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Abstract: This study presents a dual-band power amplifier (PA) with two output ports using a
simplified three-port, frequency-dividing matching network. The dual-band, dual-output PA could
amplify a dual-band signal with one transistor, and the diplexer-like output matching network (OMN)
divided the two bands into different output ports. A structure consisting of a λ/4 open stub and a
λ/4 transmission line was applied to restrain undesired signals, which made each branch equivalent
to an open circuit at another frequency. A three-stub design reduced the complexity of the OMN.
Second-order harmonic impedances were tuned for better efficiency. The PA was designed with a
10-W gallium nitride high electron mobility transistor (GaN HEMT). It achieved a drain efficiency
(DE) of 55.84% and 53.77%, with the corresponding output power of 40.22 and 40.77 dBm at 3.5 and
5.0 GHz, respectively. The 40%-DE bandwidths were over 200 MHz in the two bands.

Keywords: dual-band; dual-output; gallium nitride (GaN); harmonic control; power amplifier (PA);
restraining network

1. Introduction

With the development of wireless communication systems, people have been seeking
methods for higher data rates. It is essential to increase spectral efficiency because spectrum
resources are limited. As a result, the research on RF transmitters that can operate on
multiple bands has attracted more attention. Power amplifiers (PAs) are necessary parts
of RF transmitters. Therefore, one of the research trends focuses on how to design PAs
that can operate over multiple frequencies, such as multiband [1–7], broadband [8–12], and
band-tunable PAs [13]. Existing studies have achieved multiband operation in different
conditions. For example, Refs. [1,2] present dual-band and quad-band PAs in MMIC using
on-chip impedance transformers, and Refs. [3–5] implemented a dual-band characteristic
within a Doherty PA structure. Some studies investigated different ways of matching
multiband impedance. Dai et al. [6] explored a direct solving method for triband match-
ing networks. Meng et al. [7] reported a synthesis method that could create dual-band
impedance rotation to increase the bandwidth and gain flatness of PAs.

Carrier aggregation (CA) and multiple-input multiple-output (MIMO) are important
technologies to improve spectral efficiency. CA utilizes different bands within the available
spectrum, whether they are contiguous, noncontiguous, or broadly separated. MIMO
multiplies transmission and receiving antennas, which may work on different carrier
frequencies for better radiation pattern performance [14,15]. In carrier aggregation MIMO
front ends, multiple PAs are needed to feed every antenna element on its working frequency,
which causes higher costs.

A new type of multiband PA that has multiple output ports was presented recently [16].
A dual-band, dual-output PA was designed for the dual-band case. It could perform as
a dual-array feed network with its diplexer-like output matching network (OMN) [17].
It worked like a general dual-band PA that could amplify a dual-band signal with one
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transistor. The difference is that it could separate the signal into two single-band signals
and send them into two different output ports by its OMN. The architecture of the PA is
shown in Figure 1. It had a power-added efficiency (PAE) of 40.4%/39.9% and an output
power of 36.7/37.1 dBm at 3.5/5.5 GHz. The methodology used in Ref. [16] to achieve the
specially featured OMN was an iterative process of tuning, and no harmonic termination
was conducted in the design, which limited its efficiency. Therefore, the design simplicity
and performance of the original work need to be further improved.
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Figure 1. Block diagram of the dual-band, dual-output PA presented in Ref. [16].

This study presents a newly designed dual-band, dual-output PA with a detailed
matching procedure and a generalized design methodology. The output matching uses a
simplified three-port, frequency-dividing matching network to miniaturize the circuit and
reduce its complexity. A structure consisting of a λ/4 open stub and a λ/4 transmission line
was applied to prevent the signal from passing through improperly. Second-order harmonic
impedances were tuned for better efficiency. A 10-W gallium nitride high electron mobility
transistor (GaN HEMT) was used to deliver more power. Finally, the newly designed PA
achieved a drain efficiency (DE) of 55.84%/53.77% and output power of 40.22/40.77 dBm
at 3.5/5.0 GHz. Moreover, the two branches could create stopband rejections of more than
24.4 dB at 3.5 GHz and 38.6 dB at 5 GHz.

