
����������
�������

Citation: Stephen, O.; Maduh, U.J.;

Sain, M. A Machine Learning Method

for Detection of Surface Defects on

Ceramic Tiles Using Convolutional

Neural Networks. Electronics 2022, 11,

55. https://doi.org/10.3390/

electronics11010055

Academic Editor: Ngai-Man

(Man) Cheung

Received: 10 November 2021

Accepted: 23 December 2021

Published: 24 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Machine Learning Method for Detection of Surface Defects
on Ceramic Tiles Using Convolutional Neural Networks

Okeke Stephen 1, Uchenna Joseph Maduh 2 and Mangal Sain 3,*

1 Department of Ubiquitous Information Technology, Dongseo University, Busan 47011, Korea;
okeke2020@yahoo.com

2 Department of Civil Engineering, Faculty of Engineering, Yeungnam University, Gyeongsan 38541, Korea;
ujmaduh@gmail.com

3 Division of Information and Computer Engineering, Dongseo University, Busan 47011, Korea
* Correspondence: mangalsain1@gmail.com; Tel.: +82-102-859-1344

Abstract: We propose a simple but effective convolutional neural network to learn the similarities
between closely related raw pixel images for feature representation extraction and classification
through the initialization of convolutional kernels from learned filter kernels of the network. The
binary-class classification of sigmoid and discriminative feature vectors are simultaneously learned
together contrasting the handcrafted traditional method of feature extractions, which split feature-
extraction and classification tasks into two different processes during training. Relying on the
high-quality feature representation learned by the network, the classification tasks can be efficiently
conducted. We evaluated the classification performance of our proposed method using a collection of
tile surface images consisting of cracked surfaces and no-cracked surfaces. We tried to classify the
tiny-cracked surfaces from non-crack normal tile demarcations, which could be useful for automated
visual inspections that are labor intensive, risky in high altitudes, and time consuming with manual
inspection methods. We performed a series of comparisons on the results obtained by varying the
optimization, activation functions, and deployment of different data augmentation methods in our
network architecture. By doing this, the effectiveness of the presented model for smooth surface
defect classification was explored and determined. Through extensive experimentation, we obtained
a promising validation accuracy and minimal loss.

Keywords: visual inspection; surface defect classification; convolutional neural network; data
augmentation; defect class classification

1. Introduction

In recent times, computer vision and deep learning/artificial intelligent systems have
been effectively deployed to conduct automated surface crack inspections and detection [1,2].
The provision of huge datasets to researchers, development, and deployment of fast and
complex computing resources, like GPU and cloud-powered training and testing resources,
efficient algorithms, and models that have persistently evolve daily, has made deep learning
a suitable choice for designing visual inspection systems. Despite the achievements of
the classical methods through some advanced features classifications, visual inspections
powered by computer vision have attracted tremendous interest from diverse industries for
performing remote automatic inspection for the sole aim of product quality improvement.
A real-time-enabled visual inspection is highly essential for fault detection in remote and
adverse conditions or environments.

Cracks on a concrete surface is one of the first signs of structural damage, which is im-
portant for maintenance as well for the security of structure [3,4]. One of the most common
and generally accepted methods for crack inspection is manual inspection. However, due its
total dependence on specialist expertise and experience, this method is generally accepted
as less accurate and time consuming. Therefore, automated crack-detection systems are

Electronics 2022, 11, 55. https://doi.org/10.3390/electronics11010055 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11010055
https://doi.org/10.3390/electronics11010055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7298-7930
https://doi.org/10.3390/electronics11010055
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11010055?type=check_update&version=2

Electronics 2022, 11, 55 2 of 22

recommended as an alternative. The literature offers different methods for automatically
detection technologies that have been developed in recent years [5–8]. Manual inspections
are slow and are exposed to errors induced by fatigue although they may be quite accurate
in scenarios where few samples are involved. The fallout of this method is extra costs,
which make this technique inapplicable due to its expensiveness. Accurate classification is
the major concern when dealing with inspection systems although a discriminative feature
representation is considered the basis.

In this study, our emphasis is on classifying and detecting cracks on tile surfaces, which
are complex tasks in computer vision owing to the close similarity of crack damages to
normal tile demarcations. Countless literatures in recent time have been dedicated to crack
detection; classification and enormous research interest are presently in trajectory [9,10].
The classical technique of crack classification deploys different gradient features to a single
image pixel, followed by a binary classifier to decide if an image pixel comprises a crack
or not. Notwithstanding that hand-crafted features enjoyed extensive adoption and used
best-ranking algorithms on non-complex data sets [10–12], it is imperative to observe that
their discriminative ability is not buoyant enough to discriminate the complex tiny cracks
from the natural tile demarcations in low-level image surfaces and are associated with some
problems, which include dependence on tedious design methods and powerful expert
knowledge for features learning; the classifier and feature designs being split from each
other, respectively, and therefore may not fit one another; and finally, features and classifier
developments being different from many other problems.

In contrast, the current remarkable performances in a number of computer vision tasks
and medical image processing have obviously showcased the usefulness of deep features
acquired by deep neural networks [13,14] and are drastically taking over the traditional
hand-crafted feature [15] extraction methods. Unsupervised deep learning algorithms,
like auto encoder, restricted Boltzmann machine (RBM), and their various variations, are
prevalent for tasks involving small datasets, whereas deep convolutional neural networks,
such as convolutional neural networks, are well known for learning complex features in a
supervised mode and in tasks involving large datasets.

The main difference between autoencoders and RBM is their structure. Although
autoencoders have multiple hidden layers as well as an input and output layer, RBM
has a limit of two layers, one visible and the other hidden. In this work [16], the results
indicate that, with low-noise attenuation images, the four-level automatic coding machine
is superior to the Deep Boltzmann Gaussian–Bernoulli (GDBM) machine with the same
number of hidden layers. However, when the noise was high, the two-level GDBM as well
as the single-layer RBM Gaussian–Bernoulli (GRBM) outperformed the four-level automatic
encoder. In another work [17] with speech recognition, a deep belief net was tested
against a deep autoencoder created from the DBN and subsequently fine-tuned. Here, the
autoencoder outperformed the DBN with twice the reduction in the log spectral distortion.

The powerful learning and discriminative characteristics of these models inspired their
adoption to this tile crack-detection task. In this work, we build our novel convolutional
neural network for tile crack detection and classification where discriminative features are
acquired straight from high-level raw image patches using our model. This work is the
first attempt to adopt deep convolution neural networks in tile crack classification tasks to
the best of our knowledge.

Our proposed method presents the novelties by showing that the CNN method itself
could be able to provide good results by changing different activation function and different
optimizers. Therefore, we present the results by changing the parameters, and in the end,
we suggest that this type of analysis is one of the ways to improve the performance of
the system. Our proposed method is quite different from recent work on surface-crack
detection and classification in the following four critical methods: our method uses an
in-depth learning-based method rather than a filter-based method, such as [18]. The
assumption of geometric properties is not dependent on our model, as in [12]; instead of
the hand-drawn features in [19], we used the feature and discrimination techniques, which

Electronics 2022, 11, 55 3 of 22

were automatically obtained from the lower level images we collected. In contrast to other
surface detection methods that require specialized optical devices [2,20], our proposed
method is deployed on images that are acquired using low-cost, ordinary smart phone
cameras that pose complex features.

2. Related Work

Many approaches to extracting close similar changes in image intensity for identifying
cracks exist, and such methods include morphological operations and edge detection, which
are the most notable. They achieve good performance in concrete surfaces where the cracks
possess tougher edges when compared to noisy patterns [21–23]. In complicated scenarios,
the deployment of advanced image analysis systems, such as local binary pattern [24,25],
image percolation [26], wavelet [27], crack blob features [28], and Gabor [29], yield superior
results in classifying and detecting cracks. Cases of surfaces involving metal crack-detection
methods that are vision-based [30] have been analyzed [31] for conducting inspections of
surfaces amid production. Additionally, an automatic crack-detection system relying on
tree structures, known as Crack Tree, was introduced in [32].

Principal component analysis, anomaly detection, and naïve Bayes classifier were
applied in nuclear power plant’s inspection videos [33] for detecting cracks. An SVM
(support vector machine) data fusion system that applies Bayes’ theorem and another
technique based on LBP was developed in [24]. Decades ago, neural network algorithms
often called deep learning methods have become prominent in vision-driven pattern
recognition fields as well as other areas, like MRI [34] and object detection. Moreover,
in fault-tolerant control systems [35], deployment of adaptive neural networks [36] has
recorded remarkable achievements to mitigate failures in nonlinear systems in actuators.
To be specific, the advent of convolutional neural networks has led to enormous ground-
breaking results in object classification, detection, and recognition [37]. Vast quantities
of annotated data are needed by the CNN for training process, and thus, huge image
datasets [38] have been collected and made available by researchers for this purpose.

Quite many researches have been performed for numerous applications deploying
CNN. For real-time object detection, R-CNN (region based convolutional neural net-
work) [39], Fast R-CNN [40], and Faster R-CNN [41] have been developed and made
available by researchers. Cracks are usually tiny and lengthy with irregular forms and
alignments in videos involving nuclear power plant inspection. Therefore, in order not
to violate the limitations above, R-CNN is inappropriate for cracks detections in nuclear
environments. Owing to the exceptional performances of CNNs in recent times, many
topical researches adopted it for surface defect detection comprising road cracks [42], con-
crete cracks [43], nuclear power plant components cracks [44], and railroad defects on steel
surfaces [45].

A non-pooling-layer-inspired CNN architecture, called CrackNet, was proposed to
detect cracks from pavements image data [46]. Compared to other conventional CNN
models that use pooling layers, the model uses only convolutional and fully connected
layers as feature extractors and as well as hidden layers to process sample images. During
the experimentations, they used 1800 three-dimensional pavement images for the model
training and 200 images for the testing process and achieved an F-score, recall, and precision
scores of 88.86%, 87.63%, and 90.13%, respectively. Another work [47] on cracks detection
from pavement images used a CNN-inspired model and 500 image samples collected across
the United States of America with smart phone sensors. In process, they partitioned each
of the image samples into 99 × 99 pixels patches and labeled the derived patches into
either cracked or not cracked samples. The obtained an accuracy of 91.3% of the introduced
crack-detection concept.

