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Abstract: Due to the dynamic mobility feature, the proactive flow rule cache method has become
one promising solution in software-defined networking (SDN)-based access networks to reduce
the number of flow rule installation procedures between the forwarding nodes and SDN controller.
However, since there is a flow rule cache limit for the forwarding node, an efficient flow rule cache
strategy is required. To address this challenge, this paper proposes the mobility-aware hybrid
flow rule cache scheme. Based on the comparison between the delay requirement of the incoming
flow and the response delay of the controller, the proposed scheme decides to install the flow rule
either proactively or reactively for the target candidate forwarding nodes. To find the optimal
number of proactive flow rules considering the flow rule cache limits, an integer linear programming
(ILP) problem is formulated and solved using the heuristic method. Extensive simulation results
demonstrate that the proposed scheme outperforms the existing schemes in terms of the flow table
utilization ratio, flow rule installation delay, and flow rules hit ratio under various settings.

Keywords: flow rule; hybrid rule cache; mobile flow; software-defined networking

1. Introduction

Software-defined networking (SDN) decouples the control plane from the forwarding
plane via a programmable interface between two planes, such as OpenFlow [1]. The
separated SDN architecture supports a global network view and flow-based fine-granular
traffic control. Based on the separated architecture, SDN has been researched with respect
to enhancement of network operation efficiency. For example, SDN enables unified control,
which is supported by the device, edge, and orchestration controllers [2]. In addition, SDN
allows heterogeneous layered networks in terms of radio nodes as well as operators to
be optimized by the SDN orchestrator [3]. Moreover, in combination with mobile edge
computing (MEC), SDN has been applied in 5G networks to design dynamic, manageable,
and cost-effective networks. For instance, SDN can perform the decision making for MEC
server selection to maximize the perceived users’ satisfaction as well as the MEC servers’
profit based on the global view of the SDN controller [4]. Furthermore, it is expected that
the flexible operation of SDN can be extended to consider end-to-end network orchestration
with heterogeneous components, domains, and relevant interfaces [5]. In this way, it can be
noted that SDN can provide benefits in the field of communications and computing with
respect to the perspectives of both users and network operators [4].

Basic data delivery in SDN is performed by matching the flow rules in the forwarding
plane nodes stored by the controller. When there is no matched rule for the incoming flow,
the forwarding node asks for rule caching to the controller using the packet-in message.
Then, the controller caches the flow rule to the forwarding nodes along with the appropriate
path using the packet-out or flow-mod messages. This procedure is the reactive flow rule
placement operation [1].
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In the forwarding plane, flow rules are cached in the local Ternary Content Addressable
Memory (TCAM), which is expensive and has a limited size [6]. Therefore, the efficient rule
caching in the TCAM for providing flow-based fine-granular traffic control has become one
of the most important research issues in SDN.

Considering the rule placement problem with the capacity constraint of the forwarding
node, conventional studies have provided rule compression [7], distribution [8], and energy-
aware rule caching [9]. However, these studies focused on the static scenarios without
considerations of the mobile environment [10].

