
web server for automating and visualizing comparative genome maps. KEGGanim [34]
is a tool for visualizing experimental data in the context of biological pathways. Another
tool called CGHweb [35] generates a heatmap panel of segmented profiles. There are other
tools with visualization capabilities which show the result of genome analysis, such as
WebGeSTer DB [36], which is a transcription terminator database, or GenSAS [37], which
is an online platform that provide a pipeline for whole genome structural and functional
annotation for eukaryotes and prokaryotes.

A different kind of web-based tools are focused on alignment. BTW [38] suggests
possible biological significance in certain positions in an optimal time warping alignment,
computing the Boltzmann partition function and yielding Boltzmann pair probabilities.
CRISPI [39] is a user-friendly web interface with many graphical tools and functions which
allow the user to extract results, find Clustered Regularly Interspaced Palindromic Repeats
(CRISPR) in personal sequences, or calculate sequence similarities with spacers. There are
other web-based applications designed for annotation tasks, such as ARG-ANNOT [40],
which was created to detect existing and putative new antibiotic resistance genes in bacterial
genomes; FLAN [41], designed for genome annotation of influenza virus, or MAKER
Web Annotation Service [42], a web-accessible graphical user interface for the MAKER
annotation pipeline.

Finally, another example of web-based bioinformatics suite is PhenoGen [43], which
is a comprehensive toolbox for storing, analyzing and integrating microarray data and
related genotype and phenotype data.

3. Materials and Methods

In this section, we describe the main structure of the web tool that supports both the
visualization of methylation signals and the identification of DMRs.

3.1. Infrastructure

We selected the client-server architecture [44] for the application infrastructure, in
front of the Service Oriented Architecture (SOA) [45]. The main reason was the ease of use
of that architecture for an adequate deployment of our tool. Additionally, we considered
two commonly used formats to transfer data as XML [46] and JSON [46] (JavaScript Object
Notation) interpreted natively by JavaScript [47].

The web application has been designed following the widespread criterion of separat-
ing the front end (user-side infrastructure, where the user interface and control logic are
located) and the backend (the server-side infrastructure hosting the external services for
processing the front-end requests). As any web-based application, the front end runs on
the user’s browser, using HTML5 [48] and CSS [49] to format the content in the browser
interface. It also uses JavaScript as the programming language to capture the events
of the interface and establishing the communication with the backend when an exter-
nal service is needed. To ensure the lowest possible latency when there is a request to
transfer a large amount of data (biological data usually require huge datasets), we have
selected the WebSocket protocol over a permanent TCP connection, because of its flexibil-
ity, bidirectional communication and high transfer rate. Also, we have chosen JSON for
data exchange because of its simplicity, lightness and native processing speed within the
JavaScript language.

We analyzed three frameworks to facilitate the design and logical control with JavaScript:
Vue.JS [50], a light and framework for quick development; React [51], a view-oriented
library, and Angular [52], based on a powerful compiler called TypeScript. We selected
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Angular as the most appropriate option, since it allows all the development in a single
framework, and the parameterization of the internal architecture is hidden. In partic-
ular, we used Angular Material (https://material.angular.io/), the version for Angular
from Material Design (https://material.io/design), which is the library created and used
by Google for the interface of its applications. We used Material for our interface (or-
ganizing the different elements in the page, design of forms, windows, etc.) except the
window for the graphical representation of data. For that window, we used ng2-charts
(https://valor-software.com/ng2-charts/), a library for displaying data in different types
of graphics.

Regarding the backend, the kernel of the whole system is HPG-Dhunter [19], which is
programmed in C++ language. The wavelet transformation of the methylated signal in
the GPU device and the identification of DMRs were developed with Qt [53] framework
(LGPL3 Open-Source License). This framework can play the role of a server through the
WebSockets protocol, which efficiently works with JSON format. Therefore, it was not
necessary to suggest a migration of the kernel to another framework or programming
language. However, the deployment of HPG-Dhunter as a web application required
services for user access control and the loading of the input files with the methylated
data. We decided to implement these functions in a separated module, to avoid a latency
increase. Thus, the backend is shaped as a web-based application and two complementary
services which solve the main needs of the proposed web application: the Qt server
for the main logic of the service, a server for file management, and a server for user
management. Since the front end is developed in JavaScript, we decided to use Node.JS [54]
for file management.

Regarding user access control, we used Firebase Authentication [55], an authentication
service developed and maintained by Google, since it was easily integrated within the
interface through a secure https connection, and it allows federated identification, which
reduces the user interaction.

Summarizing, the development of HPG-Dhunter as a web-based application relied on
Angular, JavaScript, JSON, HTML5 and CSS for the front-end side and communications.
The backend was based on Qt, Node.JS and Firebase Authentication, using WebSocket as
a communication protocol over TCP within the client-server architecture. HPG-Dhunter
was developed with the Qt framework, designing the user interface according to the MVC
software development principle.

3.2. Architecture

To guarantee an adequate usability of this service, a new web interface based on the
local version of HPG-Dhunter has been developed for the front end. Since the methylation
samples are sensitive data, we have added a high degree of security to this service. To
achieve this goal, individual access with a username and password is forced, establishing
a secure connection between the user database, the interface and the rest of the system.
The data to be analyzed for each user is stored in independent and isolated folders, hid-
den from the rest of the users. The user uploads the data in the output format of the
HPG-Hmapper [56] tool if the upload option is enabled.

The basic architecture of the system can be seen in Figure 2. The user interacts with
the system through the front end downloaded to the client browser. The front end is
responsible for establishing communication with the backend servers, depending on the
services requested by the user. The backend includes: the authentication service that will
validate the user, the file manager that provides access to the data loaded by the user, and
the main service of wavelet transformation and identification of DMRs. At the server side,
the database module is responsible for the file management, and it provides the application
logic module with the required data, according to the user requests.

https://material.angular.io/
https://material.io/design
https://valor-software.com/ng2-charts/
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Figure 2. Architecture of the web-based application.