Another related study [25], introduced a concrete image crack-detection system that
has the capability of estimating the density of the cracks on the sample images. The
introduced method deploys an encoder-decoder FCN model to perform the concrete cracks
semantic segmentations. They used 500 annotated images for the encoder training and

Electronics 2022, 11, 55 4 of 22

obtained an average precision of 90%. A rectified linear units (ReLU) [48] served as the
activation function of the proposed CNN model, and they obtained an F-score, recall,
and precision score of 0.8965, 0.9251, and 0.8696, respectively. Moreover, [49] presented
ultrasonic testing with accuracy of 98.152%. The angle between the fault surface and
the ultrasonic propagation direction affects the ultrasonic testing effect. If the angle is
vertical, the signal is strong, and the flaw is easy to spot. When the angle is horizontal,
the signal returned is faint, making leak detection simple. In their study, [50] presented
a machine vision-based technique with accuracy of 96.67% for detecting and classifying
surface problems in used gun barrels, such as rust, corrosive pitting, normal wear, and
erosion. Osmosis testing methodology [51] is only appropriate for finding faults in highly
permeable and non-porous materials although it has several benefits over other approaches.
The Eddy current test [52] applies only to conductive materials. Only defects close to
the surface or surface layer can be detected. It is not suitable for use with parts with
complex shapes.

In healthcare, especially in medical imaging, most of the interest is due to convolutional
neural networks [53]. With the help of CNN, we can learn different useful representation
of images and other formatted data. It is a powerful CNN that can be used to determine
the protocol based on short text classification to improve performance in radiology prac-
tice [54]. It can also be used to reduce the amount of gadolinium in contrast-enhanced
brain MRI by order of magnitude without significantly reducing image quality [55]. CNN
is applied in various division of healthcare, such as PET-MRI attenuation correction [56]
and radiotherapy [57]. These are just a few examples, but a great deal of exemplary work
has been done with the key concept of deep learning in radiology [58–67].

3. Methodology

Convolutional Neural Network (CNNs) has been the dominant DNN in use nowa-
days, and it consists of numerous convolution layers. In these networks, an individual
layer continually creates from the imputed data an abstraction of higher-level generally
called (fmap) feature map [68] that holds critical but distinctive information. Through the
deployment of very deep combination of layers, contemporary CNNs possess the ability to
attain superior performance. CNNs are extensively applied in various applications, such as
robotics [69], speech recognition [70], scene understanding [71], game play [72], etc. We
worked on the use of CNN in image processing explicitly for the purpose of cracked-tile
surface image classification [73] from non-crack normal demarcation.

All layers in a convolutional neural network basically consist of high-dimensional
convolutions [68], and in computations, the set of 2-D ifmaps (feature maps of the input)
is arranged as the activations of the input layer, with each mentioned as a channel. A
distinctive 2-D filter convolves every single channel originating from the filter stacks
for every channel, and a distinct 3-D filter is usually used to refer to the 2-D filters. A
summation process spanning across every channel is performed on the outcome of the
convolution at each point in the network. In addition, in the generated filters, a bias of
1-dimension maybe inserted; however, in recent networks [73], these biases are eliminated
from the layers in the network.

The outcome from this computation process is the output from the activations with
a single output channel of the ofmap (feature map). To create more output channels,
extra 3-D filters can be deployed on the identical input. Lastly, to potentially advance the
reprocessing of filter weights, several feature maps from the input could be computed
together in batches. Modern CNN models are already deployed from three convolutional
layers [61] to a thousand convolutional layers [73]. For classification operations, a small
number of fully connected (FC) layers ranging from one to three are normally applied after
the main convolution layers. A fully connected layer also uses filters on the feature maps
originating from the input like the main convolution layers, but the filters possess the same
size as the feature maps of the input. Thus, it lacks the weight allocation characteristics of
the main convolution layers. In conjunction with the convolution and fully connected layers,

Electronics 2022, 11, 55 5 of 22

several discretionary layers can be present in a DNN, like the non-linearity, normalization,
and pooling layers.

3.1. Proposed Architecture Model

The architecture of our model consists of seven-layer blocks, with the first layer being
the input block and layers two to six designated to feature extraction and the seventh block
as the output block, as shown in Figure 1.

Electronics 2022, 11, 55 5 of 21

the main convolution layers. In conjunction with the convolution and fully connected lay-
ers, several discretionary layers can be present in a DNN, like the non-linearity, normaliza-
tion, and pooling layers.

3.1. Proposed Architecture Model
The architecture of our model consists of seven-layer blocks, with the first layer being

the input block and layers two to six designated to feature extraction and the seventh block
as the output block, as shown in Figure 1.

Figure 1. Proposed network architecture.

An RGB image of 150 × 150 is presented as the first layer, which consists of 32 filter
kernels 162 of 3 × 3 shape as one input channel. Each filter in this layer has a 3 × 3 shape,
resulting in 27 163 higher-order parameters and a single bias parameter, which yield 28
parameters and a sum 164 total of 896 parameters with (none, 148, 148, 32) output shape.
The output is then 165 forwarded to the first max-pooling layer with 2 × 2 spatial regions
and two strides yielding 74 × 74 166 output size with 32 feature maps. This is followed by

Figure 1. Proposed network architecture.

An RGB image of 150 × 150 is presented as the first layer, which consists of 32 filter
kernels 162 of 3 × 3 shape as one input channel. Each filter in this layer has a 3 × 3 shape,
resulting in 27 163 higher-order parameters and a single bias parameter, which yield
28 parameters and a sum 164 total of 896 parameters with (none, 148, 148, 32) output shape.
The output is then 165 forwarded to the first max-pooling layer with 2 × 2 spatial regions
and two strides yielding 74 × 74 166 output size with 32 feature maps. This is followed by

Electronics 2022, 11, 55 6 of 22

the second convNet layer with 64 167 filter kernels of 3 × 3 that result to 72 × 72 output
shape, 64 feature maps, and 18,496 total 168 parameters.

The operation of the max-pooling layer in this second layer generates 36 × 36 shape,
having 64 kernels of filter. The preceding third convolution layer outputs 34 × 34 shape
with 128 filter kernels and a total of 73,856 parameters, followed by 2 × 2 max-polling
operation that yields 17 × 17 with 128 filter kernels. The fourth convolution layer outputs
15 × 15 shape with 128 filter kernels and a total of 147,584 parameters, followed by the
2 × 2 max-polling operation yield 7 × 7 output shape with 128 filter kernels. The flatten
and dropout layer produces a 6272 shape.

The first dense layer with 512 kernels produces 3,211,776 parameters, and the second
dense layer with a single kernel produces 513 parameters. Summarizing our network
architecture, we obtained 3,453,121 trainable parameters and zero non-trainable parameters,
as illustrated in Table 1 below.

Table 1. The tabular output of our model.

Layer (Type) Output Shape Param#

Conv2d_1 (Conv2D) (None, 148, 148, 32) 896
Max_pooling2nd_1 (MaxPooling2) (None, 74, 74, 32) 0

Conv2d_2 (Conv2D) (None, 72, 72, 64) 18,496
Max_pooling2nd_2 (MaxPooling2) (None, 36, 36, 54) 0

Conv2d_3 (Conv2D) (None, 15, 15, 128) 73,856
Max_pooling2nd_3 (MaxPooling2) (None, 17, 17, 128) 0

Conv2d_4 (Conv2D) (None, 15, 15, 128) 147,584
Max_pooling2nd_4 (MaxPooling2) (None, 7, 7, 128) 0

Flatten_1 (Flatten) (None, 6272) 0
Dropout_1(Dropout) (None, 6272) 0

Dens_1(Dense) (None, 512) 3,211,776

Total params: 3,453,121
Trainable params: 3,453,121

Non-trainable params: 0

The convolution activities and computations on each of these layers are discussed below.

1. Input Layer: This layer deals directly with the raw pixel values contained in a given
image. In our case, the network sees 150 × 150 arrays containing numbers, i.e., the
representative array that equates to 150 × 150. A value ranging from 0 to 255 is
assigned to these numbers, which at this point, defines the pixel intensity. Although
these numbers are worthless to us during image identification and classification
process, they are the only inputs understandable by the network.

2. The Convolutional Layer: This performs the two-dimensional convolution process on
prior feature maps. Through the summation of one or more convolutional responses
delivered from the pixel-wise activation function end, the output feature map’s activa-
tion occurs. Every single convolutional layer poses several filter kernels responsible
for generating diverse output feature maps, and diverse feature representations can
be extracted by the filter kernels, for example, the crossings, corners, and edges. We
use activation functions of non-linearity after each convolution layer and the fully
connected layer (FC) layer. Different varieties of non-linearity functions are applied
to initiate non-linearity into CNN layers, and we deployed several types of them to
test our model. These comprises of traditional conventional nonlinear functions, like
sigmoid (hyperbolic tangent), swishmax, and rectified linear unit (ReLU) [74], which
has been famous due its capability to drive fast training and simplicity. They are other
variants of ReLU used for training and testing neural network models for improved
accuracy, like parametric ReLU [75], exponential LU [76], leaky ReLU [77], and lastly a
non-linear function known as sigmoid [78,79]. Examples are shown in Figure 2 below.

Electronics 2022, 11, 55 7 of 22

Electronics 2022, 11, 55 7 of 21

models for improved accuracy, like parametric ReLU [76], exponential LU [77], leaky
ReLU [78], and lastly a non-linear function known as sigmoid [79,80]. Examples are
shown in Figure 2 below.

Figure 2. Examples of Activation Functions.

