Efficient Pre-Processing and Segmentation for Lung Cancer Detection Using Fused CT Images
Abstract
:1. Introduction
2. Background of the Theory
2.1. Sparse Representation Method
2.2. Image-Decomposition-Based Fusion Methods
2.3. Deep-Learning-Based Fusion Methods
2.4. Rolling Guidance Filtering
2.5. Dictionary Learning
2.6. Laplacian Pyramid Method
3. Materials and Methods
3.1. Image-Segmentation Method
Algorithm 1 Proposed segmentation algorithm. |
Input: Output: Initialization:
|
3.2. Image Fusion Method
Algorithm 2 Proposed fusion algorithm. |
Input: Output:
|
3.2.1. Decomposition of the Segmented Source Image
3.2.2. ASR Method
- For each input image , a sliding window with a size of was used to delete all patches with a step length of one pixel from top to bottom and left to right. It was assumed the was a set of patches in for the ith image. is the number of patches sampled from each input image;
- The column vectors were obtained by rearranging the patches , and each column vector was made to be zero mean by subtracting the the mean value from each value of the column vector.
- From the set , the with the greatest variance was chosen. Then, using , a gradient orientation histogram was generated, and one sub-dictionary was chosen from , which had a total of sub-dictionaries. The gradient orientation histogram can be written as:
- The dictionary that was chosen for SR fusion was . The sparse vectors of were obtained after extracting vector from the of both source images.The Max-L1 fusion rule was used for the fusion of sparse vectors ,It is recommended that the merged mean value be set to:Finally, the fused results of the 1st layer of is estimated by:
- In for the source image patches, Steps 2 to 4 are repeated to obtain the fused results of . To fuse the remaining three layers of the pyramid, the step of selecting the sub-dictionary is repeated. Finally, we are able to build the fused LP image .
3.2.3. Image Reconstruction and Fusion
4. Results
4.1. Dataset
4.2. Image Segmentation
4.3. Image Fusion Results
4.4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CT | Computed Tomography |
LP | Laplacian Pyramid |
ASR | Adaptive Sparse Representative |
LIDC | Lung Image Database Consortium |
PET | Positron Emission Tomography |
HRCT | High-Resolution Computed Tomography |
CAD | Computer-Aided Design |
GCPSO | Guaranteed Convergence Particle Swarm Optimization |
SD | Spatial Domain |
TD | Transform Domain |
PF | Pyramid Fusion |
DWT | Discrete Wavelet Transform |
CVT | Curvelet Transform |
NSCT | Non-Subsampled Contour Transform |
SR | Sparse Representation |
SVD | Singular-Value Decomposition |
DL-GSGR | Dictionary Learning with Group Sparsity and Graph Regularization |
RWT | Redundant Wavelet Transform |
R-DWT | Redundant Discrete Wavelet Transform |
RMLP | Region Mosaicking on Laplacian Pyramids |
NCA | Neighborhood Component Analysis |
LDSB | Lung Data Science Bowl |
MI | Mutual Information |
NCC | Normalized Cross-Correlation |
FMI | Feature Mutual Information |
PCA | Principal Component Analysis |
LIDC-IDRI | Lung Image Database Consortium and Image Database Resource Initiative |
ROI | Region Of Interest |
DICOM | Digital Imaging and Communications in Medicine |
RGB | Red Green Blue |
DSC | Distributed Source Coding |
RD | Region Detection |
LSWI | Level Set Without Initialization |
RM | Re-initialization Methods |
API | Average Pixel Intensity |
SD | Standard Deviation |
