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Abstract: A memristor is a vital circuit element that can mimic biological synapses. This paper
proposes the memristive version of a recently proposed map neuron model based on the phase
space. The dynamic of the memristive map model is investigated by using bifurcation and Lyapunov
exponents’ diagrams. The results prove that the memristive map can present different behaviors
such as spiking, periodic bursting, and chaotic bursting. Then, a ring network is constructed by
hybrid electrical and chemical synapses, and the memristive neuron models are used to describe the
nodes. The collective behavior of the network is studied. It is observed that chemical coupling plays a
crucial role in synchronization. Different kinds of synchronization, such as imperfect synchronization,
complete synchronization, solitary state, two-cluster synchronization, chimera, and nonstationary
chimera, are identified by varying the coupling strengths.

Keywords: synchronization; chimera state; memristor; map neuron model; neuronal network

1. Introduction

The memristor is the fourth fundamental circuit element besides the three primary
circuit elements, namely resistor, inductor, and capacitor, presented by Chua in 1971 [1]. A
memristor, a memory resistor, has become well known since the investigation of Strukov et al.
in 2008 [2] on memristor properties. Different applications such as self-programming logic
circuits [3], digital memory [4], signal and image processing [5], cellular neural networks [6],
etc., have been introduced for memristors. Moreover, memristors can intrinsically provide
high nonlinearity to the system [7]. This feature has led many studies to focus on proposing
or improving memristor models to bring higher nonlinearities [8–10]. Besides, memristors
are one of the best candidates to model electromagnetic induction in biological systems
and neuronal models, and circuits [11,12]. For this reason, some researchers have proposed
memristive neuronal models by adding the magnetic flux to the membrane potential of
a neuron model. The memristive Hindmarsh–Rose neuronal model [13–15], memristive
Hodgkin–Huxley model [16], and memristive Morris–Lecar neuronal model [17] are some
examples.

In addition to the flow-based neuronal models, the map-based neuronal models have
also been investigated as they are computationally efficient, fast, flexible, and simple to
implement [18]. Some map-based neuronal models can be found in [19–22]. In order to
propose or implement the memristive maps, some discrete memristors have been intro-
duced [23–25]. Employing the discrete memristors, the memristive version of the Rulkov
map was proposed in [26]. Apart from investigating the neuron models, the memristors are
able to mimic the biological synapses [7]. Synapses are the main parts of neuronal systems
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as they enable neurons to connect with other neurons for information transferring [27]. As
mentioned in [27], chemical and electrical synapses are two well-known types of defined
synapses for neurons. However, some researchers have used memristors as synaptic cou-
plings between neurons [28,29]. Xu et al. [28] investigated the behavior of neurons coupled
by memristor and found that memristive coupling can lead to enhanced synchronization.

By considering the synapses in neuronal models, neuronal networks can be constructed
to discover the neurons’ collective behaviors [30]. Synchronization is one of the essential
collective behaviors of neuronal networks. This behavior refers to the states in which
all neurons, or generally all oscillators, are simultaneously in the same dynamics [31,32].
Complete synchronization [33], imperfect synchronization [34], phase synchronization [35],
lag synchronization [36], cluster synchronization [37], and partial synchronization [38] are
some well-known synchronization types. Two specific types of partial synchronization
are chimeras [39] and solitary states [40]. In a solitary state, almost all oscillators are
synchronized except a few ones, which are randomly positioned in the network. However,
the chimera refers to the state in which oscillators split into coherent and incoherent
groups [41]. These neuronal collective behaviors have been studied in numerous flow-
based [42–44], and also map-based, neuronal models [45–47].

In this paper, firstly, the memristive version of a recently proposed neuronal map is
introduced. The dynamics of the memristive model are investigated by varying parameters,
and the bifurcation and Lyapunov exponents’ diagrams are presented. Secondly, the
collective behavior of the network of memristive maps is investigated wherein the neurons
are coupled via both electrical and chemical synapses. The synchronization error of the
network is computed for different synaptic couplings. It is observed that the chemical
synapses play a more critical role in synchronization. The behavior of the network before
complete synchronization is also investigated, and several partial synchronization patterns
are found. Therefore, the description and investigation of the memristive neuron map
model are presented in Section 2. The collective behavior of the network of the proposed
map is detailed in Section 3. Finally, Section 4 concludes the most important results.