1. Classification Layer: The classification layer deploys sigmoid or softmax regression
for its operation. It generates the probability distribution of the outputted classes and
has the responsibility of ensuring that every output can be deduced as the probability
of a particular input fitting to a particular class. For an unlabeled image inputted into
the network, its class fits the label of the maximum output. In this network, we ex-
tensively used the sigmoid activation function due to the nature of our training image
dataset. Convoluted neural network training is a highly non-convex optimization
task. The consistency, accuracy, and speed of the training process are strongly af-
fected by the onset of weight.

2. The Pooling Layer: In order to reduce the dimensionality of feature maps, several
computations are performed, and they are referred to as pooling. Operations involv-
ing pooling, which are performed in each individual channel in the network, make
the network to be invariant to little shifts and distortions [71] and enhance robust-
ness. Pooling operation pools combines a collection of values from various receptive
fields to lesser amount of values. It can be set relying on the dimensions of their re-
ceptive field (e.g., 2 × 2) and max or average pooling operation, as shown in Figure 3.
Pooling usually takes place on network blocks that are non-overlapping (that is to
say, the size of the pooling equals the stride size). Normally, a stride that is larger
than one is deployed in a manner that the dimensions of the representative feature
map are reduced.

Figure 2. Examples of Activation Functions.

1. Classification Layer: The classification layer deploys sigmoid or softmax regression for
its operation. It generates the probability distribution of the outputted classes and has
the responsibility of ensuring that every output can be deduced as the probability of a
particular input fitting to a particular class. For an unlabeled image inputted into the
network, its class fits the label of the maximum output. In this network, we extensively
used the sigmoid activation function due to the nature of our training image dataset.
Convoluted neural network training is a highly non-convex optimization task. The
consistency, accuracy, and speed of the training process are strongly affected by the
onset of weight.

2. The Pooling Layer: In order to reduce the dimensionality of feature maps, several
computations are performed, and they are referred to as pooling. Operations involving
pooling, which are performed in each individual channel in the network, make the
network to be invariant to little shifts and distortions [70] and enhance robustness.
Pooling operation pools combines a collection of values from various receptive fields
to lesser amount of values. It can be set relying on the dimensions of their receptive
field (e.g., 2 × 2) and max or average pooling operation, as shown in Figure 3. Pooling
usually takes place on network blocks that are non-overlapping (that is to say, the
size of the pooling equals the stride size). Normally, a stride that is larger than
one is deployed in a manner that the dimensions of the representative feature map
are reduced.

Electronics 2022, 11, 55 8 of 21

Figure 3. Two most popular pooling methods.

3.2. Proposed Algorithm
Given a set of training dataset [𝑌, 𝑍ሿ comprising of input output pairs, N number

of samples with c classes, then 𝑦 ∈ 𝑅ௗ, 𝑦ො ∈ 𝑅, as shown in the fully connected network
in Figure 4. The back-propagation algorithm provides techniques for varying the weights 𝑤 of the input output pair, and with pattern 𝑦, the h unit of the hidden layer obtains a
net input n, then

Figure 4. A two-layer Neural Network.

𝑛 = 𝑤𝑦ହ
ୀଵ (1)

Giving rise to

𝑝ௗ = 𝑓൫𝑛ௗ൯ = 𝑓 ൭ 𝑤𝑦ହ
ୀଵ ൱ (2)

Then, the unit 𝑖 obtains the output of

𝑛 = 𝑊𝑃ௗଷ
ୀଵ = ଷ

ୀଵ ∙ ቌ𝑊 ∙ 𝑓 ൭ 𝑤𝑦ହ
ୀଵ ൱ቍ (3)

This, then, generates the total output of

Figure 3. Two most popular pooling methods.

Electronics 2022, 11, 55 8 of 22

3.2. Proposed Algorithm

Given a set of training dataset [Ym, Zm] comprising of input output pairs, N number
of samples with c classes, then ym ∈ Rd, ŷm ∈ Rc, as shown in the fully connected network
in Figure 4. The back-propagation algorithm provides techniques for varying the weights
wih of the input output pair, and with pattern ym, the h unit of the hidden layer obtains a
net input n, then

nm
h =

5

∑
k=1

whkym
k (1)

Electronics 2022, 11, 55 8 of 21

Figure 3. Two most popular pooling methods.

3.2. Proposed Algorithm
Given a set of training dataset [𝑌, 𝑍ሿ comprising of input output pairs, N number

of samples with c classes, then 𝑦 ∈ 𝑅ௗ, 𝑦ො ∈ 𝑅, as shown in the fully connected network
in Figure 4. The back-propagation algorithm provides techniques for varying the weights 𝑤 of the input output pair, and with pattern 𝑦, the h unit of the hidden layer obtains a
net input n, then

Figure 4. A two-layer Neural Network.

𝑛 = 𝑤𝑦ହ
ୀଵ (1)

Giving rise to

𝑝ௗ = 𝑓൫𝑛ௗ൯ = 𝑓 ൭ 𝑤𝑦ହ
ୀଵ ൱ (2)

Then, the unit 𝑖 obtains the output of

𝑛 = 𝑊𝑃ௗଷ
ୀଵ = ଷ

ୀଵ ∙ ቌ𝑊 ∙ 𝑓 ൭ 𝑤𝑦ହ
ୀଵ ൱ቍ (3)

This, then, generates the total output of

Figure 4. A two-layer Neural Network.

Giving rise to

pd
h = f

(
nd

h

)
= f

(
5

∑
k=1

whkym
k

)
(2)

Then, the unit i obtains the output of

nm
i =

3

∑
j=1

WihPd
h =

3

∑
j=1
·
(

Wih· f

(
5

∑
k=1

whkym
k

))
(3)

This, then, generates the total output of

Ŷm
i = f (nm

i) = f

(
3

∑
h=1

WihPm
h

)
(4)

= f

(
3

∑
h=1
·
(

Wih· f

(
5

∑
k=1

whkym
k

)))
(5)

Taking into consideration the error θ in the weight value, we have;

θ
[→

w
]
≡ 1

2 ∑
m∈M

(zm − ŷm)
2 (6)

Electronics 2022, 11, 55 9 of 22

Working for the O outputs and J input in the I/O pairs {ym, ŷm}, we have

θ
[→

w
]
=

1
2

o

∑
m=1

j

∑
i=1

(zm
i − ŷm

i)
2 (7)

In our sample, θ transforms to

θ
[→

w
]
=

1
2

o

∑
m=1

2

∑
i=1

(zm
i − ŷm

i)
2 (8)

θ
[→

w
]
=

1
2

o

∑
m=1

2

∑
i=1

(
zm

i − f

(
3

∑
h

Wih· f

(
5

∑
k=1

whkym
k

)))2

(9)

Taking the differential of θ[w] since f is also differentiable and deploying gradient
descent for the links between the hidden and output layer, we have:

∆Wih = −η
∂θ

∂Wih
= −η

j

∑
m=1

(zm
i − ym

i) f ′(nm
i)·(−pm

h) (10)

∆Wih = η
j

∑
m=1

(zm
i − ŷm

i) f ′(nm
i)·Pm

h . (11)

δm
i = f ′(nm

i)(z
m
i − ŷm

i). (12)

∆Wih = η
j

∑
m=1

δm
i Pm

h (13)

Considering between the input and output link whk, we obtain the differential expres-
sion by applying chain rule with respect to wjk:

∆whk = −η
∂θ

∂whk
= −η

j

∑
m=1

∂θ

∂Pm
h
·

∂Pd
j

∂wnk
(14)

∆whk = η
j

∑
m=1

2
∑

i=1

(
zm

i − ŷm
i
)

f ′
(
nm

i
)
Wih f ′

(
nm

i
)
·ym

k

δm
i = f ′(m)

(
zm

i − ŷm
i
) (15)

∆whk = η
j

∑
m=1

2

∑
i=1

δm
i ·Wih f ′(nm

i)·ym
k (16)

δm
i = f ′(nm

i)
2

∑
i=1

Wihδm
i (17)

∆wjk = η
j

∑
m=1

δm
i ·ym

k (18)

∆Wih = η
j

∑
m=1

δm
i Pm

h

∆whk = η
j

∑
m=1

δm
i ·ym

k

(19)

Electronics 2022, 11, 55 10 of 22

Overall, having an arbitrary number of layers, the update rule of back-propagation
algorithm is always of the form of

∆wih = η
j

∑
m=1

δŷ·Pi (20)

P represents the real input or hidden unit input of Ym, and δ relies on the layer in
contention. Finally,

δm
i = f ′(nm

i)
2

∑
i=1

Wihδm
i (21)

This permits us to compute the hidden unit Ph taking into consideration the δ’sin of the
ŷ unit with persistent forward coefficient, while the errors δ undergo backward propagation.

Regularization: Regularization is the method deployed to deal with overfitting prob-
lems by ushering penalties to coefficients with high-valued regressions [80]. In other words,
it decreases parameters and compacts (shrinks) the model. This invariably means that the
more the model is streamlined, the more likely the model will provide enhanced perfor-
mance during predictions. Regularization introduces constraints or penalties to complex
neural network models and selects the best model from the least over-fit to the greatest
ones. In training neural network models, fitting little amount of data into a network
usually yields to an over-fit complex model, and choosing a smaller model may lead to
under-fit, thereby performing poorly during predictions. The equation below represents
the regularization general expression:{

min
1
n

n

∑
i=1

l(yi, f (xi)) + λ‖ f ‖k

}
(22)

where l(., .) represents the loss function, the set of data is denoted by (xi, yi)
n
i=1, and λ is

the regularization term. If the format of f is linear, and the square loss is the loss function,
λ‖ f ‖k is generally regarded as the norm of the coefficient of the linear model [81]. In this
work, we combined the two most prominent regularizers and they are the L1 regularization
and L2 regularization. The L1 regularizer otherwise referred to as the Lasso was proposed by
Tibshirani [82] and offers substitution to feature-extraction and variable-selection methods.
L1 regularization introduces an L1 constraint, which is equivalent to the absolute cost of
the degree of coefficients. In other words, it introduces limitations to the amount of the
coefficients in the network and can produce sparse or models with fewer coefficients.

