Analysing Factory Workers’ Acceptance of Collaborative Robots: A Web-Based Tool for Company Representatives
Abstract
:1. Introduction
2. Conceptualisation of the Employee Acceptance Tool
2.1. Job Security
- Increased job attractiveness: In order to counteract the shortage of skilled workers in manufacturing, companies aim at increasing job attractiveness and at reducing risks for musculoskeletal disorder by introducing a cobot that relieves employees of monotonous, repetitive, unergonomic, or unattractive work (e.g., [29,30]). Improving the working conditions and the quality of work could foster the acceptance of the corresponding technology [27].
- Increased productivity: Companies aim at improving productivity by allocating different tasks according to the typical complementary strengths of human beings and cobots [9,31,32]. When cobots take over tasks of human beings in order to increase productivity, fears of job losses might arise quickly. However, if employees suffer from high workload for example due to an unexpected high number of orders, employees might regard the support of a cobot as a relief. Furthermore, investments in modern production technologies could be interpreted as a commitment to local production sites and thus represent a trend towards backshoring and re-concentration back from foreign locations to a concentrated production at a lead location [33]. In this sense, introducing a cobot could also be intended to guarantee jobs at a given production site.
- Increased flexibility: Unlike conventional industrial robots, most cobots can be easily programmed, quickly adapted, and relocated [34,35,36]. Compared to fully automated solutions, the human’s cognitive component enhances the flexibility and responsiveness of the human-cobot system [37]. These advantages can motivate particularly such companies to buy a cobot that produce in smaller batches with larger number of variants [38]. Telling employees that cobots are primarily needed to increase flexibility rather than to rationalise jobs could alleviate fears of job losses.
2.2. (Perceived) Occupational Safety
2.3. Workforce Structure
- Prior experiences with robots: Prior experiences influence people’s beliefs about and trust in automation solutions [39,40]. Experiences of interacting with robots can therefore result in less negative attitudes towards them [41]. In this sense, it is important to give inexperienced users the opportunity and time to gain experience in interacting with the robot, as stated in the previous paragraph.
- Enthusiasm for new technologies: If employees are excited and curious about working with cobots this can be a central driver for acceptance [53]. Therefore, company representatives should make sure to choose employees as pilot users who enjoy working with the cobot.
- Technical affinity: A person’s technical affinity correlates positively with initial robot trust and acceptance before the actual interaction [24]. However, previous studies reveal a correlation between technological affinity and expectations [54]. A cobot failing to meet the latter can cause frustration and undermine acceptance.
2.4. Corporate Culture and Appreciation
2.5. Changes in the Daily Work Routine
2.6. Human-Centred Design
3. Implementation of the Employee Acceptance Tool
3.1. Query of Key Data
3.2. Assessment of Need for Action
3.3. Recommendations for Action
4. Evaluation of the Employee Acceptance Tool
4.1. Method
4.2. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- International Federation of Robotics. World Robotics Report 2019—Industrial Robots; International Federation of Robotics: Frankfurt, Germany, 2019. [Google Scholar]