The front-end interface is intended to provide a level of usability equal or greater
than the standalone version of HPG-Dhunter. However, taking into account the impor-
tant difference in data transmission rate between the standalone version (where data are
transmitted along the PCI bus) and the web application (where the data are transmitted
along a TCP connection through internet), the number of data to be displayed has been
limited to 1024 points of the transformed signal. Depending on the transformation level,
these 1024 points represent a different number of DNA locations, according to Equation (1),
as explained below. Nevertheless, this limit can be adapted to the resolution of the user
device. Additionally, after each request (assuming that the next user actions will require
neighbor regions) the front end automatically makes a request for another 1024 adjacent
data, so that if the user requires displaying these contiguous data, they will be already
located (cached) in the client computer, improving the response time from the server. In
this way, a buffer of 2048 points of the transformed signal is always available. The width
of the display window is limited to 1024 points of the transformed signal. This width
will represent a segment of the chromosome whose length is computed according to the
expression (1), depending on the level of transformation set by the user.

segmentLength = 1024 × 2dwtLevel (1)

The DMR identification is carried out after the desired analysis parameters have been
set by the user. Like in the standalone version, these parameters are the transformation
level, the minimum coverage, a validation threshold of the identified DMR, the percentage
of samples per group with equal or higher coverage than the minimum coverage, and
the minimum percentage of positions with minimum coverage per position window
corresponding to the transformation level. Once the system has identified the DMRs, then
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the user can select any of them to be displayed in the front-end interface. The system can
display any DMR with any methylation level of every sample uploaded by the user.

Figure 2 shows the three services hosted by the backend. The standalone tool HPG-
DHunter performs the wavelet transformation of the data and identifies the DMRs among
the data groups selected by the user. In the web application, there is no restriction on
the number of samples per group, since that constraint was imposed in the standalone
tool by the GPU memory size. However, the web application visualizes the data at the
client web browser, and it uses the server GPU memory only for computation purposes.
This feature allows the batch computation of Discrete Wavelet Transform (DWT) when it
is needed. The system previously checks if the requested segment of all the samples to
be processed in the GPU fits in the GPU memory. Then, a direct processing operation is
performed on these data, and the results are dumped from the GPU’s shared memory to
the server’s main memory, to be progressively transferred to the client side. Otherwise,
a batch operation is planned, storing the intermediate results in a temporary cumulative
matrix in the main memory of the server. This matrix is downloaded to the client browser
at the end of the process. This solution is applied to both the visualization part and the
identification of DMRs. In addition, a new strategy is proposed in the establishment of
the lower and the higher end of the segment to be analyzed. Due to the particular way in
which the multilevel wavelet transformation is computed, and to guarantee consistency
in the results of the wavelet transformation, the starting and ending point of the segment
requested by the user will be modified according to the expressions (2) and (3).

newLowerPosition = lowerPosition − mod((lowerPosition − lowerLimit)/2dwtLevel) (2)

newHigherPosition = higherPosition

+ (2dwtLevel − mod((higherPosition − lowerLimit)/2dwtLevel))
(3)

Thus, the starting and ending point of the region where the wavelet transformation is
applied will always be the closest exponential position to the lower and upper positions
requested by the user. Figure 3 illustrates an example of how this strategy makes a
consistent visualization of the segments requested by users with those segments obtained
from the DMR identification. Figure 3 shows an example of the limits for the wavelet
transformation (WT) requested by the user (shaded region) at level three and the actual
limits computed by the system. The blue line represents the methylation signal used to
identify DMRs. The green line represents the WT of the requested region by the user. The
orange line represents the WT region performed by the system after the adjustment of the
lower limit. The red lines correspond to the portion of the methylation signal over which
the wavelet transformation has been applied. This Figure shows that there is a guard band
between the red lines and the limits requested by the user (shaded region).

Figure 3. Example of wavelet transform.
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The backend is complemented with two more services. On the one hand, the system
authenticates the user either as a guest user or as a registered user by email or by federated
authentication with Google, Facebook or Twitter. This is supported by the authentication
service of the Firebase framework. The communication between the front end and the
authentication service is done under the https protocol, guaranteeing a secure communica-
tion between them. Also, the system offers a file management service with a simple drag
and drop interface. This service is developed using NodeJS, and it establishes a secure
communication with the front end using the https protocol. It must be noted that these
samples must be uploaded in the HPG-Hmapper [56] file format, and they must be orga-
nized in folders. All the samples are saved in the server side in a directory whose access is
only allowed to the corresponding user, remaining inaccessible to any other user, i.e., the
proposed web application can be used with any other application for DNA methylation
analysis (like Bismark, etc.) which yields SAM or BAM files. The only requirement is that
the SAM or BAM files are pre-processed with HPG-HMapper (https://grev-uv.github.io/)
before being uploaded.

3.3. Concurrent Access

The proposed web-based application must be capable of managing the concurrency
of several tasks requested by different users. Thus, the backend system must manage the
RAM memory availability for loading the data from the files and the GPU state (busy or
stopped) for the GPU computation tasks. Figure 4 shows the flow diagram for concurrent
requests. The management of each request depends on the request type (load files, GPU
computation or batch process). Each type of request has a different FIFO list of tasks. From
these task lists, independent processes are launched. The procedure for loading files (in
the visualization tab) do not need GPU availability but RAM memory, and therefore it is
necessary to check the RAM memory before starting this process. The GPU tasks implicitly
required in the visualization tab in turn require the use of the GPU, so the GPU state must
be checked before loading the data array and computing the DWT of the methylation signal.
Another independent process that can be requested by the user is the batching process
(in the user interface tab labeled as “batch process”). This is a long and non-interactive
procedure, so in this case the system sends an email to the user when the process ends, and
the procedure is split into smaller tasks. All these strategies are focused on achieving a
better performance in the GPU and RAM memory use when there are concurrent accesses
to the server.