ŵL1 = arg min
w

{
1
n

n

∑
i=1

(yi − xT
i w)

2
+ λ

p

∑
i=1
|wi|

}
(23)

where ŵ denotes parameters estimation and where λ is the tuning parameter or regulariza-
tion coefficient.

The variants of L1 regularizer, such as Dantzig selector [74], SCAD [83], Elastic net [84],
Adaptive Lasso [85], and Stage-wise Lasso [86], are dominantly used for data analysis.
Although the L1 regularizer provides easy solution to convex optimization problems, the
outcome is not sufficiently sparse. The L2 regularization inserts an L2 limitation, which is
comparable to the square of the magnitude coefficient. L2 does not return sparse models,
and the entire coefficients are minimized with single factor without eliminations. The
outcomes of the L2 regularizer have smooth properties and lack sparse property.

ŵL2 = arg min
w

{
1
n

n

∑
i=1

(yi − xT
i w)

2
+ λ

p

∑
i=1

w2
i

}
(24)

Electronics 2022, 11, 55 11 of 22

4. Experiments

To evaluate the classification capability of the proposed architecture, we used the
smooth surface tiles containing defect and no defect.

4.1. The Surface Defects Dataset

The classification performance of our model was evaluated and validated using a
dataset consisting of cracked and no-crack smooth surfaces of floor tiles collected with
a low-cost camera from different locations, as shown in Figure 5. In other words, the
dataset comprises only two distinct classes, i.e., crack surface or no-crack surface. There
are 2551 colored images for the crack class and 1630 for the no-crack class, and the original
images collected have 3120 pixels × 4160 pixels. However, during training, the image
dimensions were automatically resized to 150 × 150 size.

Electronics 2022, 11, 55 11 of 21

where 𝑤ෝ denotes parameters estimation and where λ is the tuning parameter or regular-
ization coefficient.

The variants of L1 regularizer, such as Dantzig selector [75], SCAD [84], Elastic net
[85], Adaptive Lasso [86], and Stage-wise Lasso [87], are dominantly used for data analy-
sis. Although the L1 regularizer provides easy solution to convex optimization problems,
the outcome is not sufficiently sparse. The L2 regularization inserts an L2 limitation, which
is comparable to the square of the magnitude coefficient. L2 does not return sparse models,
and the entire coefficients are minimized with single factor without eliminations. The out-
comes of the L2 regularizer have smooth properties and lack sparse property.

𝑤ෝଶ = arg min௪ ൝1𝑛 (𝑦 − 𝑥் 𝑤)ଶ + 𝜆 𝑤ଶ
ୀଵ

ୀଵ ൡ (24)

4. Experiments
To evaluate the classification capability of the proposed architecture, we used the

smooth surface tiles containing defect and no defect.

4.1. The Surface Defects Dataset
The classification performance of our model was evaluated and validated using a

dataset consisting of cracked and no-crack smooth surfaces of floor tiles collected with a
low-cost camera from different locations, as shown in Figure 5. In other words, the dataset
comprises only two distinct classes, i.e., crack surface or no-crack surface. There are 2551
colored images for the crack class and 1630 for the no-crack class, and the original images
collected have 3120 pixels × 4160 pixels. However, during training, the image dimensions
were automatically resized to 150 × 150 size.

Figure 5. Left, Tile Sample with Crack; Right, Tile Sample without Crack.

4.2. Data Augmentation and Preprocessing Methods
To mitigate over-fitting and obtain superior generalization capability, we employed

diverse artificial techniques to increase the size of the data set [88,89]. We heavily em-
ployed seven affine transforms methods as follows: (1) Rescaling: Before any processing
commenced during training, we multiplied our data with a certain value. Our main image
dataset comprises of RGB coefficients ranging between 0–255; because these values will
be extremely high for our model to process, we set them to minimal values between 0 and
1 through rescaling operation (1/255. factor); (2) Rotation range: We randomly rotated
each 40 × 40 image to180°; (3) Shift range: This technique randomly translates images hor-
izontally or vertically. In the experiment, we used height and width shift range of 20%

Figure 5. Left, Tile Sample with Crack; Right, Tile Sample without Crack.

4.2. Data Augmentation and Preprocessing Methods

To mitigate over-fitting and obtain superior generalization capability, we employed
diverse artificial techniques to increase the size of the data set [87,88]. We heavily employed
seven affine transforms methods as follows: (1) Rescaling: Before any processing com-
menced during training, we multiplied our data with a certain value. Our main image
dataset comprises of RGB coefficients ranging between 0–255; because these values will be
extremely high for our model to process, we set them to minimal values between 0 and
1 through rescaling operation (1/255. factor); (2) Rotation range: We randomly rotated
each 40 × 40 image to180◦; (3) Shift range: This technique randomly translates images
horizontally or vertically. In the experiment, we used height and width shift range of 20%
each, respectively; (4) Shear range: We used a shear range of 20%, which clips the image
angles in a counter-clockwise way like radians. We zoomed each picture at the range of 20%
each; (5) Flipping: Next, we flipped each image horizontally. Thus, there are 2551 samples
for the cracked class, 1630 samples for the no-crack class, and 4181 belonging to the entire
dataset. To obtain zero mean and unit variance, respectively, each pixel of the image was
normalized in order to enhance training stability and increase the convergence speed [89].

4.3. Training Steps

We conducted evaluation on our model with several optimization methods, activation
functions, and learning rates, varying batch sizes and network architecture. We also
varied the data augmentation methods by removing and adding different techniques. All
experiments were performed using keras deep learning open-source library with tensor
flow backend, NVIDIAcuDNN v7.0 library, and CUDA Toolkit 9.0. A standard desktop
with an NVIDIA GeForce GTX TITAN Xp GPU card with 12 GB [90] memory was used

Electronics 2022, 11, 55 12 of 22

for training. To tackle the problem of random influence, we conducted each experiment
5 times, and it took us several weeks to conclude the experiments. RMSprop optimization
function was used over the entire training dataset with initial learning rate set at 0.0004; we
used the learning-rate-scheduler or annealing, set at (lambda x: 1 × 10−3 * 0.9 ** x) to vary
the learning rate per epoch during training to ensure even network weights updated and
improved learning accuracy. We applied binary cross entropy to determine the loss and set
the epoch at 200 step per epoch at 100, and we used a batch size of 32.

5. Results

We performed a number of detailed experiments and obtained different results, but
here, we present our best results. We adopted many methods, such as data augmentation,
different activation functions, and variations of optimization techniques, to fit a very small
dataset into a deep neural network to obtain substantial results.

Figures 6 and 7 illustrate the result we obtained from the combination of ReLU
activation function and RMSprop optimizer. As anticipated, the higher the training samples
and epochs, the lesser the error we achieved. Furthermore, at approximately 200 epochs,
its marginal utility diminished, and thus, we made use of only 200 epochs during the
experiment. To enhance the classification performance of our model, we deployed less batch
size although at the expense of training time. In addition, to smoothen our training iteration
and obtain optimal use of GPU, a modest batch size of 32 was used instead of the size of
50 that we originally intended to use although the model experienced some local minima
bounce-out due to perturbations emanating from the lesser batch size. The proposed model
attained approximately 0.9950 training accuracy and about 0.9943 test accuracy, as shown in
Table 2 and Figures 8 and 9, respectively. Table 2 illustrates the comparisons of the training
error and accuracy and test error and accuracy in relation with varying epoch sizes. The
values in bold indicate the best results obtained with RMSprop optimization function with
different activation functions, such as scaled swishmax, swishmax, leaky relu, prelu, and
relu activation functions

Electronics 2022, 11, 55 13 of 21

Figure 6. Model’s training and test accuracy over epochs with RMSprop and ReLU.

Figure 7. Model’s training and test loss over epochs with RMSprop and ReLU.

Table 2. The comparisons of the training error and accuracy and test error and accuracy in relation
with varying epoch sizes.

RMSprop Train, Test Accuracy and Loss

Activation Epochs
Train
Error

Train
Accuracy

Test
Error

Test
Accuracy

Scaled
Swishmax

50 10.7130 0.3280 10.2327 0.3581
100 10.4904 0.3420 5.8831 0.3638
150 10.6216 0.6668 10.1433 0.6374
200 10.6964 0.3291 10.1212 0.3651

Swishmax

50 5.3677 0.6670 6.0802 0.6228
100 5.3106 0.6705 5.8831 0.6350
150 5.3710 0.3337 10.1415 0.3639
200 5.4130 0.6642 5.8956 0.6342

Leaky
Relu

50 5.5456 0.6559 6.2545 0.6120
100 5.2401 0.6749 5.9939 0.6281
150 5.2082 0.6769 5.8341 0.6380
200 5.3996 0.6650 5.7316 0.6444

Figure 6. Model’s training and test accuracy over epochs with RMSprop and ReLU.

Electronics 2022, 11, 55 13 of 22

Electronics 2022, 11, 55 13 of 21

Figure 6. Model’s training and test accuracy over epochs with RMSprop and ReLU.

Figure 7. Model’s training and test loss over epochs with RMSprop and ReLU.

Table 2. The comparisons of the training error and accuracy and test error and accuracy in relation
with varying epoch sizes.

RMSprop Train, Test Accuracy and Loss

Activation Epochs
Train
Error

Train
Accuracy

Test
Error

Test
Accuracy

Scaled
Swishmax

50 10.7130 0.3280 10.2327 0.3581
100 10.4904 0.3420 5.8831 0.3638
150 10.6216 0.6668 10.1433 0.6374
200 10.6964 0.3291 10.1212 0.3651

Swishmax

50 5.3677 0.6670 6.0802 0.6228
100 5.3106 0.6705 5.8831 0.6350
150 5.3710 0.3337 10.1415 0.3639
200 5.4130 0.6642 5.8956 0.6342

Leaky
Relu

50 5.5456 0.6559 6.2545 0.6120
100 5.2401 0.6749 5.9939 0.6281
150 5.2082 0.6769 5.8341 0.6380
200 5.3996 0.6650 5.7316 0.6444

Figure 7. Model’s training and test loss over epochs with RMSprop and ReLU.