AG | Average Gradient |
MI | Mutual Information |
SF | Spatial Frequency |
BiSe-Net | Bilateral Segmentation Network |
ESP-Net | Efficient Spatial Pyramid Network |
GDRLSE | Generalized Distance Regulated Level Set Evolution |
RASM | Robust Active Shape Model |
MSGC | Multi-Scale Grid Clustering |
GMM | Gaussian Mixture Model |
References
- Vijaya, G.; Suhasini, A. An adaptive preprocessing of lung CT images with various filters for better enhancement. Acad. J. Cancer Res. 2014, 7, 179–184. [Google Scholar]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysi. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [Green Version]
- Pu, J.; Roos, J.; Chin, A.Y.; Napel, S.; Rubin, G.D.; Paik, D.S. Adaptive border marching algorithm: Automatic lung segmentation on chest CT images. Comput. Med. Imaging Graph. 2008, 32, 452–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senthil Kumar, K.; Venkatalakshmi, K.; Karthikeyan, K. Lung cancer detection using image segmentation by means of various evolutionary algorithms. Comput. Math. Methods Med. 2019, 2019, 4909846. [Google Scholar] [CrossRef] [Green Version]
- Akter, O.; Moni, M.A.; Islam, M.M.; Quinn, J.M.; Kamal, A. Lung cancer detection using enhanced segmentation accuracy. Appl. Intell. 2020, 50, 1–14. [Google Scholar] [CrossRef]
- Du, J.; Li, W.; Lu, K.; Xiao, B. An overview of multi-modal medical image fusion. Neurocomputing 2016, 215, 3–20. [Google Scholar] [CrossRef]
- Li, S.; Yin, H.; Fang, L. Group-sparse representation with dictionary learning for medical image denoising and fusion. IEEE Trans. Biomed. Eng. 2012, 59, 3450–3459. [Google Scholar] [CrossRef]
- Liu, H.; Cao, H.; Song, E.; Ma, G.; Xu, X.; Jin, R.; Jin, Y.; Hung, C.C. A cascaded dual-pathway residual network for lung nodule segmentation in CT images. Phys. Medica 2019, 63, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Aishwarya, N.; Bennila Thangammal, C. A novel multimodal medical image fusion using sparse representation and modified spatial frequency. Int. J. Imaging Syst. Technol. 2018, 28, 175–185. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, E.G. Medical image fusion using redundant wavelet based ICA co-variance analysis. Int. J. Eng. Comp. Sci. 2015, 4, 28. [Google Scholar] [CrossRef]
- Liu, X.; Mei, W.; Du, H. Detail-enhanced multimodality medical image fusion based on gradient minimization smoothing filter and shearing filter. Med. Biol. Eng. Comput. 2018, 56, 1565–1578. [Google Scholar] [CrossRef] [PubMed]
- Matsopoulos, G.; Marshall, S.; Brunt, J. Multiresolution morphological fusion of MR and CT images of the human brain. IEE Proc.-Vis. Image Signal Process. 1994, 141, 137–142. [Google Scholar] [CrossRef]
- Du, J.; Li, W.; Xiao, B.; Nawaz, Q. Union Laplacian Pyramid with multiple features for medical image fusion. Neurocomputing 2016, 194, 326–339. [Google Scholar] [CrossRef]
- Kou, L.; Zhang, L.; Zhang, K.; Sun, J.; Han, Q.; Jin, Z. A multi-focus image fusion method via region mosaicking on Laplacian Pyramids. PLoS ONE 2018, 13, e0191085. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, J. A novel multi-modal medical image fusion algorithm. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 1995–2002. [Google Scholar] [CrossRef]