On the other hand, SDN is attracting interest to support mobile scenarios such as
software-defined Vehicular Access Networks (VANs) [11] and the Internet of Things [12].
In mobile scenarios, there can be dynamic flow rule changes due to the device’s mobility
features. Figure 1 shows the motivating example of the mobile scenario. Since it is a
challenging task to implement virtualized wireless control functions [13], such as resource
and security management (i.e., they can be implemented in the access devices (ADs) or
in the controller decoupled from the ADs), considering the wireless parts of ADs will
be one of our future works. Note that ADs communicate with the controller based on
the SDN interface (i.e., OpenFlow [1]), receive packets from mobile nodes (MNs), and
deliver them to the core network according to the flow rules. Initially, upon receiving
the new packets of flow 1 and flow 2 from the MN, AD1 encapsulates the packets in a
packet-in message and sends it to the controller using the OpenFlow protocol [1]. The
controller then makes the rules for flow 1 and 2 to AD1. This means that two flow rules
are installed by means of the reactive flow rule placement operation as described above.
We assume that flow 1 is delay-sensitive and flow 2 was delay-tolerable. According to
the two flow rules, the data of the two flows can be delivered through AD1. After the
MN moves to AD2’s area, the MN tries to start the communication with AD2 for flows 1
and 2. In this case, if the flow rules for flows 1 and 2 are again installed by means of the
reactive operation, the response delay for installation is required. In addition, if there are
other flow rule installation requests at the same time, the delay becomes higher, which
can result in quality of service (QoS) degradation, especially for the delay-sensitive flow
(i.e., flow 1). Although the mobility management protocols have been applied in the
SDN-based access networks, such as the distributed mobility management [14] and proxy
mobile IPv6 [15], to preserve the IP address during mobility, the response delay issue is
unavoidable because such protocols are operated in the control plane after the forwarding
plane delivers the packet-in messages to the controller [16,17]. To handle the response
delay issue, several works on proactive flow rule caching considering the mobility features
have been conducted [6,11,12,18–24]. These works proactively cache the flow rules to the
predicted target forwarding nodes, utilizing mobility prediction models such as the Markov
predictor [12,18,19,21] and machine learning [20]. Since these models naturally have a
prediction error according to variable factors, some of the proactively cached rules can be a
waste of resources, being repetitively cached with multiple forwarding nodes, and are not
utilized at all. In addition, these works focused on the proactive rule cache method based
on mobility prediction without considerations of the load status of the controller. This
means that they proactively cache the flow rules even when the fast response delay of the
controller is guaranteed. In other words, some proactively cached flow rules in these works
can be uncertain, even though the controller can manage the rules with certainty based on
the intelligence and network view. As mentioned above, because of the location prediction
error, reactive flow rule placement can be more efficient than the proactive approach if the
controller’s response delay meets the delay requirements of the flows.

To address the problems above, this paper proposes a hybrid flow rule cache scheme
which proactively as well as reactively caches the flow rules based on the response delay of
the controller and delay requirements of the flows. After we formulate the proposed hybrid
flow rule cache problem to minimize the waste of resources, extensive simulation results
are provided which show that the proposed scheme can reduce the waste of resources and
enhance the flow rule hit ratio compared with the previous works.
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Figure 1. Motivating example. (a) Two flows of the MN are delivered through AD1. (b) MN moves 
and starts to communicate with AD2. 
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Figure 1. Motivating example. (a) Two flows of the MN are delivered through AD1. (b) MN moves
and starts to communicate with AD2.

The key contributions of this paper are twofold: (1) to the best our knowledge, this is
the first work to optimize the performance of the flow rule cache problem with the consid-
eration of the response delay from the controller, which can be a key performance metric to
determine whether the proactive flow rule cache is required or not, and (2) we evaluate
the proposed hybrid flow rule cache scheme in terms of the flow table utilization ratio,
flow rule installation delay, and flow rules hit ratio under various environments, which can
provide valuable design guidelines for advanced software-defined access networks.

The remainder of this paper is organized as follows. The related works on the rule
placement problem are presented in Section 2. Then, the system model and proposed
hybrid cache scheme are described in Sections 3 and 4, respectively. After Section 5 presents
the performance evaluation, Section 6 concludes this paper.

2. Related Work

The rule placement problem was researched in the SDN field for two main reasons: ca-
pacity constraint and signaling overhead. For flow-based fine-granular traffic engineering,
numerous flow rules are required. For example, a typical enterprise network requires up
to 8 million rules [25]. As mentioned above, flow rules are usually cached in the TCAM
on the forwarding nodes, which enables very high lookup performance. However, the
TCAM is 400 times more expensive than traditional memory and has limited capacity [26].
This results in approximately 20,000 flow rules for the commercial off-the-shelf switches,
which is much less than the number of required rules for efficient traffic engineering [27].
In addition, as explained above, the flow rule caching requires the signaling exchange
between the forwarding nodes and SDN controller. Consequently, the SDN controller
can be overloaded when there are excessive flow rule request messages. This situation
becomes severe in the access networks due to the dynamic mobility feature, which results
in numerous mobile flows (i.e., handover events).