2. Design Methodology
2.1. Restraining Network

The two branches in the frequency-dividing matching network were required to
prevent signals in the other band from passing through. The restraining network shown
in Figure 2 was applied for that purpose. It consisted of an open-circuit stub and a
transmission line.

The open-circuit stub with the characteristic impedance Z2 and the electrical length θ2
was used to create a short-circuit condition for minimizing the influence of the OMN with
the input impedance Zin1 when they were connected in parallel. The transmission line with
the characteristic impedance Z1 and the electrical length θ1 transferred the short-circuit
condition to an open-circuit condition.

As shown in Figure 2, the input impedance of the branch with the restraining network
can be written as:

Zin = Z1
Zin2 + jZ1 tan θ1

Z1 + jZin2 tan θ1
(1)

where
Zin2 =

ZinoZin1

Zino + Zin1
(2)
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The input impedance of the open-circuit stub was determined by

Zino =
−jZ2

tan θ2
(3)

Combining Equations (1)–(3), Zin can be calculated as

Zin = Z1
−jZ2Zin1 + jZ1Zin1 tan θ1 tan θ2 + Z1Z2 tan θ1

Z2Zin1 tan θ1 + Z1Zin1 tan θ2 − jZ1Z2
(4)

When θ2 = 90◦, the effect of Zin1 on Zin vanishes. Moreover, if θ1 = 90◦, the restraining
network will make the branch behave as an open circuit.

Zin(θ2 = 90◦) = jZ1 tan θ1 (5)

Zin(θ2= 90◦, θ1= 90◦) = ∞ (6)

In the branch of f 1, lengths of the open-circuit stub and the transmission line were set
as λ/4 at f 2. Then the branch will be equivalent to an open circuit at f 2. At the same time,
Zin at f 1 will be

Zin| f= f1,θ1=θ2=90◦@ f2

= Z1
−jZ2Zin1+jZ1Zin1 tan2(

π f1
2 f2

)+Z1Z2 tan( π f1
2 f2

)

Z2Zin1 tan( π f1
2 f2

)+Z1Zin1 tan( π f1
2 f2

)−jZ1Z2

(7)

By setting a proper OMN after the restraining network, Zin could be tuned to the
optimal impedance of the transistor.
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2.2. Design of Output Matching Network

For higher efficiency and output power, a Cree Wolfspeed 10 W CGH40010F (CREE,
Durham, NC, USA) packaged GaN HEMT was used for the design. The two operating
frequencies were 3.5 GHz (f 1) and 5.0 GHz (f 2) near the widely used sub-6 GHz 5G bands.

The first step of designing the three-port, frequency-dividing output matching network
was finding the optimal impedance for the transistor. Using the nonlinear transistor model
provided by the manufacturer, the simulated load-pull results at fundamental, second-
order, and third-order harmonic frequencies are presented in Figure 3. Contours were taken
at the package plane of the transistor. Under consideration of output power and PAE, the
targeted input impedances of OMN were chosen near 12 Ω at f 1 and 10 Ω at f 2.
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Figure 3. Simulated load-pull results at (a) the fundamental frequency of f 1, (b) the fundamental
frequency of f 2, (c) second-order harmonic frequencies, and (d) third-order harmonic frequencies.

The topology of the dual-band, dual-output PA is schematically shown in Figure 4.
The two branches of the OMN had the optimal impedance to the transistor at its working
frequency. Simultaneously, it behaved as an open circuit at another frequency, which
prevented the branch from affecting the impedance at that frequency and guaranteed that
signals in the other band would not interfere with its output. The restraining networks
(TL9,11 and TL10,12) were applied for this condition.

For better efficiency, harmonic tuning networks were employed after the restraining
networks. Results in Figure 3c,d show that the second-order harmonic impedances pos-
itively influenced the performance. In contrast, the impact of the third-order harmonic
impedances was much lower. Therefore, second-order harmonic impedance was tuned by
this network, which means the proposed PA works in the class-J mode.

