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Abstract: This paper presents an object detector with depth estimation using monocular camera
images. Previous detection studies have typically focused on detecting objects with 2D or 3D
bounding boxes. A 3D bounding box consists of the center point, its size parameters, and heading
information. However, predicting complex output compositions leads a model to have generally low
performances, and it is not necessary for risk assessment for autonomous driving. We focused on
predicting a single depth per object, which is essential for risk assessment for autonomous driving.
Our network architecture is based on YOLO v4, which is a fast and accurate one-stage object detector.
We added an additional channel to the output layer for depth estimation. To train depth prediction,
we extract the closest depth from the 3D bounding box coordinates of ground truth labels in the
dataset. Our model is compared with the latest studies on 3D object detection using the KITTI object
detection benchmark. As a result, we show that our model achieves higher detection performance
and detection speed than existing models with comparable depth accuracy.

Keywords: object detection; depth estimation; deep learning

1. Introduction

To recognize and avoid obstacles in autonomous driving tasks, it is important to
determine the distance between vehicles and obstacles. Various studies were conducted to
detect objects and estimate the distance from objects based on deep learning in autonomous
driving situations.

Studies for 2D object detection have achieved remarkable improvement in terms of
performance, but they cannot be applied to autonomous driving situations because of
the lack of distance information. In autonomous driving, both object detection and depth
estimation are necessary. In attempts to achieve this task, recent studies have focused on
detecting a 3D bounding box for each object [1–17]. A 3D bounding box consists of the
center coordinates, the size parameters (width, length, and height), and the heading (yaw).
Three-dimensional object detection studies are usually based on either LiDAR point clouds
or stereo images but both methods have some weaknesses.

There are the inefficient factors of current 3D bounding box detection models as
follows: When using a point cloud [1–4], it is difficult to predict an accurate yaw angle, due
to the symmetricity of the object’s shape. The other method uses pairs of stereo camera
images [15,16]. Stereo images can be used to estimate the disparity map and 2D depth map,
but it is inefficient to predict a complete depth map as only the detected bounding boxes
are regions of interest.

Recently, monocular image-based object detection and absolute distance prediction
such as [18] was studied. The proposed model of the paper consists of a combination of two
networks, one for depth map prediction and the other for object detection. They tried to
simplify the network architecture by using a 2D object detector instead of a 3D detector, but
the model still has a depth map prediction network which causes inefficient computation
as we mentioned above.
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For fully autonomous driving, it is essential to predict the 3D bounding box, yaw, and
translational and rotational velocities, but a rotated 3D box is not necessarily required to aid
in risk assessment in the advanced driver-assistance system (ADAS). If depth information
for each object is known, the risk of collision can be predicted in the near future and it is
sufficient for autonomous driving for robots or ADAS.

To predict the depth for each object for risk assessment of autonomous driving, we
propose an object detection method with a single depth estimation based on YOLO v4 [19].
Like YOLO v4, our network uses monocular camera images as input data. We added an
additional output channel for depth prediction, which can be trained with a ground truth
depth extracted from the 3D box labels. As a result of this study, our model achieved an
AP of 71.68% for cars and 62.12% for pedestrians and a mean error rate of 3.71% in the
KITTI 3D object detection dataset [20]. It also achieved a detection speed of 25 FPS. The
contributions of this paper are as follows:

1. Our model uses monocular camera images for 2D object detection and depth esti-
mation with a straightforward model architecture. Recent 3D object detectors in the
literature have dozens of additional channels for 3D box information, but ours adds
only a single channel to the 2D object detection model. As a result, our detection has
far better performance and faster detection speed than the latest 3D detection models.

2. We designed a novel loss function to train depth estimation striking a balance between
near and far distance accuracy.

In Section 2, we discuss recent 2D and 3D object detection models and the ways they
estimate depths. Our methodology including network architecture and loss functions
is described in Section 3. The performance comparison with the existing methods and
ablation studies are written in Section 4. Section 5 gives the conclusion with future works.