To handle the rule placement problem, there have been efforts to reduce the number of
flow rules in the core network devices. B. Wolfgang et al. [7] utilized the compression of the
flow rules by means of wildcard expressions and logic minimization to save the flow entries
without much compression time. X-N. Nguyen et al. [8] provided the linear programming
model for the flow rule allocation problem to satisfy the endpoint network policy while
relaxing the routing policy. F. Giroire et al. [9] presented an optimization scheme to
minimize the energy consumption of the routers and guarantee the QoS requirements
based on the centralized network view. L. Luo et al. [10] formulated an optimization
problem for the rule caching method to minimize the end-to-end delay and provided a
heuristic algorithm to solve it. However, these works only considered the static scenarios in
the core network. In other words, they only assumed that the new flows which required the
flow rule installation were newly generated flows to the devices without consideration for
the moved flows from other devices due to the handover. Since the requirements between
the newly generated and moved flows can be different in the access networks [11,12],



Electronics 2022, 11, 160 4 of 13

an efficient method for flow rule installation that considers the different requirements is
required. Note that this paper also covers the differentiation between the newly generated
and moved flows.

Compared with these works, which focused on the static scenarios in the core net-
works, there have been several works which considered mobile scenarios in access net-
works [6,11,12,18–24]. Since there can be numerous mobile flows (i.e., handover events),
they may generate multitudinous flow rule requests and necessitate a fast response for flow
rule installation. To meet these challenges, mobility has been considered a main feature of
the flow rule placement. As an initial work, H. Li et al. [6] used duplicated rules according
to the user mobility while minimizing the rules’ space occupation and guaranteeing the
satisfaction ratio. However, this work just focused on the constraint of flow rules without
consideration of the flow rule installation procedure between the devices and controller.
S. Misra et al. [11] proactively cached the flow rules into a new path which would be
utilized for the computed task download according to the user’s mobility. S. Bera et al. [12]
predicted the next locations of the end users based on the Markov predictor and determined
the access points (APs) to minimize the delay and the number of active APs. Similarly, M.
Dong et al. [18] provided prefetching algorithms which optimized the least recently used
approach, considering the forwarding paths in the access networks and user positions to
increase the cache hit ratio. X. Wang et al. [19] utilized multicast addresses and installed the
rules in advance based on the conditions of mobile users to decrease the number of rules
for the Internet of Vehicle (IoV) scenarios. Although these papers [11,12,18,19] optimized
the number of flow rules in the devices, they did not consider the controller’s response
delay. This means that the flow rules were proactively installed even when the controller
could guarantee the requirements of flow rule installation. This can result in inefficiency
of the resource utilization. E. Zelikovic et al. [20] also predicted the future location and
AP load using a recurrent neural network (RNN) and then migrated the virtual AP to
achieve seamless handover. L. Mendiboure et al. [21] introduced a flow rule deployment
policy according to the flow table occupancy rate, mobility of vehicles, and control channel
capacity. In addition, an optimal selection for the flow rule path in the fog computing of the
offloading scenario was considered to reduce the average delay and energy consumption
based on the flow rule capacity constraint [22]. Moreover, T. Theodorou et al. [23] invoked
global topology discovery processes to detect the mobility and updated flow rules proac-
tively based on the centralized global network view. S. H. Rastegar et al. [24] configured
an integer linear program to handle the flow table resource allocation problem when the
traffic was generated in a bursty on-off manner. However, these papers [20–24] utilized
the proactive rule placement method only. Consequently, if a prediction error occurred
which was a natural problem of the prediction algorithms [18], high resource usage (i.e.,
repetitively cached at multiple forwarding devices) could be experienced, which could
block the additional flow rule installations.

To handle the above problems, this paper considers the response delay of the controller,
which can be a key performance metric to determine whether a proactive flow rule cache
is required or not. In addition, since the prediction error of the proactive flow rule cache
method can lead to a waste of resources, the reactive flow rule cache method can be
efficient if the controller’s response delay meets the delay requirements of the flows.
Therefore, this paper proposes a hybrid flow rule cache scheme which proactively as well
as reactively caches the flow rules based on the response delay of the controller and the
delay requirements of the flows. In the proposed scheme, the reactive flow rule cache
method is preferred to prevent the waste of flow rule caches when the delay requirement
of flows can be guaranteed by the response delay of the controller. On the other hand, the
proactive flow rule cache method is utilized to remove the flow rule installation procedure,
which can be a time-consuming task when the controller is overloaded.
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3. System Model