3.4. User Interface

The user interface of the proposed web-based tool has been defined for two user roles:
the guest role, which allows interaction with a demo database available in the system, and
the registered user role, which allows a full interaction of the user with the system through
the interface, using the WebSocket protocol. A registered user can upload any sample file
to the server via secure https. Figure 5 shows a snapshot of the user interface, including the
tab for selecting the files to be stored in a secure database. This figure shows, marked with
a red line, the area including the tabs for selecting the files corresponding to the case and
control samples to be visualized and analyzed. The initial parameters applied to the loaded
samples are marked with a blue line. The interface area marked with a green line shows
the controls for setting the parameters used for DMR detection. Finally, the area marked
with an orange line highlights the area for the uploading service (only for registered users).

https://grev-uv.github.io/
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Figure 4. Flow diagram of the concurrent requests management.

Figure 5. Snapshot of the user interface with DMR parameters.

The main difference between a guest and a registered user is that a registered user can
interact with his/her own data, while a guest user can only interact with the test dataset.
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Both users can select the files for the case and control groups, and both can also select the
chromosome to be analyzed, if the data correspond to methylation or hydroxymethylation
data, and which strand to visualize (forward, reverse or both). Once the selection has been
made by the user, the system will display first the wavelet transformation level which
corresponds to the expression (4), where the maximum transformation level is lowered by
three units so there are two more levels available that can be immediately displayed.

dwtLevetinit = log(higherLimit − lowerLimit)− 3 (4)

At this point, the user can refine the visualized area, selecting the level of the wavelet
transformation and the segment of the chromosome of the selected samples to be displayed.
The user can also change the chromosome segment to be displayed at any time. Regarding
the identification of DMRs, the user must set the desired parameters for the identification
process (Figure 5, marked in green): the level of transformation to be used, the minimum
threshold to characterize a DMR, the minimum coverage, the minimum percentage of
samples per group with minimum coverage, and the minimum percentage of positions per
window of positions with minimum coverage.

Figure 6 shows a snapshot of the user interface, including the list of segments returned
by the server with the average methylation difference between the two groups (case
and control), according to the parameters set by the user. The interface area marked
in blue shows the list of all DMRs found by the server. The interface area marked in
green shows information about the ratio, coverage and position of the selected DMR.
Finally, the interface area marked in red shows the coverage ratio of each sample at that
position and the wavelet transformation level. From the list of the DMRs detected, the
user can select each one of them to visualize the methylation signals of the samples at
that area. The user can interactively change the transformation level, zoom and scroll
in the horizontal direction, focusing his/her attention on any area. Finally, the user can
access to more specific information of any desired position by clicking on the left mouse
button at that point of the graph. The user browser will open a new tab with the Ensemble
Organization web page: grch37.ensembl.org, showing a 1000 bases width area centered at
the clicked position.

Figure 6. DMR identification. Visualization of wavelet signals of samples from a selected DMR.

https://grch37.ensembl.org/Homo_sapiens/Location/View?r=21:9000000-10000000;db=core
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In addition, a registered user can request the identification of the DMRs of the whole
genome by the batch option. Figure 7 shows a snapshot of the user interface for this option.
In this figure, we have marked in green the area showing the local sample files to be
uploaded. We have marked with an orange line the user directories uploaded to the system.
The red line shows the interface area showing the control and case samples to be compared
to identify DMRs. We have enclosed in a blue line the area showing the parameters for
DMR identification. Finally, we have marked with a purple line the area showing the server
directory where the results are saved (this tab window is not for visualization purposes,
but for the identification of DMRs of all the chromosomes that the user needs, yielding the
results in files ready to be downloaded). Since the batch DMR detection process may take a
large time to be completed, the system shows a message informing the user that an email
will be sent when the process is finished and the files containing the results are ready to
be downloaded.

Figure 7. DMR identification in a batch process. This option is only available by registered users.

4. Results and Discussion

In this section, we evaluate the performance of the web application in terms of latency,
comparing the interactivity of this application against the standalone version, to prove
that the web application can yield at least similar or better user experience. To avoid
any interference with other applications and/or users, the performance evaluation has
been carried out with a single user although the backend system for computation tasks is
designed to manage concurrent users.

We have used two previously validated datasets for evaluation purposes: the first
one is BsseqDataset [10,18], which contains six samples from different real patients. These
samples are sorted in two groups, colon cancer tissues and normal tissues, with 380,000
methylated DNA positions of chromosome 21. The second dataset was provided by the
“Instituto de Investigación Sanitaria del Hospital Clínico de Valencia” (INCLIVA), from
a medical study about the effects of DNA methylation in patients with Diabetes Mellitus
2 (DM2). The samples used in this test were extracted from four different patient groups,
and they are denoted as A, B, C, and D. We used only groups A and D for this test to
compare the results with the same test shown in [19]. Group A denotes those patients who
do not suffer from DM2 and do not show resistance to insulin treatment. Group D denotes
those patients suffering from DM2 and showing resistance to insulin.

https://www.incliva.es/


Electronics 2021, 10, 1083 12 of 18

The hardware platform used as the web server consists of a computer based on the
Intel® Xeon® CPU E5620 @2.4 GHz processor, with 8 cores and 2 threads per core, and
24 Gb RAM memory, as well as a GeForce RTX 2070 graphic device, with 2304 NVidia cores
and 8 GB GDDR6 RAM memory. The procedure steps implemented in the GPU have been
carried out using the CUDA V10.2.89 library. The client browsers to communicate with
the server were Mozilla Firefox and Google Chrome, and they were installed in personal
computers. The first test was executed with the client computer located in the same
university campus network, and the second test was executed from a personal computer
out of the campus network, but in the same metropolitan area.