2. Related Works

The 2D object detection task and depth estimation task are two of the most important
tasks for autonomous driving. Since the vehicle can avoid collisions when obstacles are
detected, the perception of hazards was studied in various ways.

Two-dimensional object detection models feature a bounding box localization task
and a category classification task. Two-dimensional object detection models are divided
into one-stage models or two-stage models depending on whether they process these two
tasks at once or separately. Models such as [19,21–25] are commonly known as one-stage
detectors. YOLOv4 and YOLOv3 [19,22] extract one feature map per scale in the form of
grid cells and train the center points of objects in the grid cells. They also use anchor boxes,
which represent the basic size of the bounding box per scale, to train the center coordinates
of the box and the box size (width and height). R-CNN, SPP-Net, Fast R-CNN, and Faster-
RCNN [26–29] are two-stage detectors that extract region proposals of the bounding box for
the localization task and then proceed with classification using the proposed region as the
input. The proposed boxes work as anchor boxes in one-stage detectors. Usually, one-stage
detectors have less computational cost, so they perform faster than two-stage detectors.
However, two-stage detectors typically have better performance. Two-dimensional object
detectors can detect objects in an image but they can not estimate the distance from them.

To determine the distance between a detected object and the vehicle, recent studies
have focused on detecting objects in the form of a 3D bounding box. Typically, a 3D
bounding box can be expressed by the center point of the cube in a 3D coordinate system,
as well as the width, length, and height of the box and the rotation angle of the box. Since
the elements of a 3D bounding box are represented by points on a 3D coordinate system
originating from the camera, the 3D box contains distance information between the camera
and the object.

Most state-of-the-art 3D object detection models use LiDAR sensors, but they vary
depending on how the raw LiDAR information is processed and used as the model input.
In general, there are two types of methods for processing raw LiDAR data. One relies
on voxelization [1–4], which converts raw LiDAR data into voxel data and uses them as
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an input for the 3D convolution networks. The other method uses a 2D bird’s-eye view
method [5–9], which projects the LiDAR point cloud onto the ground to reduce the z-axis,
and uses the 2D bird’s-eye view as an input image for 2D convolution networks. Although
the bird’s-eye view image and voxel data of the point cloud reduce many points to decrease
the computational cost, the process of making them still requires an extra processing step.
Our model only requires monocular images for evaluation and does not need any other
preprocess.

To overcome the sparse output data of LiDAR sensors, multi-channel LiDAR has
been used for many studies. Although using multi-channel LiDAR can yield more usable
data, it is expensive. If the resources are limited, image-based methods can be good
alternatives. There are two types of mainstream image-based 3D object detection methods:
monocular-based methods and stereo-based methods. The methods in [10–13] have similar
frameworks as 2D object detection but the prediction output is in the form of a 3D bounding
box. Monocular-based methods sometimes use a LiDAR point cloud to train the depth map
and use the predicted depth map with images to predict 3D bounding boxes [10]. Recent
studies have proposed new methods that only require monocular images for evaluation.
D4LCN [14] proposes depth-guided convolution kernels where depth map information
can be used to generate the convolution kernels for 2D images.

Another method of image-based 3D object detection utilizes stereo-based methods.
In [15], a new approach based on stereo pairs of images to perform regional detection
was proposed, and it predicted a 2D key point designed for vertex estimation of the 3D
bounding box by using its own network. [16] proposed employing 3D anchors to explicitly
construct object-level correspondences between the left and right regions of interest (RoIs)
and trained them to triangulate the targeted object in the 3D space. These methods focused
on training various and complicated components of the 3D bounding box without 3D
information, but complex model networks were still used.

Our network has only one additional channel for depth prediction with the 2D object
detector, and it detects objects with a 2D bounding box with depth information. Therefore,
our network can be used for the autonomous driving situation for robots or ADAS by
providing object detection results with depth information in a simple way.