Figure 2 presents the system architecture of software-defined access networks, where
the forwarding nodes, including the ADs and switches, are connected to the controller
via the SDN interface (i.e., OpenFlow [1]). Since the controller placement problem is one
of the most challenging issues in SDN [28,29], this paper assumes that the controller can
communicate with the ADs with a constant propagation delay through the dedicated
control channel [30]. In addition, the controller can configure the flow-based network
context view using the statistics reports from the forwarding nodes in terms of the port,
queue, group, meter, and table [1,28]. Each forwarding node has its own flow table
composed of flow rules. Mobile nodes such as sensor nodes (SNs), phones, and vehicles
can move between the ADs.
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When the mobile nodes move from AD1 to AD2, the flow rules of the mobile nodes
can be proactively or reactively cached to AD2. If the proactive rule placement operates,
the rules are proactively cached to AD2 and switch along with the path, which will be the
changed path due to the mobility.

The number of flow rules at time t in the ith AD is denoted by Rt
i . The maximum

number of rules in the ith access device due to the capacity constraint is denoted by Ri
max.

Rt
i includes the reactively and proactively cached rules and is thus given by

Rt
i = Rt−1

i + Rt
i,N + Rt

i,M − Rt
i,E. (1)

where Rt
i,N , Rt

i,M, and Rt
i,E are the numbers of static, mobile, and expired flow rules, respec-

tively, in the ith AD. Static flow rules are newly generated flows in the area of the AD. In
addition, flow rules can be removed after a timeout with no received traffic according to
the flow expiry mechanism in the OpenFlow protocol [1]. In addition, the mobile flows are
handover flows from the neighboring ADs. The controller determines that the rules for the
mobile flows need to be proactively or reactively cached. Therefore, Rt

i,M is denoted by

Rt
i,M =

Mt
i

∑
j=1

rr,j
i +

Mt
i

∑
j=1

rp,j
i . (2)

where rr,j
i and rp,j

i denote the jth reactive and proactive flow rules among the total Mt
i

mobile flows into the ith AD at time t, while rr,j
i and rp,j

i are binary variables, where the
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value is 1 if the flow rule exists and 0 if not. For example, if the kth flow rule is proactively
installed in the ith AD, then rr,k

i is 0 and rp,k
i is 1.

Meanwhile, the jth mobile flow can have its own response delay requirement (or
constraint) dth

j . The response delay of the jth mobile flow can be measured by the duration
between the packet-in and packet-out messages at t, denoted as dt

j. This depends on the
load on the controller. Since there can be a dynamic incoming load on the controller,
especially for the mobile access networks, the delay requirement should be managed well.
This is tightly related to the quality of service (QoS) [31]. In other words, a proactive rule
cache is required when the controller cannot guarantee the delay requirement. If the flow
rule is proactively cached, dt

j can be 0, which means no delay. In addition, the controller’s
response delay at t with the ith AD is denoted as Dt

i from the controller’s perspective.
The response delay depends on several parameters, such as a the queuing delay, trans-

mission delay, and propagation delay. It can be noticed that the controller can monitor the
queuing delays according to the current state. In this paper, we assume that the controller
follows the M/M/1 queuing model, as it is generally utilized for SDN controllers [10].
Then, the average response delay, except for the transmission and propagation delays, is
given by 1/(C − λ) according to Little’s law [32], where C is the processing capacity of the
controller and λ is the packet-in message arrival rates.

In addition, the transmission delay can be calculated using the bandwidth of the
control channel and the sizes of packet-in and packet-out (or flow-mod) messages. More-
over, the propagation delay can be affected by the medium type. These parameters can
be checked using the network statistics reports from the forwarding nodes defined by the
OpenFlow protocol [1]. Therefore, the controller can estimate the current response delay
using the queuing, transmission, and propagation delays [33] and monitor the history of
the response delays. However, we need to know the future response delay to determine
whether to proactively cache rules or not. Therefore, based on the history of the response
delays, which can be calculated as described above, estimation of the future delay can be
conducted as follows. We assume that there are discrete delay levels which are matched
one to one with the calculated delays for the scalable operation. This paper utilizes a long
short-term memory (LSTM) neural network to forecast the delay, which is widely utilized
for load and state prediction [20,34,35]. The core component of LSTM is to use memory
cells which are composed of three controlling gates (Figure 3): the input gate (it), forget
gate (ft), and output gate (ot) at time t. The input gate decides to add the input data to the
memory cell. In addition, the forget gate aims to forget or reset the last state of the memory
cell. Moreover, the output gate controls the output data that can be propagated to the rest
of the network. The equations for forward propagation are given by