Table 2. The comparisons of the training error and accuracy and test error and accuracy in relation
with varying epoch sizes.

RMSprop Train, Test Accuracy and Loss

Activation Epochs Train
Error

Train
Accuracy

Test
Error

Test
Accuracy

Scaled
Swishmax

50 10.7130 0.3280 10.2327 0.3581
100 10.4904 0.3420 5.8831 0.3638
150 10.6216 0.6668 10.1433 0.6374
200 10.6964 0.3291 10.1212 0.3651

Swishmax

50 5.3677 0.6670 6.0802 0.6228
100 5.3106 0.6705 5.8831 0.6350
150 5.3710 0.3337 10.1415 0.3639
200 5.4130 0.6642 5.8956 0.6342

Leaky
Relu

50 5.5456 0.6559 6.2545 0.6120
100 5.2401 0.6749 5.9939 0.6281
150 5.2082 0.6769 5.8341 0.6380
200 5.3996 0.6650 5.7316 0.6444

Prelu

50 0.0166 0.9933 0.0421 0.9873
100 0.0129 0.9956 0.0438 0.9879
150 0.0218 0.9931 0.0404 0.9892
200 0.0122 0.9966 0.0285 0.9924

Relu

50 0.0151 0.9956 0.0506 0.9898
100 0.0101 0.9966 0.0320 0.9925
150 0.0155 0.9940 0.0461 0.9917
200 0.0141 0.9950 0.0266 0.9943

Electronics 2022, 11, 55 14 of 22

Electronics 2022, 11, 55 15 of 21

influence the classification performance of a CNN model. Astonishingly, the classification
performance differs with varied epochs. To mitigate overfitting when using a small da-
taset, heavy augmentation techniques are required, and if smaller size of image are used,
discriminative information is easily lost during training, thereby affecting the overall per-
formance of the model. Owing to the fixed structure of the model, an insufficient training
sample to learn numerous parameters for smaller image samples can lead to overfitting
problems.

Figure 8. Model’s training and test accuracy Adam and LeakyReLU.

Figure 9. Model’s training and test loss over epochs with Adam and LeakyReLU.

As shown in Table 2 and Figures 5 and 6, the combination of RMSprop optimization
and ReLU activation function produced best validation result and lower classification loss
than other activation functions. Our model attained reasonable classification performance,
and therefore, it can be established that our model is robust for classifying cracked surface
of tiles from no-cracked image samples.

In our effort to enhance the classification accuracy of our model, we modified our
network architecture by increasing the size of the convolutional layers, size of learning
filters, and introducing combined L1 and L2 regularization terms into our network. This in
turn increased the architecture’s total parameter from 3,453,121 to 7,146,257, trainable pa-
rameters to 7,146,065, and non-trainable parameters to 192.

We recorded perfect learning movement, as shown in Figures 10 and 11, but due to
light deployment of data augmentation techniques and insufficient training data, the
modified network architecture could not achieve high validation accuracy.

Figure 8. Model’s training and test accuracy Adam and LeakyReLU.

Electronics 2022, 11, 55 15 of 21

influence the classification performance of a CNN model. Astonishingly, the classification
performance differs with varied epochs. To mitigate overfitting when using a small da-
taset, heavy augmentation techniques are required, and if smaller size of image are used,
discriminative information is easily lost during training, thereby affecting the overall per-
formance of the model. Owing to the fixed structure of the model, an insufficient training
sample to learn numerous parameters for smaller image samples can lead to overfitting
problems.

Figure 8. Model’s training and test accuracy Adam and LeakyReLU.

Figure 9. Model’s training and test loss over epochs with Adam and LeakyReLU.

As shown in Table 2 and Figures 5 and 6, the combination of RMSprop optimization
and ReLU activation function produced best validation result and lower classification loss
than other activation functions. Our model attained reasonable classification performance,
and therefore, it can be established that our model is robust for classifying cracked surface
of tiles from no-cracked image samples.

In our effort to enhance the classification accuracy of our model, we modified our
network architecture by increasing the size of the convolutional layers, size of learning
filters, and introducing combined L1 and L2 regularization terms into our network. This in
turn increased the architecture’s total parameter from 3,453,121 to 7,146,257, trainable pa-
rameters to 7,146,065, and non-trainable parameters to 192.

We recorded perfect learning movement, as shown in Figures 10 and 11, but due to
light deployment of data augmentation techniques and insufficient training data, the
modified network architecture could not achieve high validation accuracy.

Figure 9. Model’s training and test loss over epochs with Adam and LeakyReLU.

We also experimented with Adam optimizer with varying epochs and different activa-
tion functions and L1 and L2 reutilization techniques, as shown in Table 3. The comparisons
of the training error and accuracy and test error and accuracy in relation with varying epoch
sizes is illustrated in Table 3. The values in bold indicate the best results obtained with
Adam optimization function with L1 and L2 regularizers and different activation functions,
such as scaled swishmax, swishmax, leaky relu, prelu, and relu activation functions.

As illustrated in Table 3 and Figures 8 and 9, the validation accuracy and loss between
the various activation functions used, except (Relu + L1/L2), are averagely 0.98842 and
0.038622, respectively, when all the training samples are used. However, the combination of
(Relu + L1/L2) yielded poor performance due to the heavy influence of the regularization
terms. This shows that the choice of activation function can, to a large extent, influence the
classification performance of a CNN model. Astonishingly, the classification performance
differs with varied epochs. To mitigate overfitting when using a small dataset, heavy
augmentation techniques are required, and if smaller size of image are used, discriminative
information is easily lost during training, thereby affecting the overall performance of the
model. Owing to the fixed structure of the model, an insufficient training sample to learn
numerous parameters for smaller image samples can lead to overfitting problems.

Electronics 2022, 11, 55 15 of 22

Table 3. The comparisons of the training error and accuracy and test error and accuracy in relation
with varying epoch sizes.

Adam Train, Test Accuracy and Loss

Activation Epochs Train
Error

Train
Accuracy

Test
Error

Test
Accuracy

Relu
+

L1/L2

50 32.6091 0.6492 20.7764 0.6012
100 40.8956 0.6492 15.8244 0.6411
150 29.2660 0.6391 19.5986 0.6270
200 28.1345 0.6411 23.4236 0.6508

Swishmax

50 0.0442 0.9840 0.0527 0.9790
100 0.0397 0.9877 0.0515 0.9825
150 0.0408 0.9850 0.0407 0.9854
200 0.0449 0.9841 0.0541 0.9816

Scaled
Swishmax

50 0.0328 0.9861 0.0305 0.9885
100 0.0341 0.9875 0.0362 0.9875
150 0.0320 0.9880 0.0307 0.9892
200 0.0367 0.9843 0.0372 0.9866

Relu

50 0.0279 0.9909 0.0357 0.9879
100 0.0300 0.9899 0.0361 0.9875
150 0.0277 0.9891 0.0389 0.9841
200 0.0245 0.9912 0.0390 0.9873

Prelu

50 0.0256 0.9909 0.0415 0.9930
100 0.0239 0.9937 0.0368 0.9938
150 0.0271 0.9922 0.0453 0.9924
200 0.0274 0.9909 0.0387 0.9930

Leaky
Relu

50 0.0098 0.9969 0.0282 0.9924
100 0.0102 0.9969 0.0237 0.9938
150 0.0120 0.9956 0.0280 0.9930
200 0.0108 0.9956 0.0228 0.9936

As shown in Table 2 and Figures 5 and 6, the combination of RMSprop optimization
and ReLU activation function produced best validation result and lower classification loss
than other activation functions. Our model attained reasonable classification performance,
and therefore, it can be established that our model is robust for classifying cracked surface
of tiles from no-cracked image samples.

In our effort to enhance the classification accuracy of our model, we modified our
network architecture by increasing the size of the convolutional layers, size of learning
filters, and introducing combined L1 and L2 regularization terms into our network. This
in turn increased the architecture’s total parameter from 3,453,121 to 7,146,257, trainable
parameters to 7,146,065, and non-trainable parameters to 192.

We recorded perfect learning movement, as shown in Figures 10 and 11, but due
to light deployment of data augmentation techniques and insufficient training data, the
modified network architecture could not achieve high validation accuracy.

Electronics 2022, 11, 55 16 of 22
Electronics 2022, 11, 55 16 of 21

Figure 10. Model’s training and test accuracy with increased architecture.

Figure 11. Model’s training and test loss with increased architecture.

6. Discussion
The comparative study is given in Table 4. In [92], a Feature Pyramid Network (FPN)

approach was adopted to process the outcome of a GoogleNet Convolutional neural net-
work architecture used for the crack-classification tasks. The feature pyramid network
was built up with layers fussed together in conjunction with convolutional layers that
work collectively to conduct the delineation of crack processes. A precisive accuracy of
80.13% for the crack delineation process was achieved in the work. However, the low pro-
cessing speed of the proposed model is the major drawback, as it takes approximately 16
s to process and detect the entire crack content of a 6000 × 4000 pixels image.

Ref. [93] used a deep convolutional encoder-decoder network model to perform a
pixel-level road-cracks detection. The encoder section of the proposed model is composed
of the convolutional layers, which is responsible for the crack features extraction. On the
other hand, the decoder section is made up of the de-convolutional layers that determines
the locations of cracks in the image samples. In their experiments, 427 black box images
were used for the model training and 100 images used for the model testing process. They
obtained an intersection of a union score of 59.65%, a recall of 71.98%, and a precision of
77.68%, respectively. In [94], a Fully Convolutional Network (FCN) architecture was uti-
lized to perform the pixel-wise segmentation of cracks that exist in image samples of pave-
ments and walls. In the model, crack segmentation predictions were represented using
pixel skeletons with a width of a pixel and the skeletons then used to measure the images’
morphological features, such as width, length, and topology. They obtained an overall

Figure 10. Model’s training and test accuracy with increased architecture.