In the harmonic tuning network, a λ/8 open stub (TL15 and TL16) was used to create a
short-circuited condition at the second-order harmonic frequency for the connecting point.
Furthermore, the tuning line (TL13 and TL14) tuned the condition at the package plane to
be the proper impedance with the restraining network.
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different bands, which ensured the high performance of the PA in working bands. Fur-
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Figure 4. Block diagram of the harmonically tuned dual-band, dual-output PA. Output port1 output
signals at f 1 = 3.5 GHz. Output port2 output signals at f 2 = 5.0 GHz. C1 = 20 pF, C3 = 20 pF, C2 = 3 pF,
R1 = R2 = 50 Ω, L1 = 18 nH, L2 = 1 uH.

Stub-tuned matching networks (TL17,19 and TL18,20) were applied after the harmonic
tuning networks to make each branch match the optimal impedance of its operating fre-
quency. The two branches were connected to make the three-port OMN. The restraining
networks eliminated the interaction between the two branches at fundamental frequencies.
However, the harmonic impedances may be influenced. Moreover, the blocking capacitor
(C3), RF choke (L2), and soldering pad also affected impedances, so optimization was
needed after the connection. Figure 5a depicts the input impedances of each branch after
optimization, and Figure 5b shows the input impedances of the three-port OMN, which
were well matched to the region of high performance. All the impedances were simu-
lated with the external components and circuits. The results imply that the fundamental
impedances were near the point before the connection. However, the second-order and
third-order harmonic impedances are changed at different degrees.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 12 
 

 

C
G

H
4

0
0

1
0

F

Input

Port
Output

Port1

Output

Port2

Input Matching

VDSVGS

C2

R1

C1

R2

L2

L1

C3

Restraining
Network

Harmonic Tuning
and Matching Network

TL19

TL17TL13

TL11

TL9 TL21

TL15

TL20

TL18

TL16

TL14

TL12

TL10 TL22

TL1

TL2

TL3 TL5

TL4

TL7
TL8

TL6

2nd  Harmonic
Tuning

Matching

λ/4 
at f2

λ/4 
at f1

λ/8 
at f1

λ/8 
at f2  

Figure 4. Block diagram of the harmonically tuned dual-band, dual-output PA. Output port1 output 

signals at f1 = 3.5 GHz. Output port2 output signals at f2 = 5.0 GHz. C1 = 20 pF, C3 = 20 pF, C2 = 3 pF, 

R1 = R2 = 50 Ω, L1 = 18 nH, L2 = 1 uH. 

Stub-tuned matching networks (TL17,19 and TL18,20) were applied after the harmonic 

tuning networks to make each branch match the optimal impedance of its operating fre-

quency. The two branches were connected to make the three-port OMN. The restraining 

networks eliminated the interaction between the two branches at fundamental frequen-

cies. However, the harmonic impedances may be influenced. Moreover, the blocking ca-

pacitor (C3), RF choke (L2), and soldering pad also affected impedances, so optimization 

was needed after the connection. Figure 5a depicts the input impedances of each branch 

after optimization, and Figure 5b shows the input impedances of the three-port OMN, 

which were well matched to the region of high performance. All the impedances were 

simulated with the external components and circuits. The results imply that the funda-

mental impedances were near the point before the connection. However, the second-order 

and third-order harmonic impedances are changed at different degrees. 

0.2 0.5 1.0 2.0 5.0

-0.2j

0.2j

-0.5j

0.5j

-1.0j

1.0j

-2.0j

2.0j

-5.0j

5.0j

     

Zout@ f
1

Zout@3 f
1

Zout@2 f
1

  

Zout@ f
2

Zout@3 f
2

Zout@2 f
2

 

0.2 0.5 1.0 2.0 5.0

-0.2j

0.2j

-0.5j

0.5j

-1.0j

1.0j

-2.0j

2.0j

-5.0j

5.0j

    

Zout@ f
1

Zout@3 f
1

Zout@2 f
1

  

Zout@ f
2

Zout@3 f
2

Zout@2 f
2

 

(a) (b) 

Figure 5. Input impedances of the two branches (a) before connected and (b) after connected. 