ft
it
ot
gt

 =


σ
σ
σ

tan h

W
(

ht−1
xt

)
(3)

ct = ft � ct−1 + it � gt (4)

ht = ot � tan h(ct) (5)

where xt, ct, and ht are the input sequence, memory cell state, and hidden state at t,
respectively. In addition, σ, W, and � denote the sigmoid function which maps the
input data to the range between 0 and 1, weight matrix, and the Hadamard product,
respectively [34]. The input data sequence for the LSTM network are the response delays
from the controller, which are determined by the packet-in messages at each time unit. Then,
the output is the predicted response delay. An Adam optimizer is used to stochastically
optimize the parameters in the model.
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4. Proposed Hybrid Flow Rule Cache Scheme

In this section, the proposed hybrid flow rule cache scheme is described. Let us
consider that there are N number of ADs and Mi number of mobile flows into the ith AD.
This paper assumes that the predicted target ADs are determined for the mobile flows. To
find the optimal number of proactive flow rules, the proposed scheme can be formulated
as an integer linear programming (ILP) problem, and the problem can be solved using the
heuristic method.

4.1. Problem Formulation

Where rp,j
i denotes the jth proactive flow rule among the total Mt

i mobile flows into
the ith AD at time t, the ILP problem for the hybrid flow rule cache scheme is formulated
as follows:

Minimize ∑N
i=1 ∑Mt

i
j=1 rp,j

i (6)

subject to Rt
i ≤ Rmax

i (7)

dt
j ≤ dth

j (8)

rp,j
i = 1 i f Dt

i ≥ dth
j (9)

rp,j
i = 0 i f Dt

i < dth
j (10)

Since the reactive flow rules should be installed because they are from actual moved
flows after handover into each AD, the proposed scheme aims to minimize the proactive
flow rules (i.e., predicted flow rules) as shown in Equation (6). Equation (7) denotes that the
total number of flow rules at time t in the ith AD is always less than or equal to its flow rule
capacity constraint. In Equation (7), the total number of flow rules includes static, mobile
(reactively and proactively added rules), and expired flow rules as described in Equation (1).
Equation (8) represents that the response delay from the flow’s perspective should be less
than or equal to its response delay constraint, and dt

j can be expressed according to the
existence of the proactively cached rule as follows:

dt
j =

{
0 i f rp,j

i = 1
Dt

i i f rp,j
i = 0

. (11)

Equations (9) and (10) denote that the controller proactively caches the rule by com-
paring its delay performance with the flow’s delay constraint.

Since the above problem needs delay estimation for each flow, the time complexity of
the proposed scheme is O(N × w ×M2), where w is the number of weights.
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4.2. Heuristic Algorithm

Since the above ILP problem is NP hard [36], this paper provides a simple heuristic
algorithm (Algorithm 1) for the hybrid flow rule cache scheme. It is assumed that the
proactive rule caching is determined before the mobile flow physically moves to the target
AD and multiple target ADs can be predicted based on the prediction methods. As we
explained above, since the reactive flow rules should be installed in an AD as they are
from actual moved flows after handover into the area of each AD, the algorithm aims to
determine whether the proactive flow rule for mobile flows is needed or not based on the
estimated controller’s response delay and delay requirement of flows.

Algorithm 1 Heuristic hybrid flow rule algorithm

Input: Set of ADs N, Set of mobile flows Mi from ith AD, Maximum rule capacity Ri
max of ith AD,

Delay constraint of jth flow dth
j .