- Steil, J.J.; Maier, G.W. Kollaborative Roboter: Universale Werkzeuge in der digitalisierten und vernetzten Arbeitswelt. In Handbuch Gestaltung Digitaler Und Vernetzter Arbeitswelten, Living Reference Work; Continuously Updated; Maier, G.W., Engels, G., Steffen, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–24. ISBN 978-3-662-52903-4. [Google Scholar]
- Murashov, V.; Hearl, F.; Howard, J. Working safely with robot workers: Recommendations for the new workplace. J. Occup. Environ. Hyg. 2016, 13, D61–D71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schou, C.; Madsen, O. A plug and produce framework for industrial collaborative robots. Int. J. Adv. Robot. Syst. 2017, 14, 1747. [Google Scholar] [CrossRef] [Green Version]
- Müller-Abdelrazeq, S.L.; Schönefeld, K.; Haberstroh, M.; Hees, F. Interacting with Collaborative Robots—A Study on Attitudes and Acceptance in Industrial Contexts. In SOCIAL ROBOTS: Technological, Societal and Ethical Aspects of Human-Robot; Korn, O., Ed.; Springer Nature: Berlin/Heidelberg, Germany, 2019; pp. 101–117. ISBN 978-3-030-17106-3. [Google Scholar]
- Kopp, T.; Hendig, I.; Kinkel, S. Kollaborationsfähige Roboter: Hype oder Zukunftstechnologie? Ergebnisse einer empirischen Marktanalyse. Ind. 4.0 Manag. 2021, 37, 53–57. [Google Scholar]
- Görke, M.; Blankemeyer, S.; Pischke, D.; Oubari, A.; Raatz, A.; Nyhuis, P. Sichere und akzeptierte Kollaboration von Mensch und Maschine. Z. Für Wirtsch. 2017, 112, 41–45. [Google Scholar] [CrossRef]
- Müller-Abdelrazeq, S.L. Triadisches Phasenmodell Des Zusammenspiels Von Einstellungssubjekt, Objekt Und Kontext Bei Der Industriellen Mensch-Roboter-Interaktion; Apprimus Verlag: Aachen, Germany, 2020; ISBN 978-3-86359-813-6. [Google Scholar]
- Kopp, T.; Baumgartner, M.; Kinkel, S. Success factors for introducing industrial human-robot interaction in practice: An empirically driven framework. Int. J. Adv. Manuf. Technol. 2021, 112, 685–704. [Google Scholar] [CrossRef]
- Meißner, A.; Trübswetter, A. Mensch-Roboter-Kollaboration in der Produktion: Kritische Würdigung etablierter Technikakzeptanzmodelle und neue Erkenntnisse in der Akzeptanzforschung. In Technische Unterstützungssysteme, Die Die Menschen wirklich Wollen: Dritte Transdisziplinäre Konferenz; Weidner, R., Karafillidis, A., Eds.; Helmut-Schmidt-Universität: Hamburg, Germany, 2018; pp. 223–233. ISBN 978-3-86818-246-0. [Google Scholar]
- Charalambous, G.; Fletcher, S.R.; Webb, P. The development of a Human Factors Readiness Level tool for implementing industrial human-robot collaboration. Int. J. Adv. Manuf. Technol. 2017, 91, 2465–2475. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.; Taipale, S.; Sapio, B.; Lugano, G.; Fortunati, L. Social Robots from a Human Perspective; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-319-15671-2. [Google Scholar]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Davis, F.D.A. Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Bala, H. Technology Acceptance Model 3 and a Research Agenda on Interventions. Decis. Sci. 2008, 39, 273–315. [Google Scholar] [CrossRef] [Green Version]
- Grahn, S.; Gopinath, V.; Wang, X.V.; Johansen, K. Exploring a Model for Production System Design to Utilize Large Robots in Human-Robot Collaborative Assembly Cells. Procedia Manuf. 2018, 25, 612–619. [Google Scholar] [CrossRef]
- Chuttur, M. Overview of the Technology Acceptance Model: Origins, Developments and Future Directions. Work. Pap. Inf. Syst. 2009, 9, 9–37. [Google Scholar]
- French, B.; Duenser, A.; Heathcote, A. Trust in Automation—A Literature Review Report; CSIRO Report EP184082; CSIRO: Canberra, Australia, 2018; Available online: http://www.tascl.org/uploads/4/9/3/3/49339445/trust_in_automation_-_a_literature_review_report.pdf (accessed on 27 December 2021).