Electronics 2022, 11, 55 16 of 21

Figure 10. Model’s training and test accuracy with increased architecture.

Figure 11. Model’s training and test loss with increased architecture.

6. Discussion
The comparative study is given in Table 4. In [92], a Feature Pyramid Network (FPN)

approach was adopted to process the outcome of a GoogleNet Convolutional neural net-
work architecture used for the crack-classification tasks. The feature pyramid network
was built up with layers fussed together in conjunction with convolutional layers that
work collectively to conduct the delineation of crack processes. A precisive accuracy of
80.13% for the crack delineation process was achieved in the work. However, the low pro-
cessing speed of the proposed model is the major drawback, as it takes approximately 16
s to process and detect the entire crack content of a 6000 × 4000 pixels image.

Ref. [93] used a deep convolutional encoder-decoder network model to perform a
pixel-level road-cracks detection. The encoder section of the proposed model is composed
of the convolutional layers, which is responsible for the crack features extraction. On the
other hand, the decoder section is made up of the de-convolutional layers that determines
the locations of cracks in the image samples. In their experiments, 427 black box images
were used for the model training and 100 images used for the model testing process. They
obtained an intersection of a union score of 59.65%, a recall of 71.98%, and a precision of
77.68%, respectively. In [94], a Fully Convolutional Network (FCN) architecture was uti-
lized to perform the pixel-wise segmentation of cracks that exist in image samples of pave-
ments and walls. In the model, crack segmentation predictions were represented using
pixel skeletons with a width of a pixel and the skeletons then used to measure the images’
morphological features, such as width, length, and topology. They obtained an overall

Figure 11. Model’s training and test loss with increased architecture.

6. Discussion

The comparative study is given in Table 4. In [91], a Feature Pyramid Network
(FPN) approach was adopted to process the outcome of a GoogleNet Convolutional neural
network architecture used for the crack-classification tasks. The feature pyramid network
was built up with layers fussed together in conjunction with convolutional layers that work
collectively to conduct the delineation of crack processes. A precisive accuracy of 80.13%
for the crack delineation process was achieved in the work. However, the low processing
speed of the proposed model is the major drawback, as it takes approximately 16 s to
process and detect the entire crack content of a 6000 × 4000 pixels image.

Electronics 2022, 11, 55 17 of 22

Table 4. Comparative performances of deep learning-based crack-detection studies.

Methods Strengths Weaknesses Applicable

Crack detection
using image
processing [92]

• To crack classification
tasks, Feature Pyramid
Network (FPN)
approach was adopted
to process the outcome
of a GoogleNet.

• The FPN was built up
with layers fussed
together in conjunction
with
convolutional layers

• Low processing
speed of the
proposed model.

• It takes an
approximately
16 s to process and
detect the entire
crack content

6000 × 4000
pixels images.

Pixel-level read
crack detection in
black-box
images [93]

• A deep convolutional
encoder-decoder
network model was
utilized to identify road
fractures at the pixel
level.

• The suggested model’s
encoder component is
made up of
convolutional layers,
which are responsible
for extracting crack
characteristics.

• The decoder part is
made up of
de-convolutional layers,
which detect where
fractures in picture
samples are located.

• Quantify the
cracks and type of
cracks and needs
more accurate
pixel-level cracks
in the road.

• Need a large-scale
image database.

427 black box
images were
used for the
model training
and 100 images
used for the
model
testing process.

Crack detection
with fully
convolutional
network [93]

• Crack segmentation
predictions were
represented as pixel
skeletons with a width
of one pixel, which
were then utilized to
measure morphological
parameters, such as
width, length, and
topology, in
the pictures.

• There is no fixed
or equivalent
bounding box in
these
circumstances;
hence, pixel-level
identification
is required.

Detect cracks at
pixel level

Ceramic defect
detection using
convolutional
neural network
(present study)

• Uses an in-depth
learning-based method
rather than a
filter-based method.

• Geometric properties
are not dependent.

• We used the feature and
discrimination
techniques.

• Deployed on images
that are acquired using
low-cost, ordinary
smart phone cameras
that pose
complex features

• Detects of surface
defects on ceramic
tiles only.

Material that is
put to the
test (ceramic)

Electronics 2022, 11, 55 18 of 22

Ref. [92] used a deep convolutional encoder-decoder network model to perform a
pixel-level road-cracks detection. The encoder section of the proposed model is composed
of the convolutional layers, which is responsible for the crack features extraction. On the
other hand, the decoder section is made up of the de-convolutional layers that determines
the locations of cracks in the image samples. In their experiments, 427 black box images
were used for the model training and 100 images used for the model testing process. They
obtained an intersection of a union score of 59.65%, a recall of 71.98%, and a precision
of 77.68%, respectively. In [93], a Fully Convolutional Network (FCN) architecture was
utilized to perform the pixel-wise segmentation of cracks that exist in image samples of
pavements and walls. In the model, crack segmentation predictions were represented
using pixel skeletons with a width of a pixel and the skeletons then used to measure the
images’ morphological features, such as width, length, and topology. They obtained an
overall accuracy of 97.96%, which is far better than the CrackNet model because the model
generates pixel-level segmentation and uses less training time.

Comparing our proposed architecture with the others in the literature, our model ush-
ered in a more accurate, efficient, and less complex architecture for identifying cracks in the
tile’s smooth surfaces. The model uses less parameters and in turn is less computationally
intensive, which are crucial for the model inferencing and deployment. We achieved an
accuracy of 99.43%, which is closely followed by the Yang et al. [93] model at 97.96%. Our
proposed model achieved an improvement of 1.47%, which is highly significant in precisive
cracks spotting from tile surfaces.

7. Conclusions

In this work, we present a simple CNN model to handle the classification tasks of
close, similar defect of smooth tile surface. When compared to the existing methods and
classical handcrafted feature-extraction system, our proposed method attains multiple
purposes of simultaneous classification and features extraction. The results obtained
from our detailed experiments demonstrate the efficiency of our approach with small tile
crack and no-crack dataset. With extensive deployment of data augmentation methods
on a small training and test dataset, our proposed model is able to realize satisfactory
validation accuracy on smooth tile-surface defects, with average classification accuracy of
approximately 0.9943 and 0.0266 classification loss on test set. For future work, more types
of tile-surface defects from different types of tile surface and designs will be collected and a
more robust classifier built.

Author Contributions: Conceptualization, O.S. and U.J.M.; methodology, O.S. and U.J.M.; soft-
ware, O.S. and U.J.M.; validation, O.S., U.J.M. and M.S.; formal analysis, O.S.; investigation, U.J.M.;
resources, M.S.; data curation, U.J.M.; writing—original draft preparation, O.S. and U.J.M.; writing—
review and editing, M.S.; visualization, O.S. and U.J.M.; supervision, M.S.; project administra-
tion, M.S.; funding acquisition, M.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by Dongseo University, “Dongseo Cluster Project” Research
Fund of 2021 (DSU-20210004).

Data Availability Statement: The data used to support the findings of this study are included within
the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jahangiri, A.; Rakha, H.A.; Dingus, T.A. Adopting machine learning methods to predict red-light running violations. In Proceed-

ings of the IEEE International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15–18 September 2015;
pp. 650–655.

2. Oliveira, H.; Correia, P.L. CrackIT—An Image Processing Toolbox for Crack Detection and Characterization. In Proceedings of
the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 798–802. [CrossRef]

3. Budiansky, B.; O’Connell, R.J. Elastic moduli of a cracked solid. Int. J. Solids Struct. 1976, 12, 81–97. [CrossRef]

http://doi.org/10.1109/ICIP.2014.7025160
http://doi.org/10.1016/0020-7683(76)90044-5

Electronics 2022, 11, 55 19 of 22

4. Aboudi, J. Stiffness reduction of cracked solids. Eng. Fract. Mech. 1987, 26, 637–650. [CrossRef]
5. Lacidogna, G.; Piana, G.; Accornero, F.; Carpinteri, A. Multi-technique damage monitoring of concrete beams: Acoustic Emission,

Digital Image Correlation, Dynamic Identification. Constr. Build. Mater. 2020, 242, 118114. [CrossRef]
6. Zhao, S.; Sun, L.; Gao, J.; Wang, J.; Shen, Y. Uniaxial ACFM detection system for metal crack size estimation using magnetic

signature waveform analysis. Measurement 2020, 164, 108090. [CrossRef]
7. Zhang, X.; Wang, K.; Wang, Y.; Shen, Y.; Hu, H. Rail crack detection using acoustic emission technique by joint optimization noise

clustering and time window feature detection. Appl. Acoust. 2019, 160, 107141. [CrossRef]
8. Cheon, M.H.; Hong, D.G.; Lee, D.H. Surface crack detection in concrete structures using image processing. In Proceedings of the

2017 International Conference on Robot Intelligence Technology and Applications, Daejeon, Korea, 14–15 December 2017.
9. Zou, Q.; Cao, Y.; Li, Q.; Mao, Q.; Wang, S. CrackTree: Automatic crack detection from pavement images. Pattern Recognit. Lett.

2012, 33, 227–238. [CrossRef]
10. Mathavan, S.; Kamal, K.; Rahman, M. A Review of Three-Dimensional Imaging Technologies for Pavement Distress Detection

and Measurements. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2353–2362. [CrossRef]
11. Medina, R.; Llamas, J.; Zalama, E.; Gomez-Garcia-Bermejo, J. Enhanced automatic detection of road sur-face cracks by combining

2d/3d image processing techniques. In Proceedings of the IEEE International Conference on Image Processing, Paris, France,
27–30 October 2014; pp. 778–782.

12. Varadharajan, S.; Jose, S.; Sharma, K.; Wander, L.; Mertz, C. Vision for road inspection. In Proceedings of the 2014 IEEE Winter
Conference on Applications of Computer Vision, Steamboat Springs, CO, USA, 24–26 March 2014; pp. 115–122.