- Soliman, A.; Khalifa, F.; Elnakib, A.; Abou El-Ghar, M.; Dunlap, N.; Wang, B.; Gimel’farb, G.; Keynton, R.; El-Baz, A. Accurate lung segmentation on CT chest images by adaptive appearance-guided shape modeling. IEEE Trans. Med. Imaging 2016, 36, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Rubab, S.; Kashif, A.; Sharif, M.I.; Muhammad, N.; Shah, J.H.; Zhang, Y.D.; Satapathy, S.C. Lungs cancer classification from CT images: An integrated design of contrast based classical features fusion and selection. Pattern Recognit. Lett. 2020, 129, 77–85. [Google Scholar] [CrossRef]
- Azam, M.A.; Khan, K.B.; Ahmad, M.; Mazzara, M. Multimodal Medical Image Registration and Fusion for Quality Enhancement. Cmc-Comput. Mater. Contin. 2021, 68, 821–840. [Google Scholar] [CrossRef]
- Chen, T.; Ma, X.; Ying, X.; Wang, W.; Yuan, C.; Lu, W.; Chen, D.Z.; Wu, J. Multi-modal fusion learning for cervical dysplasia diagnosis. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 1505–1509. [Google Scholar]
- Liu, Y.; Chen, X.; Cheng, J.; Peng, H. A medical image fusion method based on convolutional neural networks. In Proceedings of the 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017; pp. 1–7. [Google Scholar]
- Ma, X.; Hu, S.; Liu, S.; Fang, J.; Xu, S. Multi-focus image fusion based on joint sparse representation and optimum theory. Signal Process. Image Commun. 2019, 78, 125–134. [Google Scholar] [CrossRef]
- Zhu, Z.; Chai, Y.; Yin, H.; Li, Y.; Liu, Z. A novel dictionary learning approach for multi-modality medical image fusion. Neurocomputing 2016, 214, 471–482. [Google Scholar] [CrossRef]
- Li, H.; He, X.; Tao, D.; Tang, Y.; Wang, R. Joint medical image fusion, denoising and enhancement via discriminative low-rank sparse dictionaries learning. Pattern Recognit. 2018, 79, 130–146. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Ward, R.K.; Wang, Z.J. Medical image fusion via convolutional sparsity based morphological component analysis. IEEE Signal Process. Lett. 2019, 26, 485–489. [Google Scholar] [CrossRef]
- Jiang, W.; Yang, X.; Wu, W.; Liu, K.; Ahmad, A.; Sangaiah, A.K.; Jeon, G. Medical images fusion by using weighted least squares filter and sparse representation. Comput. Electr. Eng. 2018, 67, 252–266. [Google Scholar] [CrossRef]
- Xu, Z. Medical image fusion using multi-level local extrema. Inf. Fusion 2014, 19, 38–48. [Google Scholar] [CrossRef]
- Maqsood, S.; Javed, U. Multi-modal medical image fusion based on two-scale image decomposition and sparse representation. Biomed. Signal Process. Control 2020, 57, 101810. [Google Scholar] [CrossRef]
- Guo, X.; Nie, R.; Cao, J.; Zhou, D.; Qian, W. Fully convolutional network-based multifocus image fusion. Neural Comput. 2018, 30, 1775–1800. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.J. DenseFuse: A fusion approach to infrared and visible images. IEEE Trans. Image Process. 2018, 28, 2614–2623. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, Y.; Sun, P.; Yan, H.; Zhao, X.; Zhang, L. IFCNN: A general image fusion framework based on convolutional neural network. Inf. Fusion 2020, 54, 99–118. [Google Scholar] [CrossRef]
- Ma, J.; Xu, H.; Jiang, J.; Mei, X.; Zhang, X.P. DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Trans. Image Process. 2020, 29, 4980–4995. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, X.; Xu, L.; Jia, J. Rolling guidance filter. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 815–830. [Google Scholar]
- Mao, R.; Fu, X.S.; Niu, P.J.; Wang, H.Q.; Pan, J.; Li, S.S.; Liu, L. Multi-directional laplacian Pyramid image fusion algorithm. In Proceedings of the 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Huhhot, China, 14–16 September 2018; pp. 568–572. [Google Scholar]