The two branches were bent forward to reduce the size of the dual-output power 

amplifier and to balance the performance. The layout of the designed three-port, fre-

quency-dividing OMN is shown in Figure 6a. The three-stub branches lowered the com-

plexity compared to the design in Ref. [16]. S-parameters of the three-port OMN are de-

picted in Figure 6b. The restraining networks created isolation of more than 40 dB between 

different bands, which ensured the high performance of the PA in working bands. Fur-

thermore, the output ports isolation was also better than 40 dB near the working fre-

quency. 

Figure 5. Input impedances of the two branches (a) before connected and (b) after connected.

The two branches were bent forward to reduce the size of the dual-output power
amplifier and to balance the performance. The layout of the designed three-port, frequency-
dividing OMN is shown in Figure 6a. The three-stub branches lowered the complexity
compared to the design in Ref. [16]. S-parameters of the three-port OMN are depicted in
Figure 6b. The restraining networks created isolation of more than 40 dB between different
bands, which ensured the high performance of the PA in working bands. Furthermore, the
output ports isolation was also better than 40 dB near the working frequency.
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dimensions (unit: mm) and (b) simulated S-parameters.

2.3. Design of Input Matching Network

Unlike the three-port OMN, the input matching network was a traditional dual-band
matching network. Figure 7a shows the layout of it. The design of the input network
refers to the dual-band matching technology based on compact broadband matching
networks presented in Ref. [7]. The input network consisted of three open stubs and three
transmission lines. Three stubs and two connecting lines (TL1–TL5) created a dual-band
impedance rotation. The rest line (TL6) made the impedance move to the proper position.
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Figure 7. (a) Layout of the dual-band input matching network with its main physical dimensions
(unit: mm) and (b) the impedances of the input matching network from 3.2 to 5.2 GHz with simulated
source-pull contours of PAE (with 2% step) at f 1/ f 2.

For stabilization, a parallel RC circuit (C2 and R1) at the gate and a resistor (R2) before
the gate bias line were added. After iterative optimizations, the network had the optimal
impedance for the transistor in the working bands, and the stability factor satisfied the
unconditionally stable requirement in the whole frequency range. Figure 7b depicts the
impedances of the input matching network from 3.2 to 5.2 GHz with simulated source-pull
contours of PAE at f 1/ f 2.

3. Fabrication and Measurement

The proposed dual-band, dual-output PA shown in Figure 8a was performed on a
30-mil Rogers RO4350B (Rogers, Chandler, AZ, USA) substrate with a relative permittivity
of 3.66 and a loss tangent of 0.0037, using a 10-W Cree CGH40010F GaN HEMT (CREE,
Durham, NC, USA). The OMN was loaded with a 4310LC wideband RF choke. The
transistor was biased and stabilized at a drain-source voltage (VDS) of 28 V, and the
quiescent drain current (IDS) was 168 mA, which was selected in the class-AB region. The
lumped-element capacitors used for blocking and stabilizing were Murata GRM18 series
chip multilayer ceramic capacitors.
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Figure 8. Photographs of (a) the fabricated 3.5/5.0 GHz dual-band, dual-output PA and (b) the
measurement setup.

Figure 8b demonstrates the test environment for the designed PA. An Agilent N5182A
vector signal generator (Agilent, Santa Clara, NC, USA) was used to provide a CW signal.
The signal was pre-amplified by a driver amplifier, since the output power of the generator
was not enough to drive the PA. The output of the PA was measured by an Agilent N9030A
signal analyzer (Agilent, Santa Clara, NC, USA). A 40-dB attenuator was added between
the output port of the PA and the signal analyzer to prevent the large signal from exceeding
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the input limit of the analyzer. When one port is being measured, another should be
connected to a 50-Ω load to accord with practice.