Output: Flow tables including proactive flow rules in ADs
1: for i ∈ N do
2: Estimate the controller’s response delay Di
3: for j ∈Mi do
4: Select the flow j which has lowest dth

j
5: if Di > dth

j then
6: if Ri < Ri

max then
7: Insert flow j rule in ith AD
8: Ri = Ri +1;

For each AD, the controller first estimates the response delay (i.e., not for each flow),
which can reduce the complexity. Then, among the flows in each AD, the controller finds
the flow which has the minimum delay constraint, because a low delay requirement means
that the flow is delay-sensitive. After the delay constraint of the flow is compared with
the estimated controller’s response delay, whether proactive rule caching is performed
or not is determined. After the decisions of the mobile flows are completed, the static
flows are then processed. Although the delay constraint for the static flows can also be
considered, the controller handles them without priority as much as possible for simplicity.
The time complexity of the proposed heuristic hybrid flow rule algorithm can be expressed
as O(N × w ×M × logM).

4.3. Implementation Cost and Computational Complexity

This paper considers that the implementation cost of each decision (i.e., whether to
use the reactive or proactive flow rule cache) includes the processing cost, prediction cost,
and transmission cost [37]. In the proposed scheme, the processing cost is dependent on
the number of mobile flows multiplied by the number of ADs (i.e., M × N). After the
prediction based on LSTM, whose cost is dependent on the number of weights (i.e., w) [38],
flow rules can be installed one by one in ascending order by delay constraint (i.e., logM) in
the heuristic algorithm. On the other hand, they can be installed by comparing every flow
with each other (i.e., M) in the ILP problem. Consequently, the computational complexity
of the proposed scheme for the ILP problem and heuristic algorithm can be expressed as
O(N × w ×M ×M) and O(N × w ×M × logM), respectively.

5. Performance Evaluation

We evaluated the performance of the proposed hybrid flow rule cache scheme com-
pared with the basic reactive flow rule cache method [1] and MobiFlow [12]. The simulation
parameters are presented in Table 1. We considered the Abilene WAN topology in Inter-
net2 [39], including 12 switches which were connected to the SDN controller. We assumed
that each switch had 20,000 flow rules [27]. This paper used the M/M/1 queuing model for
the SDN controller as explained in Section 3, where the processing capacity of the controller
was set to 5000. In addition, the propagation delay from the forwarding nodes to the
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controller through the dedicated control channel was set to 1 ms. Therefore, the response
delay of the controller depended on the queuing delay. In addition, this paper adapted
Poisson–Voronoi tessellation with the random way point mobility model [40]. According
to the mobility model, there were 10 mobile users whose average packet-in message arrival
rate was 300 based on the Poisson process. Evaluation results were drawn by generating
50,000 random numbers of the packet-in message arrival rate (with an average of 300),
location, velocity (between 0 m/s to 50 m/s), and direction (between 0 to 360 degrees) in
the Abilene WAN topology. In addition, the average delay constraint for the delay-sensitive
flows was assumed to be 30 ms [18]. Moreover, to train the LSTM network, randomly
generated packet-in messages according to the distribution at each time unit were utilized
to calculate the response delay as the input data. Then, the LSTM network could predict
the next response delay. This paper used 75% of the input data to train the network and
25% to test the network. For the training, the number of features, gradient threshold, and
number of epochs were 1, and 30, respectively.

Table 1. Simulation parameters.

Parameters Value

Processing capacity of the controller (C) 5000 messages/second
Flow rule capacity 20,000
Network topology Abilene WAN [39]

Mobility model Poisson–Voronoi tessellation [40]
The number of MNs 10

Packet-in message arrival rate per MN (λ) 300
Bandwidth of the control channel 100 Mbps

Propagation delay 1 ms
Mobility prediction error rate 20%
Ratio of delay sensitive flows 50%

Delay constraint of delay sensitive flows 30 ms

Figure 4 shows the average flow table utilization ratio per AD according to the flow
arrival rate of each mobile user. This is the average ratio of flow rule usage to the max capac-
ity of flow entries. The reactive flow rule cache scheme had minimal flow rules because it
did not include the proactively cached rules. Since the proposed scheme proactively cached
rules only for flows which had a lower delay constraint than the controller’s response delay,
it could reduce the proactively cached rules compared with MobiFlow. For example, if the
flow arrival rate was 300, the proposed scheme could save approximately 11 percent of
the flow table space compared with MobiFlow. As the number of flows increased, the gap
between the proposed scheme and MobiFlow decreased, because the controller’s response
delay became higher according to the number of flows. This means that the number of
flows whose delay constraints were not satisfied also increased.