2. Memristive Neuron Map Model

In 2020, Zandi et al. [21] introduced a one-dimensional neuronal map based on the
phase space analysis that can exhibit different neuronal behaviors such as action potential,
spiking, bursting, chaotic bursting, and myocardial action potential. In this paper, we
modify this model with the aim of considering the electromagnetic effects. Consequently, a
discrete memristor defined by Li et al. in 2021 [26] is added to the model, which is defined
as follows:

i(n) = W(ϕ(n))v(n) = tanh(ϕ(n))v(n)

ϕ(n + 1) = ϕ(n) + εv(n)
(1)

Here, v, i, and ϕ are memristor’s voltage, memristor’s current, and the flux variable, re-
spectively, ε is the control variable, and n is an integer simulation step. Thus, n = 1, 2, . . . , T,
where T is the total number of samples. Using the presented discrete memristors, the
neuron map model can be described as follows:

x(n + 1) = F(x(n)) + µ tanh(ϕ(n))x(n)

ϕ(n + 1) = rϕ(n) + εx(n)
(2)

where µ and r are the control parameters, and n = 1, 2, . . . , T. Moreover, F(x(n)) is
described as mentioned below [21]:



Electronics 2022, 11, 153 3 of 11

F(x(n)) =



x(n) + k1(x(n)− vr1)(x(n)− vc1) + I x < θ

vs + k3

(
x(n)−

vth1
−θ

2 + θ
)2

θ < x < vth1

vrest + k4

(
x(n)−

vth2
−vth1
2 + vs

)
vth1 < x < vth2

x(n) + k2(x(n)− vr2)(x(n)− vc2)− 20 x > vth2

(3)

The parameters are set at k1 = 0.03, k2 = 0.15, k3 = k4 = 0.00001, I = 1, vr1 = −55,
vr2 = −3, vc1 = −59, vc2 = −3, vth1 = −30, vth2 = −20, vrest = −75, vs = 0, and θ = −40.
Considering r = 0.95 and ε = 0.2, Figure 1 shows the phase diagrams and time series of
the memristive model in x− ϕ plane for different values of µ. The initial conditions are
(x(1), ϕ(1)) = (0.1,−0.1). Figure 1a,b show the spiking behavior of the model in µ = 0.1.
Similarly, Figure 1c,d present periodic bursting in µ = 0.25, and Figure 1e,f demonstrate
chaotic bursting in µ = 0.225.
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Figure 1. The phase diagram in the x-ϕ plane (left panel) and the time series of x (navy blue) and ϕ

(orange) variables of the memristive map model (right panel) for different µ values. (a,b) Spiking
behavior for µ = 0.1. (c,d) Periodic bursting for µ = 0.25. (e,f) Chaotic bursting for µ = 0.225. Other
parameters are k1 = 0.03, k2 = 0.15, k3 = k4 = 0.00001, I = 1, vr1 = −55, vr2 = −3, vc1 = −59,
vc2 = −3, vth1

= −30, vth2 = −20, vrest = −75, vs = 0, θ = −40, r = 0.95, s and ε = 0.2. The used
initial condition is (x(1), ϕ(1)) = (0.1,−0.1).
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To study the different dynamics of the memristive neuron map, the bifurcation di-
agram and the Lyapunov exponents are obtained and investigated. Figure 2 shows the
bifurcation diagram and the corresponding Lyapunov exponents according to the variation
of µ parameter considering the initial condition of (x(1), ϕ(1)) = (0, 0) and k1 = 0.03,
k2 = 0.15, k3 = k4 = 0.00001, I = 1, vr1 = −55, vr2 = −3, vc1 = −59, vc2 = −3,
vth1 = −30, vth2 = −20, vrest = −75, vs = 0, θ = −40, r = 0.95, and ε = 0.2. It is
attained that the neuron’s behavior is mostly periodic by varying µ; however, the period
and amplitude of the oscillations change. In the special ranges of µ, such as [0.1836, 0.1862],
[0.1884, 0.1901], [0.208, 0.2117], [0.2172, 0.2339], and [0.2393, 2437], the chaotic bursting can
be observed. It should be noted that many periodic windows can be observed. For example,
(0.1862, 0.1884), (0.1901, 0.208), (0.2117, 0.2172), and (0.2339, 0.2393) are four significantly
observed periodic windows among which (0.1901, 0.208) is the biggest one. Moreover,
boundary crises, period-doubling, and period-halving bifurcation can be observed in
these periodic windows. Furthermore, period-doubling bifurcations can be observed for
0 ≤ µ ≤ 0.183. Therefore, it can be concluded that the neuron can exhibit period bursting
of period n in this range of µ parameter.
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Figure 2. (a) The bifurcation diagram (navy blue and orange colors refer to the x and ϕ variables)
and (b) the Lyapunov exponents’ diagram of the memristive map model by the variation of µ with
considering k1 = 0.03, k2 = 0.15, k3 = k4 = 0.00001, I = 1, vr1 = −55, vr2 = −3, vc1 = −59,
vc2 = −3, vth1

= −30, vth2 = −20, vrest = −75, vs = 0, θ = −40, r = 0.95, and ε = 0.2. The
initial condition is (x(1), ϕ(1)) = (0, 0). Periodic behavior is the most noticeable behavior of the
neuron; however, for µ ∈ [0.1836, 0.1862] ∪ [0.1884, 0.1901] ∪ [0.208, 0.2117] ∪ [0.2172, 0.2339] ∪
[0.2393, 2437], the periodic bursting can also be observed.