- Elprama, S.; El Makrini, I.; Vanderborght, B.; Jacobs, A. Acceptance of collaborative robots by factory workers: A pilot study on the role of social cues of anthropomorphic robots. In Proceedings of the 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York, NY, USA, 26–31 August 2016; ISBN 978-1-5090-3929-6. [Google Scholar]
- Weiss, A.; Huber, A.; Minichberger, J.; Ikeda, M. First Application of Robot Teaching in an Existing Industry 4.0 Environment: Does It Really Work? Societies 2016, 6, 20. [Google Scholar] [CrossRef]
- Oliveira, R.; Arriaga, P.; Alves-Oliveira, P.; Correia, F.; Petisca, S.; Paiva, A. Friends or Foes? In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction—HRI ‘18, Chicago, IL, USA, 5–8 March 2018; Kanda, T., Šabanović, S., Hoffman, G., Tapus, A., Eds.; ACM Press: New York, NY, USA, 2018; pp. 279–288, ISBN 9781450356152. [Google Scholar]
- Maniou, T.A.; Veglis, A. Employing a Chatbot for News Dissemination during Crisis: Design, Implementation and Evaluation. Future Internet 2020, 12, 109. [Google Scholar] [CrossRef]
- Kopp, T.; Schäfer, A.; Kinkel, S. Kollaborierende oder kollaborationsfähige Roboter? Welche Rolle spielt die Mensch-Roboter-Kollaboration in der Praxis? Ind. 4.0 Manag. 2020, 36, 19–23. [Google Scholar] [CrossRef]
- Kopp, T.; Baumgartner, M.; Kinkel, S. How Linguistic Framing Affects Factory Workers’ Initial Trust in Collaborative Robots: The Interplay Between Anthropomorphism and Technological Replacement. Int. J. Human-Computer Stud. 2021, 158, 102730. [Google Scholar] [CrossRef]
- Richert, A.; Müller, S.L.; Schröder, S.; Jeschke, S. Anthropomorphism in social robotics: Empirical results on human–robot interaction in hybrid production workplaces. AI Soc. 2017, 1, 71. [Google Scholar] [CrossRef]
- European Commission. Public Attitudes towards Robots—Special Eurobarometer 382. 2012. Available online: https://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_382_en.pdf (accessed on 7 August 2019).
- Salvini, P.; Laschi, C.; Dario, P. Design for Acceptability: Improving Robots’ Coexistence in Human Society. Int. J. Soc. Robotics 2010, 2, 451–460. [Google Scholar] [CrossRef]
- Baumgartner, M.; Kopp, T.; Kinkel, S. Industrielle Mensch-Roboter-Interaktion in KMU: KMU unterschätzen das Potenzial der Mensch-Roboter-Interaktion. Wt Werkstattstech. Online 2020, 110, 146–150. [Google Scholar] [CrossRef]
- Pearce, M.; Mutlu, B.; Shah, J.; Radwin, R. Optimizing Makespan and Ergonomics in Integrating Collaborative Robots Into Manufacturing Processes. IEEE Trans. Automat. Sci. Eng. 2018, 15, 1772–1784. [Google Scholar] [CrossRef]
- Romero, D.; Stahre, J.; Wuest, T.; Noran, O.; Bernus, P.; Fast-Berglund, Å.; Gorecky, D. Towards an operator 4.0 typology: A human-centric perspective on the fourth industrial revolution technologies. In Proceedings of the CIE46, Tianjin, China, 29–31 October 2016. [Google Scholar]
- Ranz, F.; Komenda, T.; Reisinger, G.; Hold, P.; Hummel, V.; Sihn, W. A Morphology of Human Robot Collaboration Systems for Industrial Assembly. Procedia CIRP 2018, 72, 99–104. [Google Scholar] [CrossRef]
- Ranz, F.; Hummel, V.; Sihn, W. Capability-based Task Allocation in Human-robot Collaboration. Procedia Manuf. 2017, 9, 182–189. [Google Scholar] [CrossRef]
- Kinkel, S.; Baumgartner, M.; Cherubini, E. Prerequisites for the adoption of AI technologies in manufacturing—Evidence from a worldwide sample of manufacturing companies. Technovation 2021, 102375. [Google Scholar] [CrossRef]