The main parameter values for the first test (the first dataset) were coverage ratios one
and five, 0.25 and 0.3 as threshold values and DWT levels five, six and seven. Combining
these values, 12 different experiments were carried out. Table 1 shows the evaluation
results. This table shows the number of experiments in the column labeled as “exp”, the
coverage of each experiment in the column labeled as “cov”, the threshold value in the
column labeled as “thr”, and the DWT level in the column labeled as “dwt level”. The rest
of the columns shows the evaluation results: the number of DMRs found are shown in the
column labeled as “num DMRs”, the processing time in the web server is shown in the
column labeled as “process”, the response time provided to the user webpage is shown in
the column labeled as “response”, and the communication delay (in milliseconds), i.e., the
difference between the response time and the server processing time for each experiment,
are shown in the column labeled “comm delay”.

Table 1. Evaluation results for very low coverage value of chromosome 21 (BsseqDataset).

Exp Cov Thr Dwt Level Num DMRs Process (ms) Response (ms) Comm Delay (ms)

1 1 0.25 5 14,846 1179 1595 416
2 6 10,369 738 1048 310
3 7 7719 490 727 236
4 0.30 5 12,393 1104 1470 366
5 6 9641 731 1029 298
6 7 7085 448 673 225
7 5 0.25 5 4256 1021 1182 161
8 6 2866 768 865 97
9 7 2082 453 548 94

10 0.30 5 3603 997 1145 148
11 6 2576 722 807 85
12 7 1915 446 533 87

The number of DMRs detected (values in column “num DRMs”) is high due to the
very low coverage ratios used. Nevertheless, it can be seen that for a coverage ratio of
5 the number of detected DMRs is about one third of the number of DMRs detected with
a coverage ratio of 1, where there are a high number of samples with a single occurrence
of a read aligned in that DNA location. If we compare the number of DMRs found for
different dwt levels, we can see how the number of DMRs found decreases as the level of
DWT increases. This is due to the compression of the signal as the transformation level
is increased. All the times shown in the rest of the columns are directly related to the
number of DMRs found, as it could be expected. Thus, the response times are shorter for a
coverage ratio of 5, where a maximum response time of 1182 s is needed. Although these
times cannot be rated as interactive, they are efficient times if we take into account that
we are performing an automatic detection of all the DMRs in a chromosome. Also, it is
worth mention that for a coverage ratio of 1 the fraction of the response time devoted to
computation (column labeled as “process”) is between 0.64 and 0.75 for the different levels
of DWT, while this fraction is about 0.85 for a coverage ratio of 5.

Figure 8 shows the communication delay in milliseconds and the number of DMRs
found in each experiment. This figure shows a clear correlation between the two variables,
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showing that the communication delay corresponds to the transmission of the results from
the server to the client. In fact, the number of DMRs identified is the main responsible
for the increase of communication delay. Nevertheless, even in cases of many DMRs the
communication delay time is no longer than half a second.

Figure 8. Communication delay and number of DMRs correlation.

The second test analyzes the differential methylation levels between two groups of
samples coming from the INCLIVA database, A and D. The selected chromosomes were
indicated by the INCLIVA staff as the most likely chromosomes to show DMRs on genes of
interest. In this case, the parameter values were set as follows: a DMR threshold of 0.35, a
DWT level of 6 and a minimum coverage of 50. Table 2 shows the evaluation results. The
leftmost column, labeled as “chrom”, shows the chromosome number. The column labeled
as “DMR server” shows the time (in milliseconds) required by the server for identifying
DMRs. The column labeled as “DMR client” shows the time between the request from the
user and the reception of response by the user, i.e., the response times perceived by the
user. The column labeled as “comm delay” shows the communication delay between the
processing time in the server and the response time by the user. The column labeled as
“num DMRs” shows the number of DMRs found. The column labeled as “load files” shows
the time dedicated to load the files selected by the user from the HDD to the RAM memory.
The column labeled as “T1 DMR + load” shows the total time of “DMR client” plus the
time needed to load the files. The column labeled as “T2 [19] Table 13 A–D” shows the
processing time of A–D datasets analysis in Table 13 at [19], to compare the performance
of the web application version with the standalone version of the tool. For comparison
purposes, the last column, labeled as “speedup T2/T1”, shows the speedup between the
total analyzing time in the web application (T1) and the processing time of the standalone
version [19] (T2) for the same group of samples.

Table 2 shows that the longest response time (around 23 s) corresponds to the detection
of DMRs in chromosome 2. These response times show that the web application can
efficiently provide the user with the list of automatically detected DRMs. Moreover,
the column labeled “speedup” shows that the web application pre-processes the data
more efficiently and achieves an average speedup of 5.54 in the total time of analysis,
including the time for loading the files, with respect to the analysis carried out in the
standalone version [19]. This significant speedup is due to some improvements in the
web-based version. On the one hand, we have improved HPG-Hmapper tool [56] to filter
the methylation map by the coverage ratio requested by the user, generating a new mix of
forward and reverse strands files. With these new features, the size of the input files for the
web application is significantly reduced in regard to the analysis carried out in [19], and
the mixing process of the forward and reverse strands is carried out offline, i.e., before the
process of loading the files in the HPG-Dhunter server. In this way, the time to load the
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files to the web server is significantly reduced. On the other hand, we have added several
improvements in the HPG-Dhunter algorithm which performs a better use of GPU memory
and RAM memory, improving the computation times. First, the backend of the web-based
application does not use OpenGl for the visualization of data in any monitor. Instead,
the visualization takes place in the client computer. As a result, the GPU is exclusively
dedicated to DMR detection, and much bigger data chunks can be stored in the GPU
memory and processed in parallel, thus decreasing the total required time. Second, all the
methylated locations in the selected samples are stored in a matrix when loading the input
files. Instead of computing each time the number of methylated locations in the considered
DNA segment in the process of DMR detection, this huge matrix is checked, significantly
reducing the computing time for DMR detection. These two improvements significantly
reduce the response time of the web-based application.

Table 2. Response times for detecting all the DMRs in 12 chromosomes of real dataset (milliseconds).