13. Roth, H.R.; Lu, L.; Liu, J.; Yao, J.; Seff, A.; Cherry, K.; Kim, L.; Summers, R.M. Improving Computer-Aided Detection Us-
ing_newlineConvolutional Neural Networks and Random View Aggregation. IEEE Trans. Med. Imaging 2015, 35, 1170–1181.
[CrossRef]

14. Kivinen, J.J.; Williams, C.K.; Heess, N. Visual boundary prediction: A deep neural prediction network and quality dissection. In
Proceedings of the International Conference on Artificial Intelligence and Statistics, Reykjavik, Iceland, 22–25 April 2014; pp.
512–521.

15. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
16. Cho, K. Boltzmann Machines for Image Denoising. In Artificial Neural Networks and Machine Learning—ICANN 2013; Lecture

Notes in Computer Science; Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N., Eds.;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 611–618. [CrossRef]

17. Deng, L.; Seltzer, M.L.; Yu, D.; Acero, A.; Mohamed, A.R.; Hinton, G. Binary Coding of Speech Spectrograms Using a Deep
Auto-Encoder. In Proceedings of the Eleventh Annual Conference of the International SPEECH communication Association,
Makuhari, Chiba, Japan, 26–30 September 2010; pp. 1692–1695.

18. Salman, M.; Mathavan, S.; Kamal, K.; Rahman, M. Pavement crack detection using the gabor filter. In Proceedings of the IEEE
International Conference on Intelligent Transportation Systems, The Hague, The Netherlands, 6–9 October 2013; pp. 2039–2044.

19. Hu, Y.; Zhao, C. A local binary pattern-based methods for pavement crack detection. J. Pattern Recognit. Res. 2010, 5, 140–147.
[CrossRef]

20. Oliveira, H.; Correia, P.L. Automatic road crack detection and characterization. IEEE Trans. Intell. Transp. Syst. 2013, 14, 155–168.
[CrossRef]

21. Abdel-Qader, I.; Abudayyeh, O.; Kelly, M.E. Analysis of Edge-Detection Techniques for Crack Identification in Bridges. J. Comput.
Civ. Eng. 2003, 17, 255–263. [CrossRef]

22. Fujita, Y.; Hamamoto, Y. A robust automatic crack detection method from noisy concrete surfaces. Mach. Vis. Appl. 2011, 22,
245–254. [CrossRef]

23. Jahanshahi, M.R.; Masri, S.F. Adaptive vision-based crack detection using 3D scene reconstruction for condition assessment of
structures. Autom. Constr. 2012, 22, 567–576. [CrossRef]

24. Chen, F.-C.; Jahanshahi, M.R.; Wu, R.-T.; Joffe, C. A texture-Based Video Processing Methodology Using Bayesian Data Fusion for
Autonomous Crack Detection on Metallic Surfaces. Comput. Civ. Infrastruct. Eng. 2017, 32, 271–287. [CrossRef]

25. Dung, C.V.; Anh, L.D. Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 2018,
99, 52–58. [CrossRef]

26. Yamaguchi, T.; Hashimoto, S. Fast crack detection method for large-size concrete surface images using percolation-based image
processing. Mach. Vis. Appl. 2009, 21, 797–809. [CrossRef]

27. Bu, P.; Chanda, S.; Guan, H.; Jo, J.; Blumenstein, M.; Loo, Y.C. Crack detection using a texture analysis-based technique for visual
bridge inspection. Electron. J. Struct. Eng. 2015, 14, 41–48.

28. Jahanshahi, M.R.; Masri, S.F.; Padgett, C.W.; Sukhatme, G.S. An innovative methodology for detection and quantification of
cracks through incorporation of depth perception. Mach. Vis. Appl. 2013, 24, 227–241. [CrossRef]

29. Zalama, E.; Gómez-García-Bermejo, J.; Medina, R.; Llamas, J. Road crack detection using visual features extracted by gabor filters.
Comput. Aided Civ. Infrastruct. Eng. 2014, 29, 342–358. [CrossRef]

30. Wu, X.-Y.; Xu, K.; Xu, J.-W. Application of un-decimated wavelet transform to surface defect detection of hot rolled steel plates.
Proc. Congr. Image Signal Process. 2008, 4, 528–532.

31. Choi, D.-C.; Jeon, Y.-J.; Lee, S.J.; Yun, J.P.; Kim, S.W. Algorithm for detecting seam cracks in steel plates using a Gabor filter
combination method. Appl. Opt. 2014, 53, 4865–4872. [CrossRef] [PubMed]

http://doi.org/10.1016/0013-7944(87)90129-9
http://doi.org/10.1016/j.conbuildmat.2020.118114
http://doi.org/10.1016/j.measurement.2020.108090
http://doi.org/10.1016/j.apacoust.2019.107141
http://doi.org/10.1016/j.patrec.2011.11.004
http://doi.org/10.1109/TITS.2015.2428655
http://doi.org/10.1109/TMI.2015.2482920
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1007/978-3-642-40728-4_76
http://doi.org/10.13176/11.167
http://doi.org/10.1109/TITS.2012.2208630
http://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
http://doi.org/10.1007/s00138-009-0244-5
http://doi.org/10.1016/j.autcon.2011.11.018
http://doi.org/10.1111/mice.12256
http://doi.org/10.1016/j.autcon.2018.11.028
http://doi.org/10.1007/s00138-009-0189-8
http://doi.org/10.1007/s00138-011-0394-0
http://doi.org/10.1111/mice.12042
http://doi.org/10.1364/AO.53.004865
http://www.ncbi.nlm.nih.gov/pubmed/25090315

Electronics 2022, 11, 55 20 of 22

32. Zou, Q.; Zhang, Z.; Li, Q.; Qi, X.; Wang, Q.; Wang, S. DeepCrack: Learning Hierarchical Convolutional Features for Crack
Detection. IEEE Trans. Image Process. 2019, 28, 1498–1512. [CrossRef] [PubMed]

33. Schmugge, S.J.; Nguyen, N.R.; Thao, C.; Lindberg, J.; Grizzi, R.; Joffe, C.; Shin, M.C. Automatic detection of cracks during power
plant inspection. In Proceedings of the 2014 3rd International Conference on Applied Robotics for the Power Industry, Foz do
Iguacu, Brazil, 14–16 October 2014; pp. 1–5. [CrossRef]

34. Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Physik 2019, 29,
102–127. [CrossRef]

35. Yin, S.; Luo, H.; Ding, S.X. Real-Time Implementation of Fault-Tolerant Control Systems with Performance Optimization. IEEE
Trans. Ind. Electron. 2013, 61, 2402–2411. [CrossRef]

36. Yin, S.; Yang, H.; Gao, H.; Qiu, J.; Kaynak, O. An Adaptive NN-Based Approach for Fault-Tolerant Control of Nonlinear
Time-Varying Delay Systems with Unmodeled Dynamics. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 1902–1913. [CrossRef]

37. Alzubaidi, L.; Zhang, J.; Humaidi, A.J. Review of deep learning: Concepts, CNN architectures, challenges, applications, future
directions. J. Big Data 2021, 8, 53. [CrossRef]

38. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

39. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Richfeaturehierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

40. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Sydney, Australia,
7–13 December 2015; pp. 1440–1448.

41. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 91–99. [CrossRef]

42. Zhang, L.; Yang, F.; Zhang, Y.D.; Zhu, Y.J. Road crack detection using deep convolutional neural network. In Proceedings of the
International Conference on Image Processing, ICIP, Phoenix, AZ, USA, 25–28 September 2016; pp. 3708–3712. [CrossRef]

43. Cha, Y.-J.; Choi, W.; Büyüköztürk, O. Deep learning-based crack damage detection using convolutional neural networks.
Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [CrossRef]

44. Schmugge, S.J.; Rice, L.; Nguyen, N.R.; Lindberg, J.; Grizzi, R.; Joffe, C.; Shin, M.C. Detection of cracks in nuclear power plant
using spatial-temporal grouping of local patches. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer
Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–7. [CrossRef]

45. Soukup, D.; Huber-Mörk, R. Convolutional neural networks for steel surface defect detection from photometric stereo images. In
Proceedings of the International Symposium on Visual Computing, Tokyo, Japan, 8–9 May 2014; pp. 668–677.

46. Zhang, A.; Wang, K.C.P.; Fei, Y.; Liu, Y.; Tao, S.; Chen, C.; Li, J.Q.; Li, B. Deep Learning—Based Fully Automated Pavement Crack
Detection on 3D Asphalt Surfaces with an Improved CrackNet. J. Comput. Civ. Eng. 2018, 32, 04018041. [CrossRef]

47. Pauly, L.; Hogg, D.; Fuentes, R.; Peel, H. Deeper networks for pavement crack detectionIAARC. In Proceedings of the 34th
International Symposium on Automation and Robotics in Construction and Mining (ISARC 2017), Taipei, Taiwan, 28 June–1 July
2017.

48. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.
49. Yang, H.; Yu, L. Feature extraction of wood-hole defects using wavelet-based ultrasonic testing. J. For. Res. 2017, 28, 395–402.

[CrossRef]
50. Shanmugamani, R.; Sadique, M.; Ramamoorthy, B. Detection and classification of surface defects of gun barrels using computer

vision and machine learning. Measurement 2015, 60, 222–230. [CrossRef]
51. Gholizadeh, S.; Leman, Z.; Baharudin, B. A review of the application of acoustic emission technique in engineering. Struct. Eng.

Mech. 2015, 54, 1075–1095. [CrossRef]
52. Rocha, T.; Ramos, H.G.; Ribeiro, A.; Pasadas, D.J. Magnetic sensors assessment in velocity induced eddy current testing. Sens.