Table 2 shows the average response delay according to the flow arrival rate. It can be
noticed that the optimal solution of the proposed scheme (i.e., Pro(O)), which was derived
through the above ILP problem, had lower values than those of the heuristic solution of the
proposed scheme (i.e., Pro(H)), because the optimal solution estimated the response delay
precisely per flow. When the flow arrival rate increased, the average response delay also
increased for all schemes because of the maximum capacity constraint of the flow entries.
However, the proposed scheme had lower values than MobiFlow, because the proposed
scheme could retain more available space for the flow rules as described in Figure 4. In the
case of the reactive flow cache scheme, since it always required the controller’s interaction,
it had the highest delay compared with the other schemes. Based on Figure 4 and Table 2,
it can be noted that the proposed scheme could support the delay requirement of the flows
(i.e., by using the proactive operation) while maintaining more available resources in the
flow table (i.e., due to the reactive operation), which could be interpreted as the efficiency
of the hybrid scheme.
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Table 2. Average response delay (ms) according to the flow arrival rate.

λ Pro(O) Pro(H) MobiFlow Reactive

300 29.65 30.82 31.21 41.52
400 30.06 32.39 33.21 46.91
500 33.68 36.77 39.79 57.97

Table 3 shows the time complexity according to the flow arrival rate. Since the
computation complexity of the ILP problem (i.e., Pro(O)) depended on M2, the running
time could increase quadratically according to the number of MNs. Consequently, due
to its high computational complexity, the optimal solution for the ILP problem could
be determined only with a small number of MNs [41]. On the other hand, because the
computational complexity of the heuristic algorithm (i.e., Pro(H)) depended on MlogM, it
could be practically considered in the real SDN environment [42].

Table 3. Computational complexity according to the flow arrival rate.

λ Pro(O) Pro(H)

300 O(30,000) O(3000log10)
400 O(40,000) O(4000log10)
500 O(50,000) O(5000log10)

Figure 5 displays the flow rules hit ratio according to the mobility prediction error
per AD, which is the ratio of the hit flow rules to the total requested flows. The delay
constraints for the proposed scheme were set to 50 ms and 30 ms (i.e., proposed (50 ms) and
proposed (30 ms)). The flow rules hit ratio of the proposed scheme and MobiFlow became
reduced according to the prediction error, because these schemes performed prediction-
based proactive flow rule caches. Even though the prediction error existed, the proposed
scheme had a higher hit ratio compared with MobiFlow because it utilized the proactive
rule cache only when the response delay was not satisfied with the delay constraint. In
addition, the flow rule hit ratio increased when the delay constraint of the flows increased.
This was because the number of flows that did not need to be proactively cached increased.
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Note that the proposed scheme could have a lower risk of prediction error compared
with MobiFlow because the proposed scheme utilizes the reactive flow rule cache method
as much as possible based on the controller’s response delay. However, if the prediction
error became higher, the proposed scheme could also have a waste of resources due to
the wrong prediction compared with the reactive flow rule cache method. Therefore, the
operator should carefully determine whether to use the proactive rule cache method or not
based on the prediction error, considering the trade-off between the perspectives of the
resource efficiency and delay requirement support. Analysis of the trade-off according to
the prediction error will be one of our future works.

6. Conclusions

In SDN-based access networks, the proactive rule cache method that does not need
the flow rule installation procedure has been considered for the delay requirement of
the mobile flows. However, due to the location prediction error which can result in the
waste of flow rule caches, an efficient flow rule cache strategy is required. To address this
problem, this paper proposed a mobility-aware hybrid flow rule cache scheme considering
the delay requirements of flows and the response delay of the controller with the flow table
capacity constraint. Based on the hybrid usage of reactive and proactive cache methods,
the proposed scheme can efficiently utilize the flow rule caches while satisfying the delay
requirement. The proposed scheme was formulated with ILP and solved with the heuristic
algorithm. The simulation results demonstrate that the proposed scheme outperformed the
existing schemes in terms of the flow table utilization ratio, average response delay, and
flow rules hit ratio considering the flow arrival rate and prediction errors. For future works,
the proposed scheme will be applied to the OpenFlow-based physical SDN platform to
show the practical performance.
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