Chrom DMR DMR Comm Num Load T1 DMR + T2 [19] Speedup T2/T1Server Client Delay DMRs Files Load Files Table 13 A–D

2 21,998 22,902 904 719 26,340 49,242 270,559 5.49
3 17,655 18,414 759 554 22,675 41,089 218,035 5.31
4 15,665 16,359 694 391 14,812 31,171 154,287 4.95
7 13,483 14,232 749 555 19,634 33,866 190,588 5.63
8 12,438 13,116 678 380 15,660 28,776 148,693 5.17
9 12,514 13,244 730 489 17,100 30,344 172,293 5.68

11 12,336 13,188 852 607 25,046 38,234 214,391 5.61
12 14,118 14,928 810 496 21,505 36,433 180,999 4.97
13 8465 8744 279 182 6302 15,046 74,378 4.94
17 7997 8893 896 624 22,299 31,192 190,331 6.10
20 5680 6293 613 312 12,335 18,628 103,958 5.58
22 3841 4408 567 291 11,729 16,137 94,399 5.85

total (ms) 146,190 154,721 215,437 370,158 2,012,911 average 5.54
(min) 2.44 2.58 3.59 6.17 33.55

Figure 9 shows a comparison between the performance evaluation in [19] and the
same test done with the web application (user waiting time for DMRs detection plus time
required for loading files, the values in the column labeled as “T1 DMR + load” in Table 2).
The scale on the right side of Figure 9 (Y-axis) correspond to the values shown in Table 2.
The scale on the left side of Figure 9 correspond to the values for the same metric shown
by the standalone tool [19]. It can be seen a very similar shape in the two curves, due to
the type of files for each chromosome. However, a significant speedup is achieved by the
web-based application (around 5×, since the values in the scale of the left side are five
times higher than the ones on the right side). Therefore, we can state that the web-based
application improves the user experience regarding the standalone version. Table 2 also
shows the communication delay in milliseconds and the number of DMRs identified. The
behavior of these variables is the same of the first dataset, where the communication delay
has a direct relation with the number of DMRs identified.

Finally, we have measured the response time provided to the user by the web ap-
plication for the visualization of a DMR, i.e., once the DMR identification is done, we
have measured the time required for receiving from the server all the necessary data for
drawing in the client computer the DMR the user wants to visualize. We have measured
this response time for visualization under two different configurations: the first case is
when most of the response time is due to the processing time in the server and the network
connection does not add significant delay. In this case, we have located the client computer
in the same network (a 100 Mbps Ethernet network) where the server is located. In the
second configuration, the client computed is placed in a different LAN, with a domestic
internet connection, although geographically located in the same metropolitan area where



Electronics 2021, 10, 1083 15 of 18

the server is located. In both configurations we have taken 30 measurements, to have
statistically significant values. The average time measured in the first configuration is
350 milliseconds. Regarding some references in the field [57,58], this response time can be
considered to be an immediate response-time. The average value obtained in the second
configuration is 533 milliseconds. These results show that the web application can provide
immediate response times also for the visualization of the results, and the delay in drawing
the required DMR in the client computer will depend on the network connections.

Figure 9. Comparison between the performance evaluation in [19] and the same test with the
web-based application.

5. Conclusions

In this paper, we have proposed the implementation of HPG-Dhunter [19] as a web-
based application for identifying and visualizing DMRs in the DNA coming from different
samples. The tool has been installed on a server, together with a file server and an au-
thentication server. The adaptation of our tool to the new web environment has helped
to improve some sections of the software. Furthermore, the web-based version improves
the efficiency in the identification of DMRs regarding the standalone version, because in
the web-based application the GPU is fully available for computation tasks exclusively,
and the visualization of the DMRs found takes place in the client computer. These im-
provements result in an average speedup of 5.54 regarding the standalone version. The
data transmission through a LAN is included in the total response time, showing that if
the network connection does not add significant delay, then the response time offered by
the server is better than the one offered by the standalone version. Also, the response
time offered by the web-based application to DMR visualization requests coming from
the client computer can be considered to be immediate. Thus, the proposed web-based
application avoids the need for user skills or knowledge about GPU installation, setting up
and maintenance, which prevented this tool from being used by biomedical researchers
with little or no knowledge about this hardware and related software packages.

As a future work to be done, we plan to use an array of GPU devices to support
massive multiuser access to the web application.
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Abbreviations
The following abbreviations are used in this manuscript:

CGH Comparative Genomic Hybridization
CRISPR Clustered Regularly Interspaced Palindromic Repeats
DMR Differentially Methylated Region
DNA DeoxyriboNucleic Acid
DWT Discrete Wavelet Transform
GO Gene Ontology
GPU Graphics Processing Unit
SOA Service Oriented Architecture
PCR Polymerase Chain Reaction

References
1. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16, 6–21. [CrossRef]
2. Jones, P.A.; Takai, D. The Role of DNA Methylation in Mammalian Epigenetics. Science 2001, 293, 1068–1070. [CrossRef]

[PubMed]
3. Wu, H.; Tao, J.; Sun, Y.E. Regulation and function of mammalian DNA methylation patterns: A genomic perspective. Brief. Funct.

Genom. 2012, 11, 240–250. [CrossRef]
4. Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2013, 13, 484–492.