The measured gain, output power, and DE of the proposed PA at f 1 and f 2 are depicted
in Figure 9. At 3.5 GHz, the DE reached 55.84% when Pin = 31.7 dBm, with an output power
of 40.2 dBm, and the small-signal gain was 11.6 dB. At 5.0 GHz, the DE reached 53.77%
when Pin = 33 dBm, with an output power of 40.7 dBm, and the small-signal gain was
9.8 dB. Figure 10 gives the gain of the two output ports at the undesired frequencies. The
stopband rejections of the two branches were better than 24.4 dB at 3.5 GHz and 38.6 dB at
5 GHz.
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Figure 11 shows the performance over the two bands. The PA had a bandwidth of
200 MHz over 40% efficiency near 3.5 and 5 GHz. The measured efficiency was lower than
simulated results in the lower band. There were slight frequency shifts in both bands, which
may have been caused by the impact of manufacturing variations and device deviation. The
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conductor width tolerance of the manufacturer was 0.02 mm, and the amplitude accuracy
of the signal analyzer was ±0.19 dB. It is found in experiments that the curvature of the
circuit board can affect the performance. Therefore, more advanced manufacturing and
better auxiliary accessories are needed for better performance.
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To evaluate the linearity, the proposed PA was tested with a 10-MHz WCDMA signal
with a peak-to-average power ratio (PAPR) of 6.6 dB. Figure 12 shows the measured nor-
malized power spectra. The output power is 31.9/30.6 dBm in the two bands. When digital
predistortion (DPD) is on, the adjacent channel power ratio (ACPR) is −47.0/−48.1 dBc,
respectively. The DPD used a generalized memory polynomial model based on a negative
feedback iteration technique.
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Table 1 displays the results of this work together with other recent studies of dual-
band PAs. Due to the nature of the unique dual-output architecture and the high operation
frequencies, the PA proposed in this study cannot be directly compared to other single-
output works [3,7,18–21]. Nevertheless, the dual-output PAs have a wider noncontiguous
absolute bandwidth (2.0 and 1.5 GHz) than the single-output PAs, and the high working
frequencies are closer to the widely used sub-6 GHz 5G bands that will predominate in
future wireless communications. Compared to the previous work in dual-band, dual-
output PAs, this PA has better efficiencies and gain at the two operating frequencies, closer
to the normal dual-band PA. Moreover, the simple structure and the generalized design
methodology will make the PA extensible, easier to design, and have more potential for
practical uses.

Table 1. Performance comparison of dual-band PAs.

Ref. Year Freq. Architecture No. of Loads Output
Power Gain Efficiency

[3] 2020 2.1/3.45 Doherty 1 48/47.5 8.4/9.2 DE:72/63

[7] 2018 1.4/2.4 Single-ended
Single-output 1 41/40 13/12.5 PAE:65/67

[18] 2018 1.8/2.65 Single-ended
Single-output 1 43/42.7 12.9/11.0 DE:76.2/71.6

[20] 2012 1.8/2.4 Doherty 1 43/43 12/13 PAE:64/54

[21] 2019 0.85/2.0 Doherty 1 44.6/44.2 8.3/10 DE:58/68

[16] 2019 3.5/5.5 Single-ended
Dual-output 2 36.7/37.1 11.4/9.0 PAE:40.4/39.9

This study 2021 3.5/5.0 Single-ended
Dual-output 2 40.2/40.7 11.6/9.8 DE:55.8/53.8

PAE:47.7/45.4

4. Conclusions

A dual-band, dual-output power amplifier designed with a simplified three-port,
frequency-dividing matching network was presented in this study. The OMN with two
branches could send signals in different bands into different output ports using restraining
networks that prevented unwanted signals from passing through. In each branch, second-
order harmonics were controlled for better efficiency. The PA with a 10-W CGH40010F pack-
aged GaN HEMT achieved a DE of 55.84%/53.68% and output power of 40.22/40.77 dBm
at 3.5/5.0 GHz. It can be expected that the high performance, simple structure, and gen-
eralized design methodology will make this PA extensible and have more potential for
practical uses.

5. Patents

The corresponding Chinese patent (no. 202010299317.5) of this work has already been
granted.
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