- Grahn, S.; Langbeck, B. Benefits of collaborative robots in assembly—An evaluation sceme. In Proceedings of the Swedish Production Symposium, Gothenburg, Swedish, 16–18 September 2014. [Google Scholar]
- Djuric, A.M.; Urbanic, R.J.; Rickli, J.L. A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems. SAE Int. J. Mater. Manuf. 2016, 9, 457–464. [Google Scholar] [CrossRef]
- Elkmann, N.; Berndt, D.; Leye, S.; Richter, K.; Mecke, R. Arbeitssysteme der Zukunft. In Produktion und Logistik mit Zukunft; Schenk, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 49–149. ISBN 978-3-662-48265-0. [Google Scholar]
- Johannsmeier, L.; Haddadin, S. A Hierarchical Human-Robot Interaction-Planning Framework for Task Allocation in Collaborative Industrial Assembly Processes. IEEE Robot. Autom. Lett. 2017, 2, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Bruno, G.; Antonelli, D. Dynamic task classification and assignment for the management of human-robot collaborative teams in workcells. The International J. Adv. Manuf. Technol. 2018, 98, 2415–2427. [Google Scholar] [CrossRef]
- Lee, J.D.; See, K.A. Trust in automation: Designing for appropriate reliance. Hum. Factors 2004, 46, 50–80. [Google Scholar] [CrossRef]
- Hoff, K.A.; Bashir, M. Trust in automation: Integrating empirical evidence on factors that influence trust. Hum. Factors 2015, 57, 407–434. [Google Scholar] [CrossRef] [PubMed]
- Nomura, T.; Suzuki, T.; Kanda, T.; Yamada, S.; Kato, K. Attitudes toward robots and factors influencing them. In New Frontiers in Human-Robot Interaction; Dautenhahn, K., Saunders, J., Eds.; John Benjamins Pub: Amsterdam, The Netherlands, 2011; pp. 73–88. ISBN 9789027283399. [Google Scholar]
- Breazeal, C. Social Interactions in HRI: The Robot View. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2004, 34, 181–186. [Google Scholar] [CrossRef]
- Oubari, A.; Pischke, D.; Jenny, M.; Meißner, A.; Trübswetter, A. Mensch-Roboter-Kollaboration in der Produktion. ZWF 2018, 113, 560–564. [Google Scholar] [CrossRef]
- Michalík, R.; Janota, A.; Gregor, M.; Hruboš, M. Human-Robot Motion Control Application with Artificial Intelligence for a Cooperating YuMi Robot. Electronics 2021, 10, 1976. [Google Scholar] [CrossRef]
- Charalambous, G.; Fletcher, S.; Webb, P. The Development of a Scale to Evaluate Trust in Industrial Human-robot Collaboration. Int. J. Soc. Robot. 2016, 8, 193–209. [Google Scholar] [CrossRef]
- Phillips, E.; Ososky, S.; Grove, J.; Jentsch, F. From Tools to Teammates: Toward the Development of Appropriate Mental Models for Intelligent Robots. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Las Vegas, NV, USA, 19–23 September 2011; Volume 55, pp. 1491–1495. [Google Scholar] [CrossRef]
- Trübswetter, A.; Meißner, A.; Jenny, M.; Oubari, A.; Himmel, S.; Müller-Abdelrazeq, S. Mitarbeitende für MRK begeistern. In Projektatlas Kompetenz Montage: Kollaborativ und wandlungsfähig; Hees, F., Müller-Abdelrazeq, S., Voss, M., Schmitt, R., Hüttemann, G., Rook-Weiler, K., Herfs, W., Roggendorf, S., Heinen, K., Kuhlenkötter, B., et al., Eds.; RWTH Aachen University, Lehrstuhl für Informationsmanagement im Maschinenbau: Aachen, Germany, 2019; pp. 118–123. ISBN 3948169063. [Google Scholar]
- Jocelyn, S.; Burlet-Vienney, D.; Giraud, L. Experience Feedback on Implementing and Using Human-Robot Collaboration in the Workplace. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting; 2017; Volume 61, pp. 1690–1694. [Google Scholar] [CrossRef]