Figure 3 presents the bifurcation diagram and the corresponding Lyapunov exponents
by varying the r parameter. The assumed initial condition is (x(1), ϕ(1)) = (0, 0) and the
other parameters are k1 = 0.03, k2 = 0.15, k3 = k4 = 0.00001, I = 1, vr1 = −55, vr2 = −3,
vc1 = −59, vc2 = −3, vth1 = −30, vth2 = −20, vrest = −75, vs = 0, θ = −40, µ = 0.225, and
ε = 0.2. It can be observed that for r < 0.3783, the neuron has periodic behavior, and chaotic
bursting emerges for r ≥ 0.3783. In addition, many periodic windows can be noticed in



Electronics 2022, 11, 153 5 of 11

r ∈ [0.3783, 1]; however, (0.3967, 0.4398), (0.4657, 0.5209), and (0.6338, 0.6445) are the three
most prominent ones. The most significant detected behaviors in these periodic windows
are period-halving and period-doubling bifurcations.
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condition is (x(1), ϕ(1)) = (0, 0). The neuron has periodic behavior for 0 ≤ r < 0.3783; however, by
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3. Network’s Dynamics

The collective behavior of the coupled proposed memristive map is also investigated.
The neurons are assumed to be coupled via simultaneous electrical and chemical synapses in
a bidirectional ring topology. Thus, the implemented network can be formulated as follows:

xi(n + 1) = F(xi(n)) + µ tanh(ϕi(n))xi(n)

+ε
N
∑

j=1
G1

ij
[(

F
(
xj(n)

)
+ µ tanh

(
ϕj(n)

)
xj(n)

)
−(F(xi(n)) + µ tanh(ϕi(n))xi(n))]

+gc(v∗s − xi(n))
N
∑

j=1
G2

ij

(
1

1+e(−β(xj−Θs))

)
ϕi(n + 1) = rϕi(n) + εxi(n)

(4)

where ε and gc are, respectively, the electrical and chemical synaptic strengths, and Θs, β,
and v∗s are the control parameters. Here, these parameters are set at Θs = −40, β = 50, and
v∗s = −40. Moreover, G is the square matrix that determines the bidirectional ring topology.
The parameters of the model are set at k1 = 0.03, k2 = 0.15, k3 = k4 = 0.00001, I = 1,
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vr1 = −55, vr2 = −3, vc1 = −59, vc2 = −3, vth1 = −30, vth2 = −20, vrest = −75, vs = 0,
θ = −40 µ = 0.225, r = 0.95, and ε = 0.2, where the neuron exhibits chaotic bursting.

Considering a ring network of 100 memristive neuron maps, the synchronization error
is calculated as a criterion for evaluating the synchronization of the neurons. This criterion
is defined as follows:

E =
1

T(N − 1)

T

∑
k=1

N

∑
j=2

√(
x1(k)− xj(k)

)2
+
(

ϕ1(k)− ϕj(k)
)2 (5)

Here, N and T are, respectively, the network size and the run time (number of samples)
of the map. Considering the mentioned parameters, the synchronization error is obtained
under three conditions. In the first condition, ε is set to zero, which means the neurons
are coupled only through chemical synapses, and the synchronization error is obtained
for 100 chemically coupled neurons. Similarly, in the second condition, gc is set to zero,
and the synchronization error is calculated for the ring network of electrically coupled
neurons. Figure 4a represents the synchronization error of the chemically coupled neurons
for different chemical synaptic strengths. The network reaches complete synchronization
only for a small range of chemical coupling strengths (0.0427 ≤ gc ≤ 0.0463). For gc > 0.487,
the neurons become unstable. Figure 4b shows the synchronization error of the neurons
coupled through electrical synapses. It is observed that the synchronization error is high
for any electrical coupling strength. Therefore, the electrically coupled neurons cannot
become synchronized.
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Figure 4. Synchronization error of the network of 100 memristive neuron maps connected through
(a) chemical and (b) electrical synapses by the variation of coupling strengths. The network parame-
ters are Θs = −40, β = 50, and v∗s = −40. Complete synchronization can be observed in chemically
coupled neurons for 0.0427 ≤ gc ≤ 0.0463.
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In the third condition, the effects of the simultaneous alteration of both chemical
and electrical coupling strengths are investigated on the synchronization state. Figure 5
represents the synchronization error by the variation of chemical and electrical synaptic
strengths. As shown in Figure 5, the complete synchronization can only be obtained in
small ranges of chemical coupling strengths for any electrical coupling strength. However,
by increasing the electrical coupling strength, the synchronous region firstly shrinks until
ε < 0.06 and then enlarges again. Dark magenta in this figure represents the region of
complete synchronization state. Consequently, it seems that in this case, chemical synaptic
coupling plays an essential role in reaching complete synchronization.
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parameters are Θs = −40, β = 50, and v∗s = −40. Complete synchronization can be observed for a
small range of chemical coupling strength.