[CrossRef] [PubMed]
5. Laird, P.W. Principles and challenges of genome-wide DNA methylation analysis. Nat. Rev. Genet. 2010, 11, 191–203. [CrossRef]

[PubMed]
6. Krueger, F.; Andrews, S.R. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 2011,

27, 1571–1572. [CrossRef] [PubMed]
7. Chen, P.Y.; Cokus, S.; Pellegrini, M. BS Seeker: Precise mapping for bisulfite sequencing. BMC Bioinform. 2010, 11, 203. [CrossRef]

[PubMed]
8. Harris, E.Y.; Ponts, N.; Le Roch, K.G.; Lonardi, S. BRAT-BW: Efficient and accurate mapping of bisulfite-treated reads. Bioinfor-

matics 2012, 28, 1795–1796. [CrossRef] [PubMed]
9. Olanda, R.; Pérez, M.; Orduña, J.M.; Tárraga, J.; Dopazo, J. A new parallel pipeline for DNA methylation analysis of long reads

datasets. BMC Bioinform. 2017, 18, 161. [CrossRef]
10. Hansen, K.D.; Langmead, B.; Irizarry, R.A. BSmooth: From whole genome bisulfite sequencing reads to differentially methylated

regions. Genome Biol. 2012, 13, R83. [CrossRef]
11. Hebestreit, K.; Dugas, M.; Klein, H.U. Detection of significantly differentially methylated regions in targeted bisulfite sequencing

data. Bioinformatics 2013, 29, 1647–1653. [CrossRef] [PubMed]
12. Sun, D.; Xi, Y.; Rodriguez, B.; Park, H.J.; Tong, P.; Meong, M.; Goodell, M.A.; Li, W. MOABS: Model based analysis of bisulfite

sequencing data. Genome Biol. 2014, 15, R38.
13. Wu, H.; Xu, T.; Feng, H.; Chen, L.; Li, B.; Yao, B.; Qin, Z.; Jin, P.; Conneely, K.N. Detection of differentially methylated regions

from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res. 2015, 43, e141. [CrossRef] [PubMed]
14. Shafi, A.; Mitrea, C.; Nguyen, T.; Draghici, S. A survey of the approaches for identifying differential methylation using bisulfite

sequencing data. Brief. Bioinform. 2018, 19, 737–753. [CrossRef] [PubMed]
15. Xie, C.; Leung, Y.K.; Chen, A.; Long, D.X.; Hoyo, C.; Ho, S.M. Differential methylation values in differential methylation analysis.

Bioinformatics 2018, 35, 1094–1097. [CrossRef]
16. Catoni, M.; Tsang, J.M.; Greco, A.P.; Zabet, N. DMRcaller: A versatile R/Bioconductor package for detection and visualization of

differentially methylated regions in CpG and non-CpG contexts. Nucleic Acids Res. 2018, 46, e114. [CrossRef]
17. Blume, A. methylKit, DNA methylation analysis from high-throughput bisulfite sequencing data. Genome Biol. 2018. [CrossRef]
18. Fernández, L.; Pérez, M.; Orduña, J.M. Visualization of DNA methylation results through a GPU-based parallelization of the

wavelet transform. J. Supercomput. 2019, 75, 1496–1509. [CrossRef]
19. Fernández, L.; Pérez, M.; Olanda, R.; Orduña, J.M.; Marquez-Molins, J. HPG-DHunter: An ultrafast, friendly tool for DMR

detection and visualization. BMC Bioinform. 2020, 21, 287. [CrossRef]
20. Wang, Z.; Li, X.; Jiang, Y.; Shao, Q.; Liu, Q.; Chen, B.; Huang, D. swDMR: A Sliding Window Approach to Identify Differentially

Methylated Regions Based on Whole Genome Bisulfite Sequencing. PLoS ONE 2015, 10, e0132866. [CrossRef] [PubMed]
21. Liu, H.; Liu, X.; Zhang, S.; Lv, J.; Li, S.; Shang, S.; Jia, S.; Wei, Y.; Wang, F.; Su, J.; et al. Systematic identification and annotation of

human methylation marks based on bisulfite sequencing methylomes reveals distinct roles of cell type-specific hypomethylation
in the regulation of cell identity genes. Nucleic Acids Res. 2016, 44, gkv1332. [CrossRef]

22. Müller, F.; Scherer, M.; Assenov, Y.; Lutsik, P.; örn Walter, J.; Lengauer, T.; Bock, C. RnBeads 2.0: Comprehensive analysis of DNA
methylation data. Genome Biol. 2019, 20, 55. [CrossRef]

23. Kuo, H.C.; Lin, P.Y.; Chung, T.C.; Chao, C.M.; Lai, L.C.; Tsai, M.H.; Chuang, E.Y. DBCAT: Database of CpG Islands and Analytical
Tools for Identifying Comprehensive Methylation Profiles in Cancer Cells. J. Comput. Biol. 2011, 18, 113–1017. [CrossRef]

http://doi.org/10.1101/gad.947102
http://dx.doi.org/10.1126/science.1063852
http://www.ncbi.nlm.nih.gov/pubmed/11498573
http://dx.doi.org/10.1093/bfgp/els011
http://dx.doi.org/10.1038/nrg3230
http://www.ncbi.nlm.nih.gov/pubmed/22641018
http://dx.doi.org/10.1038/nrg2732
http://www.ncbi.nlm.nih.gov/pubmed/20125086
http://dx.doi.org/10.1093/bioinformatics/btr167
http://www.ncbi.nlm.nih.gov/pubmed/21493656
http://dx.doi.org/10.1186/1471-2105-11-203
http://www.ncbi.nlm.nih.gov/pubmed/20416082
http://dx.doi.org/10.1093/bioinformatics/bts264
http://www.ncbi.nlm.nih.gov/pubmed/22563065
http://dx.doi.org/10.1186/s12859-017-1574-3
http://dx.doi.org/10.1186/gb-2012-13-10-r83
http://dx.doi.org/10.1093/bioinformatics/btt263
http://www.ncbi.nlm.nih.gov/pubmed/23658421
http://dx.doi.org/10.1093/nar/gkv715
http://www.ncbi.nlm.nih.gov/pubmed/26184873
http://dx.doi.org/10.1093/bib/bbx013
http://www.ncbi.nlm.nih.gov/pubmed/28334228
http://dx.doi.org/10.1093/bioinformatics/bty778
http://dx.doi.org/10.1093/nar/gky602
http://dx.doi.org/10.13140/RG.2.2.35384.19201
http://dx.doi.org/10.1007/s11227-018-2670-5
http://dx.doi.org/10.1186/s12859-020-03634-y
http://dx.doi.org/10.1371/journal.pone.0132866
http://www.ncbi.nlm.nih.gov/pubmed/26176536
http://dx.doi.org/10.1093/nar/gkv1332
http://dx.doi.org/10.1186/s13059-019-1664-9
http://dx.doi.org/10.1089/cmb.2010.0038


Electronics 2021, 10, 1083 17 of 18

24. Illumina DRAGEN Bio-IT Platform. Available online: https://www.illumina.com/products/by-type/informatics-products/
dragen-bio-it-platform.html (accessed on 30 April 2021).