- Lotz, V.; Himmel, S.; Ziefle, M. You’re My Mate–Acceptance Factors for Human-Robot Collaboration in Industry. In Proceedings of the International Conference on Competitive Manufacturing (COMA 19), Stellenbosch, South Africa, 31 January–2 February 2019; Dimitrov, D., Hagedorn-Hansen, D., von Leipzig, K., Eds.; Department of Industrial Engineering, Stellenbosch University: Stellenbosch, South Africa, 2019; pp. 405–411, ISBN 978-0-7972-1779-9. [Google Scholar]
- Kildal, J.; Tellaeche, A.; Fernández, I.; Maurtua, I. Potential users’ key concerns and expectations for the adoption of cobots. Procedia CIRP 2018, 72, 21–26. [Google Scholar] [CrossRef]
- Wullenkord, R.; Fraune, M.R.; Eyssel, F.; Sabanovic, S. Getting in Touch: How Imagined, Actual, and Physical Contact Affect Evaluations of Robots. Robot and Human Interactive Communication (RO-MAN). In Proceedings of the 2016 25th IEEE International Symposium, New York, NY, USA, 26–31 August 2016; pp. 980–985. [Google Scholar]
- Savela, N.; Turja, T.; Oksanen, A. Social Acceptance of Robots in Different Occupational Fields: A Systematic Literature Review. J. Soc. Robot. 2018, 10, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Meissner, A.; Trübswetter, A.; Conti-Kufner, A.S.; Schmidtler, J. Friend or Foe? Understanding Assembly Workers’ Acceptance of Human-robot Collaboration. J. Hum. Robot. Interact. 2021, 10, 1–30. [Google Scholar] [CrossRef]
- Bröhl, C.; Nelles, J.; Brandl, C.; Mertens, A.; Nitsch, V. Human–Robot Collaboration Acceptance Model: Development and Comparison for Germany, Japan, China and the USA. Int. J. Soc. Robot. 2019, 11, 709–726. [Google Scholar] [CrossRef] [Green Version]
- Charalambous, G.; Fletcher, S.; Webb, P. Identifying the key organisational human factors for introducing human-robot collaboration in industry: An exploratory study. Int. J. Adv. Manuf. Technol. 2015, 81, 2143–2155. [Google Scholar] [CrossRef]
- Ajzen, I.; Fishbein, M. Understanding Attitudes and Predicting Social Behavior; Prentice-Hall: Englewood Cliffs, NJ, USA, 1980; ISBN 0139364358. [Google Scholar]
- Elprama, S.A.; Jewell, C.I.; Jacobs, A.; El Makrini, I.; Vanderborght, B. Attitudes of Factory Workers towards Industrial and Collaborative Robots. In Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction. HRI ‘17: ACM/IEEE International Conference on Human-Robot Interaction, Vienna, Austria, 6–9 March 2017; Mutlu, B., Tscheligi, M., Eds.; ACM: New York, NY, USA, 2017; pp. 113–114, ISBN 9781450348850. [Google Scholar]
- Wallace, J. Getting collaborative robots to work: A study of ethics emerging during the implementation of cobots. Paladyn J. Behav. Robot. 2021, 12, 299–309. [Google Scholar] [CrossRef]
- Chacón, A.; Ponsa, P.; Angulo, C. Cognitive Interaction Analysis in Human–Robot Collaboration Using an Assembly Task. Electronics 2021, 10, 1317. [Google Scholar] [CrossRef]
- Samuelson, W.; Zeckhauser, R. Status quo bias in decision making. J. Risk Uncertain. 1988, 1, 7–59. [Google Scholar] [CrossRef]
- Chacón, A.; Ponsa, P.; Angulo, C. Usability Study through a Human-Robot Collaborative Workspace Experience. Designs 2021, 5, 35. [Google Scholar] [CrossRef]
- Ore, F.; Hansson, L.; Wiktorsson, M. Method for Design of Human-industrial Robot Collaboration Workstations. Procedia Manuf. 2017, 11, 4–12. [Google Scholar] [CrossRef]