- Liu, Y.; Wang, Z. Simultaneous image fusion and denoising with adaptive sparse representation. IET Image Process. 2015, 9, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Armato, S.G., III; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.; Hoffman, E.A.; et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans. Med. Phys. 2011, 38, 915–931. [Google Scholar] [CrossRef] [PubMed]
- Hollaus, F.; Diem, M.; Sablatnig, R. MultiSpectral image binarization using GMMs. In Proceedings of the 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), Niagara Falls, NY, USA, 5–8 August 2018; pp. 570–575. [Google Scholar]
- Skourt, B.A.; El Hassani, A.; Majda, A. Lung CT image segmentation using deep neural networks. Procedia Comput. Sci. 2018, 127, 109–113. [Google Scholar] [CrossRef]
- Banu, S.F.; Sarker, M.; Kamal, M.; Abdel-Nasser, M.; Puig, D.; A Raswan, H. AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation. Appl. Sci. 2021, 11, 10132. [Google Scholar] [CrossRef]
- Rocha, J.; Cunha, A.; Mendonça, A.M. Conventional filtering versus u-net based models for pulmonary nodule segmentation in ct images. J. Med. Syst. 2020, 44, 1–8. [Google Scholar] [CrossRef]
- Mukherjee, S.; Huang, X.; Bhagalia, R.R. Lung nodule segmentation using deep learned prior based graph cut. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, Australia, 18–21 April 2017; pp. 1205–1208. [Google Scholar]
- Wang, W.; Lu, Y.; Wu, B.; Chen, T.; Chen, D.Z.; Wu, J. Deep active self-paced learning for accurate pulmonary nodule segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2018; pp. 723–731. [Google Scholar]
- Zhang, G.; Guo, M.; Gong, Z.; Bi, J.; Kim, Y.; Guo, W. Pulmonary nodules segmentation method based on auto-encoder. In Proceedings of the 10th International Conference on Digital Image Processing (ICDIP 2018), Shanghai, China, 11–14 May 2018; Volume 10806, p. 108062P. [Google Scholar]
- Feng, X.; Yang, J.; Laine, A.F.; Angelini, E.D. Discriminative localization in CNNs for weakly-supervised segmentation of pulmonary nodules. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2017; pp. 568–576. [Google Scholar]
- Tan, J.; Jing, L.; Huo, Y.; Li, L.; Akin, O.; Tian, Y. Lgan: Lung segmentation in ct scans using generative adversarial network. Comput. Med. Imaging Graph. 2021, 87, 101817. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y. Pulmonary Nodule Segmentation in Computed Tomography with an Encoder-Decoder Architecture. In Proceedings of the 2019 10th International Conference on Information Technology in Medicine and Education (ITME), Qingdao, China, 23–25 August 2019; pp. 157–162. [Google Scholar]
- Piella, G.; Heijmans, H. A new quality metric for image fusion. In Proceedings of the 2003 International Conference on Image Processing (Cat. No. 03CH37429), Barcelona, Spain, 14–17 September 2003; Volume 3, pp. III–173. [Google Scholar]
- Singh, H.; Kumar, V.; Bhooshan, S. Weighted least squares based detail enhanced exposure fusion. Int. Sch. Res. Not. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Cui, Z.; Zhu, Y. Multi-modal medical image fusion by Laplacian Pyramid and adaptive sparse representation. Comput. Biol. Med. 2020, 123, 103823. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, V.; Xydeas, C. Objective image fusion performance characterisation. In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), Beijing, China, 17–21 October 2005; Volume 2, pp. 1866–1871. [Google Scholar]