25. Qlucore Omics Explorer—Analysis of DNA Methylation Data. Available online: https://qlucore.com/dnamethylation (accessed
on 30 April 2021)

26. Al-Shahrour, F.; Minguez, P.; Vaquerizas, J.M.; Conde, L.; Dopazo, J. BABELOMICS: A suite of web tools for functional annotation
and analysis of groups of genes in high-throughput experiments. Nucleic Acids Res. 2005, 33, W460–W464. [CrossRef]

27. Yang, J.H.; Kim, B.W.; Nam, S.J.; Kwon, Y.; Lee, D.H.; Lee, J.Y.; Hwang, C.S.; Lee, Y.H.; Hwang, S.H.; Park, I.C.; et al. MetaCore:
An application-specific programmable DSP development system. IEEE Trans. Very Large Scale Integr. Syst. 2000, 8, 173–183.
[CrossRef]

28. Blankenberg, D.; Kuster, G.V.; Coraor, N.; Ananda, G.; Lazarus, R.; Mangan, M.; Nekrutenko, A.; Taylor, J. Galaxy: A web-based
genome analysis tool for experimentalists. Curr. Protoc. Mol. Biol. 2010, 89, 19.10.1–19.10.21. [CrossRef] [PubMed]

29. Antonov, A.V.; Schmidt, T.; Wang, Y.; Mewes, H.W. ProfCom: A web tool for profiling the complex functionality of gene groups
identified from high-throughput data. Nucleic Acids Res. 2008, 36, 347. [CrossRef] [PubMed]

30. Zheng, Q.; Wang, X.J. GOEAST: A web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res. 2008,
36, W358–W363. [CrossRef] [PubMed]

31. Rainer, J.; Sanchez-Cabo, F.; Stocker, G.; Sturn, A.; Trajanoski, Z. CARMAweb: Comprehensive R- and bioconductor-based web
service for microarray data analysis. Nucleic Acids Res. 2006, 34, W498–W503. [CrossRef] [PubMed]

32. Carver, T.; Thomson, N.; Bleasby, A.; Berriman, M.; Parkhill, J. DNAPlotter: Circular and linear interactive genome visualization.
Bioinformatics 2009, 25, 119–120. [CrossRef] [PubMed]

33. Derrien, T.; André, C.; Galibert, F.; Hitte, C. AutoGRAPH: An interactive web server for automating and visualizing comparative
genome maps. Bioinformatics 2007, 23, 498–499. [CrossRef]

34. Adler, P.; üri Reimand, J.; Jänes, J.; Kolde, R.; Peterson, H.; Vilo, J. KEGGanim: Pathway animations for high-throughput data.
Bioinformatics 2008, 24, 588–590. [CrossRef] [PubMed]

35. Lai, W.; Choudhary, V.; Park, P.J. CGHweb: A tool for comparing DNA copy number segmentations from multiple algorithms.
Bioinformatics 2008, 24, 1014–1015. [CrossRef]

36. Mitra, A.; Kesarwani, A.K.; Pal, D.; Nagaraja, V. WebGeSTer DB—A transcription terminator database. Nucleic Acids Res. 2011,
39, 129. [CrossRef] [PubMed]

37. Humann, J.L.; Lee, T.; Ficklin, S.; Main, D. Structural and Functional Annotation of Eukaryotic Genomes with GenSAS. In Gene
Prediction: Methods and Protocols; Springer: New York, NY, USA, 2019; pp. 29–51. [CrossRef]

38. Ferrè, F.; Clote, P. BTW: A web server for Boltzmann time warping of gene expression time series. Nucleic Acids Res. 2006, 34, 482.
[CrossRef]

39. Rousseau, C.; Gonnet, M.; Romancer, M.L.; Nicolas, J. CRISPI: A CRISPR interactive database. Bioinformatics 2009, 25, 3317–3318.
[CrossRef]

40. Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.M. ARG-ANNOT, a new
bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 2014, 58, 212–220.
[CrossRef] [PubMed]

41. Bao, Y.; Bolotov, P.; Dernovoy, D.; Kiryutin, B.; Tatusova, T. FLAN: A web server for influenza virus genome annotation. Nucleic
Acids Res. 2007, 35, 280. [CrossRef] [PubMed]

42. Cantarel, B.; Korf, I.; Robb, S.; Parra, G.; Ross, E.; Moore, B.; Holt, C.; Alvarado, A.S.; Yandell, M. MAKER: An easy-to-use
annotation pipeline designed for emerging model organism genomes. Genome Res. 2008, 18, 188–196. [CrossRef]

43. Bhave, S.V.; Hornbaker, C.; Phang, T.L.; Saba, L.; Lapadat, R.; Kechris, K.; Gaydos, J.; McGoldrick, D.; Dolbey, A.; Leach, S.; et al.
The PhenoGen informatics website: Tools for analyses of complex traits. BMC Genet. 2007, 8, 59. [CrossRef] [PubMed]

44. Sulyman, S. Client-Server Model. IOSR J. Comput. Eng. 2014, 16, 57–71. [CrossRef]
45. Zeilinger, H.; Anees, T. SOA Model for High Availability of Services. In Proceedings of the IARIA Conference on Communication