- Aaltonen, I.; Salmi, T.; Marstio, I. Refining levels of collaboration to support the design and evaluation of human-robot interaction in the manufacturing industry. Procedia CIRP 2018, 72, 93–98. [Google Scholar] [CrossRef]
- Charalambous, G.; Fletcher, S.; Webb, P. Development of a Human Factors Roadmap for the Successful Implementation of Industrial Human-Robot Collaboration. Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future. In Proceedings of the AHFE 2016 International Conference on Human Aspects of Advanced Manufacturing, Orlando, FL, USA, 27–31 July 2016; Schlick, C., Trzcieliński, S., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 195–206, ISBN 978-3-319-41696-0. [Google Scholar]
- Faber, M.; Bützler, J.; Schlick, C.M. Human-robot Cooperation in Future Production Systems: Analysis of Requirements for Designing an Ergonomic Work System. Procedia Manuf. 2015, 3, 510–517. [Google Scholar] [CrossRef] [Green Version]
- Arai, T.; Kato, R.; Fujita, M. Assessment of operator stress induced by robot collaboration in assembly. CIRP Ann. 2010, 59, 5–8. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L. Gesture recognition for human-robot collaboration: A review. Int. J. Ind. Ergon. 2018, 68, 355–367. [Google Scholar] [CrossRef]
- Wadekar, P.; Gopinath, V.; Johansen, K. Safe Layout Design and Evaluation of a Human-Robot Collaborative Application Cell through Risk Assessment—A Computer Aided Approach. Procedia Manuf. 2018, 25, 602–611. [Google Scholar] [CrossRef]
- DIN Deutsches Institut für Normung e. V. Ergonomics of Human-System interaction—Part 110: Interaction Principle; Beuth Verlag GmbH: Berlin, Germany, 2020; (ISO 9241-110:2020). [Google Scholar]
- Schreier, M. Varianten qualitativer Inhaltsanalyse: Ein Wegweiser im Dickicht der Begrifflichkeiten. Forum Qual. Soz. Forum Qual. Soc. Res. 2014, 15, 27. [Google Scholar] [CrossRef]
- Gläser, J.; Laudel, G. Life With and Without Coding: Two Methods for Early-Stage Data Analysis in Qualitative Research Aiming at Causal Explanations. FQS—Forum Qual. Soz. 2013, 14, 1–37. [Google Scholar] [CrossRef]
- Kuckartz, U. Qualitative Inhaltsanalyse. Methoden, Praxis, Computerunterstützung, 4. Auflage; Beltz Juventa: Weinheim, Basel, 2018; ISBN 9783779946830. [Google Scholar]
- Helfferich, C. Leitfaden- und Experteninterviews. In Handbuch Methoden der empirischen Sozialforschung, 2. Aufl. 2019; Baur, N., Blasius, J., Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2019; pp. 669–686. ISBN 978-3-658-21307-7. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baumgartner, M.; Kopp, T.; Kinkel, S. Analysing Factory Workers’ Acceptance of Collaborative Robots: A Web-Based Tool for Company Representatives. Electronics 2022, 11, 145. https://doi.org/10.3390/electronics11010145
Baumgartner M, Kopp T, Kinkel S. Analysing Factory Workers’ Acceptance of Collaborative Robots: A Web-Based Tool for Company Representatives. Electronics. 2022; 11(1):145. https://doi.org/10.3390/electronics11010145
Chicago/Turabian StyleBaumgartner, Marco, Tobias Kopp, and Steffen Kinkel. 2022. "Analysing Factory Workers’ Acceptance of Collaborative Robots: A Web-Based Tool for Company Representatives" Electronics 11, no. 1: 145. https://doi.org/10.3390/electronics11010145
APA StyleBaumgartner, M., Kopp, T., & Kinkel, S. (2022). Analysing Factory Workers’ Acceptance of Collaborative Robots: A Web-Based Tool for Company Representatives. Electronics, 11(1), 145. https://doi.org/10.3390/electronics11010145