3. Methodology

We propose a method of simple, 2D object detection with depth estimation based on
YOLO v4. The basic structure and the methods of bounding box regression and category
classification are similar to YOLO v4, but our network has an additional branch for training
and predicting depth information per object as shown in Figure 1.
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Figure 1. The network overview of our detection model. We add a single depth channel to the output
of YOLO v4 to predict depth information for each object. The depth channel is trained with single
ground truth depth information. The ground truth depth will be discussed in Section 3.2.1.

3.1. Image-Based 2D Object Detection
3.1.1. Backbone Network and Detection Neck

For the backbone network of our model, we adapt CSPDarknet53 from YOLO v4.
CSPDarknet53 is a combination of Darknet53 from YOLO v3 [22] and CSPNet [30]. CSPNet
can make the operations of each layer be evenly distributed, thereby removing computa-
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tional bottlenecks. For the detection neck, we also use PAN [31] for accurate localization by
shortening the information path between lower layers and top layers.

3.1.2. Detection Head

Our model has a similar detection head to YOLO v4, but it has an additional channel
for the depth estimation output. The output channel composition is described as follows:

• fy, fx: The coordinates of the bounding box center points.
• fh, fw: The height and width of the bounding box.
• fo: The confidence score representing the objectness.
• fp1, ..., pk : The probabilities for each class.
• fd: The estimated depth of the object.

The channels before fd are derived from YOLO v4. The activation and loss functions
for fd is described in the next sub-section.

3.1.3. Loss Function for Object Detection

We use the same loss functions for bounding box regression and classification as
YOLO v4. For the loss function for bounding box regression, we adapt the CIoU [32] loss
to train bounding boxes and the binary cross-entropy loss to train the object confidence
score. The CIoU loss is designed to make up for the weakness of the IoU loss by adding
the distance between the center points and the ratio differences of the height and width.
For the category classification, we use the binary cross-entropy loss for the probabilities of
each class.

3.2. Depth Estimation
3.2.1. Activation

As predicted depths must be positive, we tried three different activation functions
that always yield positive values from any convolution outputs. For variables used in the
equations below, fd stands for the predicted depths, and Od for the convolution outputs.

The first activation function in Equation (1) outputs values from 0 to infinity while the
second function in Equation (1) does from 1 to infinity. Both functions convert arbitrary
convolution outputs to valid depth ranges, but their gradients are not evenly distributed
over the depth range from 1 to 50 m. To flatten the gradients, we tried log function as in
Equation (3). It makes the model to be effectively trained within the depth range of interest.

fd = eOd (1)

fd =
1

Sigmoid(Od)
(2)

fd = β log(Sigmoid(Od)) (3)

Among the activations, the best performance was achieved with the log-sigmoid
function where β = −14.4. The results of the experiment on activation functions will be
discussed in Section 4.

3.2.2. Depth Loss

To train the depth parameter, a novel loss is designed to accurately predict depths in
both near and far ranges. The loss function is a combination of two losses. The first one is
the Huber loss [33] function between prediction and label for robust regression as follows:

Labs =

{
r2

2 i f |r| ≤ δ

δ|r| − δ2

2 i f |r| > δ
(4)

where r = ld − fd, ld is the true depth label and δ is 1.
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Since Equation (4) suppresses the absolute difference, it may result in a relatively large
error for short depths. To reduce the relative error in the near range, the second loss is
added as follows. The depth loss is the sum of the two loss functions as Equation (6).

Lrel =
|ld − fd|

ld
(5)

LD = LD,abs + LD,rel
|ld − fd|

ld
(6)

4. Experiments
4.1. Dataset and Settings
4.1.1. KITTI Dataset

In the 3D object detection challenge, the KITTI 3D object detection dataset [20] is
widely used since it has LiDAR sensor data and stereo pairs of images. It consists of
7481 training images and 7518 test images with corresponding point clouds and calibration
matrixes. We split the training data into 6980 images for the training data and 500 images
for the validation data for training and evaluation.

4.1.2. Data Preparation

To train and evaluate the depth outputs, a single representative depth of the ground
truth is required. As the 3D object detection dataset provides 3D bounding boxes, we have
to convert them into depths. The most important piece of depth information is the closest
depth to an object, as we aim to aid risk assessment for self-driving vehicles. The closest
depth is extracted by taking the minimum depth among the vertices of a bounding box, as
shown in Equation (7).