- Sundar, K.J.A.; Jahnavi, M.; Lakshmisaritha, K. Multi-sensor image fusion based on empirical wavelet transform. In Proceedings of the 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 15–16 December 2017; pp. 93–97. [Google Scholar]
- Nencini, F.; Garzelli, A.; Baronti, S.; Alparone, L. Remote sensing image fusion using the curvelet transform. Inf. Fusion 2007, 8, 143–156. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, B.L. Multifocus image fusion using the nonsubsampled contourlet transform. Signal Process. 2009, 89, 1334–1346. [Google Scholar] [CrossRef]
- Yang, B.; Li, S. Multifocus image fusion and restoration with sparse representation. IEEE Trans. Instrum. Meas. 2009, 59, 884–892. [Google Scholar] [CrossRef]
Method | Dataset | Dice Coefficient | Running Time (s) |
---|---|---|---|
U-Net | LIDC-IDRI | 0.89 | - |
AWEU-Net | LIDC-IDRI | 0.89 | - |
2D U-Net | LIDC-IDRI | 0.83 | - |
2D Seg U-Det | LIDC-IDRI | 0.82 | - |
3D FCN | LIDC-IDRI | 0.69 | 5.0 |
3D Nodule R-CNN | LIDC-IDRI | 0.64 | - |
2D AE | LIDC-IDRI | 0.90 | - |
2D CNN | LIDC-IDRI | 0.61 | - |
2D-LGAN | LIDC-IDRI | 0.98 | - |
2D Encoder–Decoder | LIDC-IDRI | 0.90 | - |
Proposed Method | LIDC-IDRI | 0.99 | 1.2252 |
Methodology | Dataset | Sensitivity (%) | Specificity (%) | Accuracy (%) |
---|---|---|---|---|
U-Net | LIDC-IDRI | 84.0 | 96.3 | 94.3 |
AWEU-Net | LIDC-IDRI | 90.0 | 96.4 | 94.6 |
2D U-Net | LIDC-IDRI | 89.0 | - | - |
2D Seg U-Det | LIDC-IDRI | 85.0 | - | - |
3D FCN | LIDC-IDRI | - | - | - |
3D Nodule R-CNN | LIDC-IDRI | - | - | - |
2D AE | LIDC-IDRI | - | - | - |
2D CNN | LIDC-IDRI | - | - | - |
2D LGAN | LIDC-IDRI | - | - | - |
2D Encoder–Decoder | LIDC-IDRI | 90.0 | - | - |
Proposed Method | LIDC-IDRI | 89.0 | 98.0 | 99.0 |
Method | API | SD | AG | H | MI | SF | Q | L | N |
---|---|---|---|---|---|---|---|---|---|
LP [33] | 4.60 | 7.84 | 9.19 | 3.88 | 2.71 | 2.16 | 0.80 | 0.17 | 0.02 |
DWT [50] | 5.30 | 7.07 | 8.41 | 4.10 | 2.68 | 1.89 | 0.76 | 0.22 | 0.01 |
CVT [51] | 5.46 | 7.22 | 9.51 | 5.22 | 2.42 | 2.08 | 0.77 | 0.20 | 0.01 |
NSCT [52] | 5.42 | 7.42 | 9.38 | 4.66 | 2.57 | 2.13 | 0.81 | 0.16 | 0.02 |
SR [53] | 5.33 | 7.48 | 9.16 | 3.72 | 3.59 | 2.53 | 0.75 | 0.20 | 0.03 |
ASR [34] | 5.37 | 7.27 | 9.68 | 3.99 | 2.64 | 2.17 | 0.76 | 0.22 | 0.02 |
Proposed Method | 5.76 | 8.13 | 10.64 | 5.62 | 3.78 | 2.70 | 0.79 | 0.16 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazir, I.; Haq, I.U.; Khan, M.M.; Qureshi, M.B.; Ullah, H.; Butt, S. Efficient Pre-Processing and Segmentation for Lung Cancer Detection Using Fused CT Images. Electronics 2022, 11, 34. https://doi.org/10.3390/electronics11010034
Nazir I, Haq IU, Khan MM, Qureshi MB, Ullah H, Butt S. Efficient Pre-Processing and Segmentation for Lung Cancer Detection Using Fused CT Images. Electronics. 2022; 11(1):34. https://doi.org/10.3390/electronics11010034
Chicago/Turabian StyleNazir, Imran, Ihsan Ul Haq, Muhammad Mohsin Khan, Muhammad Bilal Qureshi, Hayat Ullah, and Sharjeel Butt. 2022. "Efficient Pre-Processing and Segmentation for Lung Cancer Detection Using Fused CT Images" Electronics 11, no. 1: 34. https://doi.org/10.3390/electronics11010034
APA StyleNazir, I., Haq, I. U., Khan, M. M., Qureshi, M. B., Ullah, H., & Butt, S. (2022). Efficient Pre-Processing and Segmentation for Lung Cancer Detection Using Fused CT Images. Electronics, 11(1), 34. https://doi.org/10.3390/electronics11010034