Actuators A Phys. 2015, 228, 55–61. [CrossRef]
53. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2324. [CrossRef]
54. Lee, Y.H. Efficiency Improvement in a Busy Radiology Practice: Determination of Musculoskeletal Magnetic Resonance Imaging

Protocol Using Deep-Learning Convolutional Neural Networks. J. Digit. Imaging 2018, 31, 604–610. [CrossRef] [PubMed]
55. Gong, E.; Pauly, J.M.; Wintermark, M.; Zaharchuk, G. Deep learning enables reduced gadolinium dose for contrast-enhanced

brain MRI. J. Magn. Reson. Imaging 2018, 48, 330–340. [CrossRef]
56. Liu, F.; Jang, H.; Kijowski, R.; Bradshaw, T.; McMillan, A.B. Deep Learning MR Imaging–based Attenuation Correction for

PET/MR Imaging. Radiology 2018, 286, 676–684. [CrossRef]
57. Meyer, P.; Noblet, V.; Mazzara, C.; Lallement, A. Survey on deep learning for radiotherapy. Comput. Biol. Med. 2018, 98, 126–146.

[CrossRef] [PubMed]
58. Lee, J.-G.; Jun, S.; Cho, Y.-W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep Learning in Medical Imaging: General Overview. Korean

J. Radiol. 2017, 18, 570–584. [CrossRef]
59. Rueckert, D.; Glocker, B.; Kainz, B. Learning clinically useful information from images: Past, present and future. Med. Image Anal.

2016, 33, 13–18. [CrossRef]

http://doi.org/10.1109/TIP.2018.2878966
http://www.ncbi.nlm.nih.gov/pubmed/30387731
http://doi.org/10.1109/carpi.2014.7030042
http://doi.org/10.1016/j.zemedi.2018.11.002
http://doi.org/10.1109/TIE.2013.2273477
http://doi.org/10.1109/TNNLS.2016.2558195
http://doi.org/10.1186/s40537-021-00444-8
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1109/icip.2016.7533052
http://doi.org/10.1111/mice.12263
http://doi.org/10.1109/wacv.2016.7477601
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000775
http://doi.org/10.1007/s11676-016-0297-z
http://doi.org/10.1016/j.measurement.2014.10.009
http://doi.org/10.12989/sem.2015.54.6.1075
http://doi.org/10.1016/j.sna.2015.02.004
http://doi.org/10.1109/5.726791
http://doi.org/10.1007/s10278-018-0066-y
http://www.ncbi.nlm.nih.gov/pubmed/29619578
http://doi.org/10.1002/jmri.25970
http://doi.org/10.1148/radiol.2017170700
http://doi.org/10.1016/j.compbiomed.2018.05.018
http://www.ncbi.nlm.nih.gov/pubmed/29787940
http://doi.org/10.3348/kjr.2017.18.4.570
http://doi.org/10.1016/j.media.2016.06.009

Electronics 2022, 11, 55 21 of 22

60. Chartrand, G.; Cheng, P.M.; Vorontsov, E.; Drozdzal, M.; Turcotte, S.; Pal, C.J.; Kadoury, S.; Tang, A. Deep Learning: A Primer for
Radiologists. RadioGraphics 2017, 37, 2113–2131. [CrossRef] [PubMed]

61. Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine Learning for Medical Imaging. RadioGraphics 2017, 37, 505–515.
[CrossRef] [PubMed]

62. Mazurowski, M.A.; Buda, M.; Saha, A.; Bashir, M.R. Deep learning in radiology: An overview of the concepts and a survey of the
state of the art with focus on MRI. J. Magn. Reson. Imaging 2018, 49, 939–954. [CrossRef] [PubMed]

63. McBee, M.P.; Awan, O.A.; Colucci, A.T.; Ghobadi, C.W.; Kadom, N.; Kansagra, A.P.; Auffermann, W.F. Deep Learning in Radiology.
Acad. Radiol. 2018, 25, 1472–1480. [CrossRef] [PubMed]

64. Savadjiev, P.; Chong, J.; Dohan, A.; Vakalopoulou, M.; Reinhold, C.; Paragios, N.; Gallix, B. Demystification of AI-driven medical
image interpretation: Past, present and future. Eur. Radiol. 2019, 29, 1616–1624. [CrossRef]

65. Thrall, J.H.; Li, X.; Li, Q.; Cruz, C.; Do, S.; Dreyer, K.; Brink, J. Artificial intelligence and machine learning in radiology:
Opportunities, challenges, pitfalls, and criteria for success. J. Am. Coll. Radiol. 2018, 15, 504–508. [CrossRef]

66. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology.
Insights Imaging 2018, 9, 611–629. [CrossRef] [PubMed]

67. Yasaka, K.; Akai, H.; Kunimatsu, A.; Kiryu, S.; Abe, O. Deep learning with convolutional neural network in radiology. Jpn. J.
Radiol. 2018, 36, 257–272. [CrossRef]

68. Sze, V.; Chen, Y.; Emer, J. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. arXiv 2017, arXiv:1703.09039v2.
[CrossRef]

69. Levine, S.; Finn, C.; Darrell, T.; Abbeel, P. End-to-end training of deep visuomotor policies. J. Mach. Learn. Res. 2016, 17, 1334–1373.
70. Dvornik, N.; Shmelkov, K.; Mairal, J.; Schmid, C. Blitznet: A real-time deep network for scene understanding. In Proceedings of

the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.
71. Husain, F.; Dellen, B.; Torras, C. Scene Understanding Using Deep Learning. In Handbook of Neural Computation; Samui, P.,

Sekhar, S., Balas, V.E., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 373–382; ISBN 9780128113189. [CrossRef]
72. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;

Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature
2016, 529, 484–489. [CrossRef]

73. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

74. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010.

75. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.
[CrossRef]

76. Clevert, D.-A.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs).
arXiv 2015, arXiv:1511.07289.

77. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models; ICML: Stanford, CA, USA, 2013.
78. Zhang, X.; Trmal, J.; Povey, D.; Khudanpur, S. Improving deep neural network acoustic models using generalized maxout

networks. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Florence, Italy, 4–9 May 2014; pp. 215–219. [CrossRef]

79. Zhang, Y.; Pezeshki, M.; Brakel, P.; Zhang, S.; Laurent, C.; Bengio, Y.; Courville, A. Towards End-to-End Speech Recognition with
Deep Convolutional Neural Networks. arXiv 2016, arXiv:1701.02720. [CrossRef]

80. Candes, E.; Tao, T. The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Stat. 2007, 35, 2313–2351.
[CrossRef]

81. ZongBen, X.; Hai, Z.; Yao, W.; Yong, C.X.L. L_(1/2) regularization. Sci. China 2010, 53, 1159–1169.
82. Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 1996, 58, 267–288. [CrossRef]
83. Fan, J.; Heng, P. Nonconcave penalty likelihood with a diverging number of parameters. Ann. Stat. 2004, 32, 928961. [CrossRef]
84. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 2005, 67, 301320.
85. Zou, H. The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [CrossRef]
86. Zhao, P.; Yu, B. Stagewise Lasso. J. Mach. Learn. Res. 2007, 8, 2701–2726.
87. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
88. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015.

89. Jarrett, K.; Kavukcuoglu, K.; Ranzato, M.A.; LeCun, Y. What is the best multi-stage architecture for object recognition? In
Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009;
pp. 2146–2153. [CrossRef]

90. Available online: http://www.nvidia.com/content/geforce-gtx/NVIDIA_TITAN_Xp_User_Guide.pdf (accessed on
20 August 2021).

http://doi.org/10.1148/rg.2017170077
http://www.ncbi.nlm.nih.gov/pubmed/29131760
http://doi.org/10.1148/rg.2017160130
http://www.ncbi.nlm.nih.gov/pubmed/28212054
http://doi.org/10.1002/jmri.26534
http://www.ncbi.nlm.nih.gov/pubmed/30575178
http://doi.org/10.1016/j.acra.2018.02.018
http://www.ncbi.nlm.nih.gov/pubmed/29606338
http://doi.org/10.1007/s00330-018-5674-x
http://doi.org/10.1016/j.jacr.2017.12.026
http://doi.org/10.1007/s13244-018-0639-9
http://www.ncbi.nlm.nih.gov/pubmed/29934920
http://doi.org/10.1007/s11604-018-0726-3
http://doi.org/10.1109/JPROC.2017.2761740
http://doi.org/10.1016/B978-0-12-811318-9.00020-X
http://doi.org/10.1038/nature16961
http://doi.org/10.1109/cvpr.2016.90
http://doi.org/10.1109/iccv.2015.123
http://doi.org/10.1109/icassp.2014.6853589
http://doi.org/10.21437/interspeech.2016-1446
http://doi.org/10.1214/009053606000001523
http://doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://doi.org/10.1214/009053604000000256
http://doi.org/10.1198/016214506000000735
http://doi.org/10.1145/3065386
http://doi.org/10.1109/iccv.2009.5459469
http://www.nvidia.com/content/geforce-gtx/NVIDIA_TITAN_Xp_User_Guide.pdf

Electronics 2022, 11, 55 22 of 22

91. Mohan, A.; Poobal, S. Crack detection using image processing: A critical review and analysis. Alex. Eng. J. 2018, 57, 787–798.
[CrossRef]

92. Bang, S.; Park, S.; Kim, H.; Kim, H. Encoder–decoder network for pixel-level road crack detection in black-box images.
Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 713–727. [CrossRef]

93. Yang, X.; Li, H.; Yu, Y.; Luo, X.; Huang, T.; Yang, X. Automatic Pixel-Level Crack Detection and Measurement Using Fully
Convolutional Network. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 1090–1109. [CrossRef]

http://doi.org/10.1016/j.aej.2017.01.020
http://doi.org/10.1111/mice.12440
http://doi.org/10.1111/mice.12412

	Introduction
	Related Work
	Methodology
	Proposed Architecture Model
	Proposed Algorithm

	Experiments
	The Surface Defects Dataset
	Data Augmentation and Preprocessing Methods
	Training Steps

	Results
	Discussion
	Conclusions
	References