D = min
i

zi (7)

where, zi is the depth coordinate of the i-th vertex of a 3D bounding box. The example data
are shown in Figure 2. The bounding boxes are drawn in the camera image, and the depth
of the closest vehicle is depicted in the bird’s-eye view image.

4.1.3. Evaluation Metrics

We define the error rate of the depth per object with Equation (8).

E =

∣∣∣Dgt − Dpred

∣∣∣
Dgrtr

(8)

Since the error can be calculated with a pair of ground truth and predicted depths, we
only calculate the error with true-positive object pairs. The total error will be calculated as
the sum of the error rate divided by the number of ground truth objects.

4.1.4. Settings in Detail

We train our YOLO MDE model with two different classes, i.e., car and pedestrian
cases, to compare the performance with other models. The input images are scaled to
384 × 1248 for the large model and 256 × 832 for the small model. For the anchor box
parameter, we use k-means clustering and get the following nine pairs of base anchors:
(30, 37), (94, 38), (46, 78), (69, 132), (180, 85), (98, 202), (173, 214), (159, 299), and (191, 396).

The network is optimized by Adam, and we set the learning rate to 0.0001; this is
decreased by 0.1 times every 20 epochs until the final 60-th epoch is carried out. We take a
mini-batch size of four on a single Nvidia GeForce RTX 3090 (24 GB).
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4.2. Training Result and Performance
4.2.1. Performance Comparison

Our model is evaluated by the validation split of the KITTI 3D object detection bench-
mark and compared with existing studies, i.e., D4LCN [14] and GM3D [17]. Both studies
predict 3D bounding boxes from monocular images. Since our model predicts only a
single depth per object, only the closest depth of the predicted 3D box is evaluated for the
existing models. The depth is extracted in the same manner as the data preparation method
described in the previous section. The results are summarized in Table 1.

Table 1. Performance comparison between 3D object detection models.

Models AP
(Car)

AP
(Pedestrian)

Input
Size Depth Error Rate FPS 1

D4LCN [14] 67.42% 47.56% 288 × 1280 4.07% 5
GM3D [17] 59.61% 512 × 1760 2.77% 20
Yolo MDE 56.73% 55.20% 256 × 832 4.23% 34

Yolo MDE Large 71.68% 62.12% 384 × 1248 3.71% 25
1 To measure FPS, a single GPU of Tesla V100 was used.

The score threshold for the non-maximum suppression (NMS) varies when computing
the average precision (AP), but it should be fixed to evaluate the depth error rate. We used
the default values in the GitHub source code for the existing models. In our model, 0.85 is
selected for the score threshold.

We limited the maximum depth value up to 60 m for calculating the error rate.
D4LCN [14] detected cars and pedestrians and had a 4.07% depth error rate with a precision
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of 74% and a recall of 37%. In [17], the precision and recall increased up to 89% and 42%,
respectively, while the depth error rate decreased to 2.77%; however, this model can only
detect cars. For our model, we experimented with two types of input resolutions with two
classes. The higher input resolution yielded higher accuracy for object detection and depth
estimation. Our larger model had a 3.71% depth error, which is comparable to the other
models, but showed higher precision and recall values of 96% and 56%, respectively. In
addition, our larger model achieved the detection speed of 25 FPS which is five times faster
than D4LCN, and 25% faster than GM3D.

The qualitative results are shown in Figure 3. Our model is capable of predicting
precise depths for a longer range, as compared to the existing models. The figure shows
that the depth errors at more than 40 m are within a few meters.
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4.2.2. Ablation Study

To experiment with different network architectures, we tried two different architec-
tures: YOLO v3 [22] and YOLO v4 [19]. YOLO v3 combines the Darknet53 backbone and
FPN [34] neck to extract features. We used a 384 × 1248 size image when using YOLO v3
architecture.