Theory, Reliability, and Quality of Service, Venice, Italy, 21–26 April 2013.
46. Perkins, B.; Hammer, J.; Reid, J. XML and JSON; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 673–696. [CrossRef]
47. Mason, P. JavaScript. In SAS Stored Processes; Apress: Berkeley, CA, USA, 2020; pp. 65–80. [CrossRef]
48. Bühler, P.; Schlaich, P.; Sinner, D. Html5. In HTML5 und CSS3. Bibliothek der Mediengestaltung; Springer Vieweg: Berlin/Heidelberg,

Germany, 2017; pp. 1–42. [CrossRef]
49. Olsson, M. CSS Properties. In CSS3 Quick Syntax Reference; Apress: Berkeley, CA, USA, 2019; pp. 53–56. [CrossRef]
50. bin Uzayr, S.; Cloud, N.; Ambler, T. JavaScript Frameworks for Modern Web Development: The Essential Frameworks, Libraries, and Tools

to Learn Right Now; Apress: Berkeley, CA, USA, 2019; pp. 523–539. [CrossRef]
51. Biswal, M. React Lifecycle Methods. Available online: https://www.researchgate.net/publication/337731350_React_lifecycle_

methods (accsesed on 30 April 2021).
52. Bucea-Manea-Tonis, R. Angular JS—The Newest Technology in Creating Web Applications. Ann. Spiru Haret Univ. Econ. Ser.

2016, 16, 103. [CrossRef]
53. Neto, M.; Andrade, S.; Novais, R. Cross-Platform Multimedia Application Development: For Mobile, Web, Embedded and IoT with

Qt/QML; Association for Computing Machinery: Gramado, Brazil, 2017; pp. 23–26. [CrossRef]

https://www.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
https://www.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
https://qlucore.com/dnamethylation
http://dx.doi.org/10.1093/nar/gki456
http://dx.doi.org/10.1109/92.831437
http://dx.doi.org/10.1002/0471142727.mb1910s89
http://www.ncbi.nlm.nih.gov/pubmed/20069535
http://dx.doi.org/10.1093/nar/gkn239
http://www.ncbi.nlm.nih.gov/pubmed/18460543
http://dx.doi.org/10.1093/nar/gkn276
http://www.ncbi.nlm.nih.gov/pubmed/18487275
http://dx.doi.org/10.1093/nar/gkl038
http://www.ncbi.nlm.nih.gov/pubmed/16845058
http://dx.doi.org/10.1093/bioinformatics/btn578
http://www.ncbi.nlm.nih.gov/pubmed/18990721
http://dx.doi.org/10.1093/bioinformatics/btl618
http://dx.doi.org/10.1093/bioinformatics/btm581
http://www.ncbi.nlm.nih.gov/pubmed/18056068
http://dx.doi.org/10.1093/bioinformatics/btn067
http://dx.doi.org/10.1093/nar/gkq971
http://www.ncbi.nlm.nih.gov/pubmed/20972211
http://dx.doi.org/10.1007/978-1-4939-9173-0_3
http://dx.doi.org/10.1093/nar/gkl162
http://dx.doi.org/10.1093/bioinformatics/btp586
http://dx.doi.org/10.1128/AAC.01310-13
http://www.ncbi.nlm.nih.gov/pubmed/24145532
http://dx.doi.org/10.1093/nar/gkm354
http://www.ncbi.nlm.nih.gov/pubmed/17545199
http://dx.doi.org/10.1101/gr.6743907
http://dx.doi.org/10.1186/1471-2156-8-59
http://www.ncbi.nlm.nih.gov/pubmed/17760997
http://dx.doi.org/10.9790/0661-16195771
http://dx.doi.org/10.1002/9781119549550.ch21
http://dx.doi.org/10.1007/978-1-4842-5925-2_4
http://dx.doi.org/10.1007/978-3-662-53916-3_1
http://dx.doi.org/10.1007/978-1-4842-4903-1_10
http://dx.doi.org/10.1007/978-1-4842-4995-6_14
https://www.researchgate.net/publication/337731350_React_lifecycle_methods
https://www.researchgate.net/publication/337731350_React_lifecycle_methods
http://dx.doi.org/10.26458/1638
http://dx.doi.org/10.1145/3126858.3131627


Electronics 2021, 10, 1083 18 of 18

54. Siboldi, M. Node JS Performance Testing. Available online: https://digitalcommons.calpoly.edu/laessp/35 (accessed on
30 April 2021).

55. Moroney, L. Using Authentication in Firebase. In The Definitive Guide to Firebase; Apress: Berkeley, CA, USA, 2017; pp. 25–50.
[CrossRef]

56. González, C.; Pérez, M.; Orduña, J.M.; Chaves, J.; García, A.B. HPG-HMapper: A DNA hydroxymethylation analysis tool. Int. J.
High Perform. Comput. Appl. 2020, 34, 57–65. [CrossRef]

57. Dabrowski, J.; Munson, E.V. 40 years of searching for the best computer system response time. Interact. Comput. 2011, 23, 555–564.
Available online: https://academic.oup.com/iwc/article-pdf/23/5/555/1900920/iwc23-0555.pdf (accessed on 30 April 2021).
[CrossRef]

58. Card, S.; Robertson, G.; Mackinlay, J. The Information Visualizer, an Information Workspace. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 27 April–2 May 1991; pp. 181–186. [CrossRef]

https://digitalcommons.calpoly.edu/laessp/35
http://dx.doi.org/10.1007/978-1-4842-2943-9_2
http://dx.doi.org/10.1177/1094342019840792
https://academic.oup.com/iwc/article-pdf/23/5/555/1900920/iwc23-0555.pdf
http://dx.doi.org/10.1016/j.intcom.2011.05.008
http://dx.doi.org/10.1145/108844.108874

	Introduction
	Related Work
	Materials and Methods
	Infrastructure
	Architecture
	Concurrent Access
	User Interface

	Results and Discussion
	Conclusions
	References