By looking more closely at the network dynamics, other collective behaviors can be
observed among the neurons connected through chemical couplings. Figure 6 illustrates
three different behaviors of the network named imperfect synchronization, complete syn-
chronization, and solitary state for different gc values. The spatiotemporal patterns along
with the snapshots and the time series of neurons are shown for each state. Figure 6a,b
show an imperfect synchronization for gc = 0.04. In this case, although the majority of the
neurons are synchronous, a few of them have escaped from synchronization. The behavior
of the escaped neurons is the same as those synchronized. Therefore, the pattern can be
called imperfect synchronization. Figure 6c,d represent the complete synchronization for
gc = 0.044. For a stronger chemical coupling strength, the solitary state can be observed.
Figure 6e,f illustrate the solitary state for gc = 0.06; in this case, the escaped neurons
oscillate with a different firing pattern from the synchronized ones.
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Figure 6. The spatiotemporal patterns (left panel) and the time series and snapshots (right panel)
of the network of 100 memristive neuron maps coupled via chemical synapses. (a,b) For gc = 0.04,
imperfect synchronization is observed. (c,d) For gc = 0.044, complete synchronization is achieved.
(e,f) For gc = 0.06, the solitary state appears.

By increasing the electrical synaptic strengths, more types of collective behaviors can
be observed. Figure 7 demonstrates the network’s spatiotemporal patterns along with its
time series and snapshots in three states, namely, two-cluster synchronization, chimera,
and nonstationary chimera. In Figure 7a,b, which are plotted for gc = 0.07 and ε = 0.01,
it can be observed that the neurons are synchronized in two groups; thus, the pattern is
called two-cluster synchronization. Figure 7c,d present the chimera state for gc = 0.05
and ε = 0.05. As two groups of coherent and incoherent neurons are formed, the pattern
is the chimera state. Another type of chimera with moving incoherent clusters, i.e., the
nonstationary chimera, can be seen in Figure 7e,f for gc = 0.52 and ε = 0.11. In this case,
the positions of incoherent neurons vary in time.
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Figure 7. The spatiotemporal patterns (left panel) and the time series and snapshots (right panel) of
the network of 100 memristive neuron maps coupled via electrochemical synapses. (a,b) For gc = 0.07
and ε = 0.01, imperfect synchronization is formed. (c,d) For gc = 0.05 and ε = 0.05, the chimera state
is observed. (e,f) For gc = 0.52 and ε = 0.11, the nonstationary chimera appears.

4. Conclusions

The presented paper was mainly divided into two parts. Firstly, the memristive version
of a newly proposed neuron map model was introduced. A one-dimensional map-based
neuronal model was defined based on the phase space by Zandi et al. in 2020 [21]. Here, we
modified this map by adding a discrete memristor, as in [26], to consider the electromagnetic
effects. The bifurcation diagrams and the Lyapunov exponents were obtained to study the
dynamics of the proposed memristive model. These diagrams showed that the memristive
map could exhibit different neuronal behaviors, such as spiking, periodic bursting, and
chaotic bursting.

Secondly, the collective behavior of the proposed memristive map was investigated
by locating 100 neurons in a bidirectional ring network with both electrical and chemical
synaptic couplings. The synchronization error was computed to find whether the network
could become completely synchronized. This criterion was calculated under three condi-
tions considering only electrical synapses, only chemical synapses, and both electrical and
chemical synapses. The results showed that the ring network of chemically coupled maps
could be completely synchronized, while the network could not become synchronized
through electrical synaptic couplings. Besides, when coupled through both electrical and
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chemical synapses, the complete synchronization state could be observed in a small range
of chemical coupling strength. This range can become wider by the increase of electrical
coupling strength. In addition to the complete synchronization, imperfect synchronization,
solitary states, two-cluster synchronization, chimera, and nonstationary chimera were
detected in different electrical and chemical coupling strengths.
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