We also tried to use three types of activation functions to decode the model output for
depth estimation. Table 2 shows the results using various combinations of network archi-
tectures and activation functions. The YOLO v3 architecture with log-sigmoid activation
function achieved the lowest depth error rate of 3.35%, and the YOLO v4 architecture with
log-sigmoid activation function achieved the highest detection performance. The table also
shows that the log-sigmoid function always achieved the highest performance regardless
of network architecture. In addition, we tried to train the model with common activation
functions such as RELU, resulting in a depth error rate of 56% which can be considered as
a failure in training depth.

Table 2. Ablation study results.

Network Activation AP
(Car)

AP
(Pedestrian) Depth Error Rate

Darknet53 + FPN
Exponential 53.94% 48.27% 4.28%

Reciprocal-Sigmoid 54.07% 41.99% 3.87%
Log-Sigmoid 68.32% 55.61% 3.35%

CSP-Darknet53 + PAN
Large

Exponential 66.54% 59.47% 4.70%
Reciprocal-Sigmoid 68.83% 61.31% 3.83%

Log-Sigmoid 71.68% 62.12% 3.71%

CSP-Darknet53 + PAN
Exponential 54.88% 46.10% 4.07%

Reciprocal-Sigmoid 53.30% 47.16% 3.99%
Log-Sigmoid 56.72% 55.80% 3.67%

4.2.3. A2D2 Dataset

To generalize our findings, we tried another dataset: A2D2 [35] dataset. Since the
A2D2 dataset does not have 2D bounding box labels, we extracted boxes from semantic
segmentation labels. The dataset provides 3D bounding box labels, but the 3D labels are
not mapped to the extracted 2D boxes. We extracted a single depth per object from LiDAR
points within the 2D box instead of using 3D boxes as described in Section 4.1.2.

For training, we tried three different activation functions in Equations (1)–(3). We
trained to detect only cars and the results are shown in Table 3. Since the depth label
extracted LiDAR points are not manually corrected, it may contain errors. The result shows
a higher depth error rate than that of the KITTI dataset. It proves that extracting depth
from the 3D bounding box can help train the depth prediction.

Table 3. Training YOLO MDE with A2D2 dataset.

Network Activation AP
(Car)

Depth Error
Rate

CSP-Darknet53 +
PAN

Exponential 76.94% 10.14%
Reciprocal-Sigmoid 77.75% 10.41%

Log-Sigmoid 77.94% 11.12%

5. Conclusions

In an autonomous driving situation, it is important to detect obstacles and estimate
geometric information with low computational cost. We proposed a 2D object detection
model with a single depth estimation using a monocular image to simplify both network
architecture and prediction parameters.
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We compared our model with the latest studies on 3D object detection models [14,17]
using the KITTI dataset and monocular camera imaging. Our model achieved an AP of
71.68% for cars which is about 4% and 12% higher than that of D4LCN [14] and GM3D [17],
respectively. In addition, our model resulted in an AP of 62.12% for pedestrians which is
nearly 14% higher than that of [14]. In terms of comparing detection speed, our model can
process 25 frames per second with a single GPU of Tesla V100, and it is five times faster
than [14], and 25% faster than [17] with the same computational resources. For the depth
estimation, our model achieved 3.71% of the depth error rate, which is 0.36% lower than
that of [14], while 0.94% higher than that of [17]. Thus, our model can detect objects with
higher speed and accuracy while maintaining a depth error rate compared to the latest 3D
object detection model.

As shown in the experiment, the proposed method can be applied to all the other
object detection models. We only tried using two different network architectures: YOLO
v3 and YOLO v4. Since we focused on higher detection speed, we used only one-stage
detectors for the experiment. To improve the detection performance, adapting different
object detection architecture such as EfficientDet [25] is expected in future works.

For further research, our model may be applied to object tracking tasks. Object tracking
is accomplished by identifying objects in a video and finding their trajectories. Since our
model can predict the closest depth per object, the depths and the center points of the
bounding box can be transformed into 3D points. A 3D point for an object does not change
significantly in a video, so identifying objects can be accomplished by tracking 3D points
per object.
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